• 回答数

    3

  • 浏览数

    105

阿岚懒懒
首页 > 论文问答 > 油气藏评价与开发期刊官网查询系统

3个回答 默认排序
  • 默认排序
  • 按时间排序

明天再说0865

已采纳
不知道你说的并列是甚么意思,如果是相互不关联肯定是不受影响,如果是关联的IF语句肯定会有影响,否则关联就没成心义了。
131 评论

芳儿beauty

截至2016年3月底,学校设有1个新能源和非常规油气研究院,各级科研基地平台共计91个,包括国家重点实验室1个、联合国援建技术中心1个、国家工程实验室、工程中心(协作)3个、产业技术创新战略联盟2个、国家级大学科技园1个、国家级技术转移示范机构1个,国际合作实验室2个,省部级重点实验室(工程技术研究中心)27个、省级实验科研基地3个,厅局级及横向合作科研基地46个,校级研究中心(所)5个。 2014年,学校成立世界上首个“海洋非成岩天然气水合物固态流化开采实验室”。2015年西油与川大联合共建测井实验室。 西南石油大学作为实体建设的科研基地(平台)情况表序号名称级别依托单位1 油气藏地质及开发工程国家重点实验室(西南石油大学、成都理工大学) 国家级 石工院 2 低渗透油气田勘探开发国家工程实验室(协作) 国家级 石工院 3 油气钻井技术国家工程实验室(协作,含3个研究室) 国家级 石工院、机电院 4 国家能源高含硫气藏开采研发中心(硫沉积评价技术研究所) 国家级 石工院 5 煤层气产业技术创新战略联盟 国家级 石工院 6 二氧化碳捕集、利用与封存(CCUS)产业技术创新战略联盟 国家级 石工院 7 国家级大学科技园(西南石油大学) 国家级 学校 8 国家技术转移示范机构(西南石油大学) 国家级 学校 9 中美联合数据工程与数据分析实验室 国际合作 计科院 10 油井完井技术中心(联合国援建) 国际合作 石工院 11 石油天然气装备教育部重点实验室(西南石油大学) 教育部(省部共建) 机电院 12 天然气开发教育部工程研究中心(西南石油大学) 教育部(部级) 石工院 13 油田化学教育部工程研究中心(西南石油大学) 教育部(部级) 化工院 14 沉积盆地与油气资源重点实验室(沉积地质研究中心) 国土资源部(部级) 地科院 15 天然气地质四川省重点实验室 省科技厅(省级) 地科院 16 油气田应用化学四川省重点实验室 省科技厅(省级) 化工院 17 能量转换与储存先进材料国际科技合作基地 省科技厅(省级) 材料院 18 油气消防四川省重点实验室 省科技厅(省级) 石工院 19 四川省天然气开发与开采研究实验基地 省科技厅(省级) 石工院 20 四川石油天然气发展研究中心 省教育厅、社科联(省级) 学校 21 能源安全与文化普及基地 四川省社科联 马院 22 四川省不锈钢工程技术研究中心 省科技厅(省级) 材料院 23 四川省页岩气勘探开发协同创新中心 省教育厅(省级) 石工院 24 四川省石油天然气装备技术协同创新中心 省教育厅(省级) 机电院 25 四川省海洋天然气水合物开发协同创新中心 省教育厅(省级) 石工院 26 四川省页岩气资源与环境协同创新中心 省教育厅(省级) 地科院 27 中国石油石油管重点实验室-石油管力学和环境行为重点研究室 集团公司级 石工院 28 中国石油钻井工程重点实验室-钻井液重点研究室 集团公司级 石工院 29 中国石油钻井工程重点实验室-欠平衡钻井研究室 集团公司级 石工院 30 中国石油天然气成藏与开发重点实验室-特殊气藏开发研究室 集团公司级 石工院 31 中国海洋石油(海上油田)提高采收率重点实验室 集团公司级 石工院 32 中国石油高含硫气藏开采先导试验基地—西南石油大学研究室 集团公司级 石工院 33 中国石油油气藏改造重点实验室-西南石油大学压裂酸化数值模拟研究室 集团公司级 