• 回答数

    4

  • 浏览数

    187

微微的辣
首页 > 论文问答 > 基因编辑的历史发展史

4个回答 默认排序
  • 默认排序
  • 按时间排序

晃晃悠儿

已采纳
自2016年5月2日韩春雨作为通讯作者的“基因编辑技术NgAgo”论文发表引起关注、5月底质疑的声音开始出现,韩春雨实验的可重复争议,不仅科学界议论纷纷,在社会层面也引发了相关讨论。那么,基因编辑技术到底是一项怎么样的技术呢?为什么它这样备受瞩目?今天我们就一起去扒一扒基因编辑技术的“真面目”!基因编辑技术到底是个什么鬼?首先我们先介绍一下基因编辑的概念。实际上,“基因编辑”这四个字是比较简化的,严格来说我们应该称它为“基因组定点编辑技术”。这里我们要注意两个关键词,一个是“基因组”,它要在细胞核的基因组里面。另一个是“定点编辑”,因为在细胞核的基因组里面,不同的基因都有不同的位点。如果我们不是说在特定的基因组位点进行编辑的话,实际上和我们现在讨论的这个技术就大相径庭了。因为有很多其他技术可以改变细胞内的DNA组成。比如线粒体基因替代技术。还有一个就是用重组过的特异性病毒引入外源基因,但是它不能够定点,它是随机放到基因组里面的,这和我们今天要讨论的基因编辑技术都是不一样的。基因编辑技术,也就是“基因组定点编辑技术”,这个技术指的是对特定DNA片段的敲除、加入以及定点突变。基因编辑技术的历史实际上,基因编辑技术不是一个新的概念,早在90年代就开始有了。到目前为止,已经经历了三代。第一代基因编辑技术就是同源重组建立动物基因敲除(knock-out),基因敲入(knock-in)的基因突变模型。顾名思义,基因敲除(knock-out)指的是把原有的动物基因组的某些基因通过一定的技术把它从动物基因组里敲除出去;基因敲入(knock-in)则是在动物基因组某个位点上把原本不存在的基因通过一定的技术把它整合进去。基因敲除(knock-out)和基因敲入(knock-in)是通过DNA同源重组技术来完成的。这是一个非常复杂的技术。如果要做成一个成功的动物基因敲除(knock-out),基因敲入(knock-in)的基因突变模型,大概需要花费2到3年的时间,投入的资金也比较多。另外,这个技术一般来说是用于建立遗传疾病研究的动物模型,很难用于临床或者说大面积应用在农业畜牧业方面。第二代基因编辑技术是ZFN,TALEN技术。这两个技术的原理都是通过DNA核酸结合蛋白和核酸内切酶结合在一起建立一个系统。因为这些蛋白可以识别一定的核苷酸序列,通过一定设计形成的系统可以对特定的基因进行基因敲除和基因突变。第三代基因编辑技术就是最近非常火的CRISPR/Cas9 系统。它的原理就是利用核糖体结构来进行基因编辑。CRISPR/Cas9 系统经过一定的设计可以结合到靶基因上,然后对这个靶基因进行敲除、定点突变或者引入新的外源基因,来进行基因编辑。为什么第三代基因编辑技术备受瞩目?确切地说,这三代基因编辑技术到目前为止都存在一定的技术局限性。第一个比较明显的局限性就是脱靶效应。那什么是脱靶效应呢?比如原本设计是对某一个DNA靶点进行基因编辑,但是一直找一直找,却没有找到正确的靶点,实际上却跑到这个点组成相似的位点去了,这就出现了脱靶。第二个我们关注的问题就是编辑效率。任何技术都有一定的编辑效率。第三代基因编辑技术的效率要比第二代基因编辑技术高,这也是我们为什么对这三代基因编辑技术这么感兴趣的原因。还有一个问题就是基因编辑技术对同一基因可能会造成不同的基因突变类型。不同的基因突变类型混合在一起,会让检测工作变得复杂很多。在这点上,第三代基因编辑技术同样表现不俗,要比这二代基因编辑技术好很多。总的来说,为什么第三代基因编辑技术这么受大家的关注?主要得益于它以下几个优点:一是它的设计比较简单;二是它的效率比较高;三是它的价格相对便宜些;四是它的应用范围更广泛些,能针对的靶基因是比较多的。基因编辑技术有什么用?我们研究基因编辑技术,那基因编辑技术到底可以应用在哪些方面呢?主要有以下这几个方面:第一个就是可以形成不同基因型的动物模型,这从第一代基因编辑技术就开始做了。建立不同基因型的动物模型的意义在于,对遗传性疾病,这些基因和疾病之间的关系,这些模型可以给出一个比较确切的答案。这对研究遗传性疾病具有重大意义,这也是为什么大家从第一代开始就密切关注基因编辑技术的发展了。第二个主要是应用在动植物育种。不同的物种的同一个基因上,可能会存在不同的SNP。不同的SNP对正常的生理功能影响是不大的,但是却会影响一定的表型。比如水稻是不是就会更高产一些,动物的瘦肉是不是更多一些等等表型。有了基因编辑技术,在育种的过程中,我们就可以对我们最想要的某一个基因进行单点突出,以实现效益的最大化。目前为止,第三代基因编辑技术效率相比于前两代技术来说是最高的。还有一个就是对遗传疾病的治疗比较有用。目前来说,基因编辑技术主要是用在人源性的细胞上面,临床还没有用到。我们知道,很多遗传疾病都和细胞的突变有关。如果说利用基因编辑技术,我们能够把致病的基因转换成正常的基因的话,那么对家族有遗传病史的人来说,这将是一个福音。但是现在的基因编辑技术离临床治疗还远。要应用到临床上需要考虑很多问题,比如这个系统的毒性怎么样?它进去以后会不会引起什么免疫反应?因为现在基因编辑技术还存在脱靶效应,如何对我们要编辑的基因进行准确地定位是个大问题。这些都是需要研究清楚才能上临床的。(作者:胡昕华,中国科学院神经科学研究所博士。感谢中国科学技术大学化学博士,中国科学技术大学合肥微尺度物质科学国家实验室副研究员,科技与战略风云学会会长袁岚峰的推荐,原创作品,转载请注明出自知识就是力量微信公众号)(图片来自网络)编辑:刘伟琼本文系原创作品,商业合作及转载请联系 投稿请联系 ?
194 评论

孙家员外

(不知道是不是你所说的何成刚。)  何成刚[常务编辑简介]  小何,也就是何成刚了。初识他,是缘于北京宽容的介绍与引见,开始时就称呼他为“何老师”,他却非常谦虚的说自己是一位学生,于是就叫“小何同学”,就感觉很是滑稽了,因为他毕竟不是我们通常所接触的学生,更何况他还是著名的陕西师范大学杂志社出版《中学历史教学参考》刊中刊的编辑,于是,就叫“小何”吧,他倒是很爽快。  小何平时很忙的,很少有时间能够在网上与他交流。但每次交流,都让我深深感受到他、一位成长中的青年学者的那种为历史教育学发展而努力的责任感。虽然偶然谈及生活中的琐事,小何还流露出学生的纯真  请小何做中史在线网,这个由各地一线历史教师共建的小网的编辑,他竟然一口就答应了,并且主动表示,愿意在历史课程标准的宣传方面发挥一定的作用,其他的有些力量不济,因为他说自己“没有实际教学经验”这时才知道小何,何成刚竟然是师从朱汉国教授的在读博士生。  小何能够与我们一起做这个小网站,我非常开心,当然,这也是必然,因为我们有共同方向,他出于历史教育学的发展,我们在于更好的教好历史课!  附 小何简历:  96——00,北京师大,本科  00——03,北京师大,硕士  03——现在 北京师大,博士在读  先后获北师大“国家文科基础学科人才培养和科学研究”基地班奖学金;硕士研究生最高奖北师大“励耘”一等奖学金;硕士研究生最高奖美国IET奖学金。  在《中国教育报》、《中学历史教学参考》《历史教学》、《教育科学研究》、《学科教育》、《北京教育学院学报》、《教育理论与实践》、《北京教育》等发表了一些论文。  联系方式:

339 评论

我的猫叫毛毛

ZFNZFN,即锌指核糖核酸酶,由一个 DNA 识别域和一个非特异性核酸内切酶构成。DNA 识别域是由一系列 Cys2-His2锌指蛋白(zinc-fingers)串联组成(一般 3~4 个),每个锌指蛋白识别并结合一个特异的三联体碱基。锌指蛋白源自转录调控因子家族(transcription factor family),在真核生物中从酵母到人类广泛存在,形成alpha-beta-beta二级结构。其中alpha螺旋的16氨基酸残基决定锌指的DNA结合特异性,骨架结构保守。对决定DNA结合特异性的氨基酸引入序列的改变可以获得新的DNA结合特异性。多个锌指蛋白可以串联起来形成一个锌指蛋白组识别一段特异的碱基序列,具有很强的特异性和可塑性,很适合用于设计ZFNs。与锌指蛋白组相连的非特异性核酸内切酶来自FokI的C端的96个氨基酸残基组成的DNA剪切域(Kim et , 1996)。FokI是来自海床黄杆菌的一种限制性内切酶,只在二聚体状态时才有酶切活性(Kim et , 1994),每个FokI单体与一个锌指蛋白组相连构成一个ZFN,识别特定的位点,当两个识别位点相距恰当的距离时(6~8 bp),两个单体ZFN相互作用产生酶切功能。从而达到 DNA 定点剪切的目的。TALENTALENs中文名是转录激活因子样效应物核酸酶,TALENs是一种可靶向修饰特异DNA序列的酶,它借助于TAL效应子一种由植物细菌分泌的天然蛋白来识别特异性DNA碱基对。TAL效应子可被设计识别和结合所有的目的DNA序列。对TAL效应子附加一个核酸酶就生成了TALENs。TAL效应核酸酶可与DNA结合并在特异位点对DNA链进行切割,从而导入新的遗传物质。相对锌指核酸酶(zinc-finger nuclease, ZFN)而言,TALEN能够靶向更长的基因序列,而且也更容易构建。但是直到现在,人们一直都没有一种低成本的而且公开能够获得的方法来快速地产生大量的TALENs。CRISPRCRISPR是生命进化历史上,细菌和病毒进行斗争产生的免疫武器,简单说就是病毒能把自己的基因整合到细菌,利用细菌的细胞工具为自己的基因复制服务,细菌为了将病毒的外来入侵基因清除,进化出CRISPR系统,利用这个系统,细菌可以不动声色地把病毒基因从自己的染色体上切除,这是细菌特有的免疫系统。微生物学家10年前就掌握了细菌拥有多种切除外来病毒基因的免疫功能,其中比较典型的模式是依靠一个复合物,该复合物能在一段RNA指导下,定向寻找目标DNA序列,然后将该序列进行切除。许多细菌免疫复合物都相对复杂,其中科学家掌握了对一种蛋白Cas9的操作技术,并先后对多种目标细胞DNA进行切除。以往研究表明,通过这些介入,CRISPR能使基因组更有效地产生变化或突变,效率比TALEN(转录激活因子类感受器核酸酶)等其他基因编辑技术更高。但最近研究发现,虽然CRISPR有许多优点,在人类癌细胞系列中,它也可能产生大量“误伤目标”,尤其是对不希望改变的基因做修改。三种系统的比较那么,可能会有人疑问了,既然如此,这三种系统的区别和联系又是什么呢?特意从有效性,特异性,载体性及其它四个方面,进行了一个小小的总结。有效性在不同的基因位点基因靶向性的有效性都是不同的,并且这也依赖于每种细胞的转染的效率。因此,只能点对点的比较靶向位点,细胞系和转染方法,这样的比较才有意义。基于我们课题组和其他课题组的ZFN和TALENs的靶向效率的实验,我们在细胞系水平上进行了比较,虽然他们可能与不同的突变特征有关。Chen的课题组的最近的研究进行了大规模的体外分析,发现TALENs在使用与上下游相关的序列的时候比ZFNs显著的具有更多的突变产生。另一个组比较了TALENs和CRISPRs在人类ESCs细胞中的情况,观察到,通过用CRISPR更换掉TALENs,在其他方面条件相同的情况下,通过产生更多的基因突变的克隆,本质上提高了效率。最近,功能上重新编码的TALENs(reTALENs)已经得到了发展,并且在人类的iPSCs细胞中的基因编辑的有效性相比较于CRISPR得到了提高。但是这个研究发现,CRISPR比reTALENs能够实现7-8倍的同源重组效率,并且其一定程度的比HE更有效率,挡雨ODN捐赠者进行比较。特异性ZFN和TALENs都是作为二聚体发挥作用的,其特异性是由DNA绑定的区域决定的,这个区域在每个剪切位点最多可以识别36bp。然而,在在II型CRISPR系统中的Cas9是由一种RNA引导的核酸,它的特异性是由PAM和PAM上游的20个引导核苷酸决定的。这表明,3’12个碱基的“种子序列”是最关键的,而剩下的8个碱基(非种子序列)甚至PAM序列都是可以错配的。ZFN的特异性由一种不带偏见的全基因组分析进行,并且发现存在频率低,但是可以检测到的脱靶事件的发生,其可以定义为一个高度有限的一部分。已经有研究表明,TALENs有比ZFN更低的细胞毒性和脱靶效率。基于这个研究,TALENs诱导的CCR5特异性突变在CCR5的对偶基因上发生率是17%,而在高度同源的CCR2位点上只有1%。相反,CCR5特异性的ZFN的活性在这两个位点是相在当的,CCR5位点的突变频率是14%,而CCR2的是12%。几个研究也报告了,CRISPR/Cas系统在细胞毒性评价或者DSB诱导的检测(即,H2AX免疫染色)中都没有明显的脱靶现象。然而,最近的研究发现,CRISPR诱导的靶向不同的人类细胞的基因出现了显著的脱靶现象。例如,靶向CCR5的CRSIPR/Cas9系统偶到的在CCR2上的脱靶切除的突变率为5-20%,这是非常接近之前讨论的CCR5靶向的ZFN诱导的突变率。三个其他的小组利用更系统的方法在人类细胞中评估了CRISPR的脱靶活性,其结果表明CRISPR可能能够发生目标不匹配,从而在预测的脱靶位点上引入微缺失或者插入(插入缺失)。此外,靶向位点的定位和内涵能够显著的影响gRNA识别他们的靶向目标,而在基因组序列中的“脱靶序列”也是一样的。已经有报告说,脱靶效应能够通过小心的控制Cas9的mRNA的浓度来克服。此外,在基因编辑的时候使用配对的Cas9的切口酶已经表明能够显著的减少至少1500倍的脱靶活性。病毒为基础的传递ZFN基因可以通过慢病毒和腺病毒进行传递。当前,ZFNs导入体细胞是通过共转染两个慢病毒载体,每个载体编码一个功能性异源二聚体对的一个单体。相反,腺病毒,但不是基于HIV的慢病毒,载体使用与TALEN的基因的传递,因为TALENs的大尺寸和TALE重复序列的种应用。Cas9也是一个较大的基因,并且其酶促死的版本也可以通过慢病毒进行传递,虽然也盛行的Cas9的稳定的表达对于细胞的毒性依然是不清楚的。其他方面ZFNs和TALENs都能够在切割时产生粘性末端,因此可以使用标签绑定,如果具有互补突出部分的双链寡聚核苷酸(dsODN)是可以进行预测的。ZFNs和TALENs都可以在捐赠的质粒的基因组中引入同一个核酸靶向位点来实现。ZFNs和TALENs通过采取同源二聚体的方式从而获得优势,绑定门通过设计实现了重组(Ob-LiGaRe)。这种方法在使用的质粒中倒置了两半的核酸酶的结合位点,这是在没有改变接头区的方向实现的,因此通过相同的ZFN/TALEN碱基对能够阻止连接产物的消化。因为CRISPR产生了一个非粘性末端,直接连接会遇到挑战。最近的文章表明,具有Cas9n的gRNAs的碱基对能够诱导具有徒步部分的DSBs,并且促进dsODN的高效率的NHEJ介导的插入。虽然至今还没有出版,但是进入的转基因大小的DNA能够通过引入在目标质粒的CRISPR/Cas9靶向位点的具有CRISPR/Cas的基因组使用。CRISPR/Cas系统相比较于ZFNs和TALENs具有几个优势,例如易于构建,花费低,并且产物具有可扩展性,并且能够用于多个靶向基因组位点。

103 评论

zcp1211小窝

从社会学角度解释基因替代与基因循环高通量测序技术(High-throughput sequencing)又称“下一代”测序技术(Next-generation sequencing technology),以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志。根据发展历史、影响力、测序原理和技术不同等,主要有以下几种:大规模平行签名测序(Massively Parallel Signature Sequencing, MPSS)、聚合酶克隆(Polony Sequencing)、454焦磷酸测序(454 pyrosequencing)、Illumina (Solexa) sequencing、ABI SOLiD sequencing、离子半导体测序(Ion semiconductor sequencing)、DNA 纳米球测序 (DNA nanoball sequencing)等。

121 评论

相关问答

  • 基因编辑的历史发展史

    从社会学角度解释基因替代与基因循环高通量测序技术(High-throughput sequencing)又称“下一代”测序技术(Next-generation

    猜我猜不猜 3人参与回答 2024-04-26
  • 基因编辑的历史发展

    基因编辑婴儿事件的背后,是令人震惊到发抖的基因战争策士无双 策士无双 今天11月26日,最热的话题就是一对基因经过编辑的婴儿出生事件。“一对基因经过修改的双胞胎

    逸轩设计 3人参与回答 2024-04-27
  • 基因编辑的历史发展历程

    DNA是绝大部分生物的遗传信息的储存介质,由腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)四种核苷酸组成,并且严格遵守A-T,C-G的碱基互补配对原则

    老猫啊老猫 2人参与回答 2024-04-24
  • 基因编辑的历史发展趋势

    DNA是绝大部分生物的遗传信息的储存介质,由腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)四种核苷酸组成,并且严格遵守A-T,C-G的碱基互补配对原则

    圓滿如意妹 3人参与回答 2024-04-24
  • 基因编辑技术发展历史

    这次获诺奖的新型基因编辑技术是什么?它的终极用途其实是医学

    小馋猫儿richard 2人参与回答 2024-04-26