石工院 34 中国石油油气储运重点实验室-西南石油大学复杂天然气集输研究室 集团公司级 石工院 35 中国石油HSE重点实验室—西南石油大学研究室 集团公司级 化工院 36 中国石油碳酸盐岩重点实验室沉积—成藏研究室 集团公司级 地科院 37 中国石油钻井工程重点实验室钻头研究室 集团公司级 机电院 38 中国石油物探重点实验室页岩气地球物理研究室 集团公司级 地科院 39 中国石油测井重点实验室工程测井研究室 集团公司级 地科院 40 海洋非成岩天然气水合物固态流化开采实验室 集团公司级 石工院/机电院 41 四川省高校岩石破碎学与钻头研究实验室 省教育厅(厅级) 机电院 42 四川省高校天然气开采重点实验室 省教育厅(厅级) 石工院 43 四川省高校测控技术与自动化研究室 省教育厅(厅级) 电信院 44 四川省高校石油工程测井实验室 省教育厅(厅级) 石工院 45 四川省高校石油工程计算机模拟技术重点实验室 省教育厅(厅级) 计科院 46 四川省高校石油与天然气加工重点实验室(自筹) 省教育厅(厅级) 化工院 47 四川省高校油气田材料重点实验室 省教育厅(厅级) 材料院 48 四川省高校结构工程重点实验室 省教育厅(厅级) 土建院 49 四川省环境保护油气田污染防治与环境安全重点实验室 省环保厅(厅级) 化工院 研究领域 序号研究领域特色及主要研究方向一 石油与天然气工程 低渗透油气藏开发理论与方法 复杂油气藏压裂酸化理论与应用技术 裂缝性油气藏开发理论与方法 有水气藏开发理论与方法 高含水期油藏开发理论与方法 油气藏流体相态研究与特殊气藏开发理论及配套技术 注气提高采收率理论及配套技术 恶劣条件油藏聚合物驱提高采收率技术 采油工艺技术 复杂非常规油气藏数值模拟理论和方法研究 非常规天然气储层成因与描述技术 储层损害与储层保护 欠平衡钻井技术研究 油气井固井理论与实验研究 管柱力学 工程岩石力学 完井方法 钻井液处理剂作用机理及钻井液化学 深井复杂井与特殊工艺井钻井技术 水射流研究与应用 石油工程测井及应用 钻井信息、仿真与最优化 油气管道仿真及优化技术 油气管道完整性评价技术 天然气管道储气及调峰技术 二 地质资源与地质工程 碳酸盐岩沉积储层地质学 油气层保护矿物岩石学 油气藏地球化学及成藏理论 储层描述与储层分布预测 剩余油分布研究 碳酸盐岩储层研究 新型电法非地震勘探系列技术研究 非线性信号处理及其在地球物理资料处理中的应用 层序地层学理论及其在油气勘探开发中的应用 碳酸盐岩测井评价技术 低孔低渗油藏评价技术 油藏整体描述技术 油气层保护的地质评价与研究 古应力场数值模拟与分析 裂缝预测 深部油层采油后期地质效应 石油微生物研究 微生物造岩成丘研究 三 机械工程 机械现代设计理论及方法研究 现代制造技术及方法研究 岩石破碎与钻头研究 钻采工具及设备研制 特殊采油工艺方法及设备研究 石油装备与工具基础理论研究与产品开发 石油机械系统计算机仿真研究 软件开发 四 化学工程与技术 油气井建井化学浆添加剂研发 采油化学 驱油剂研发及驱油体系研究 低渗透油藏开采化学助剂研发 稠油开采 石油天然气化学防腐 油气田环境污染控制及治理 石油天然气安全技术研究与评价 石油加工 天然气处理与加工 生物质能源研发 理论与计算化学 五 计算机科学与技术 石油信息化 计算机模拟与仿真 嵌入式系统 软件工程 数据库系统 六 建筑科学与工程 工程结构与系统现代设计理论 复杂结构与系统数值分析计算方法 结构系统安全性、耐久性、检测与维修加固 工程项目与企业的质量工程与卓越绩效评价 基于空间信息技术的结构健康检测理论与方法 岩土工程勘察与爆破技术 油气管道完整性评价与管理技术 储气系统、输配气管网规划设计与系统仿真 七 材料科学与工程 材料腐蚀机理与防护技术研究 油气田用高分子材料研究 油气田用无机非金属材料研究 材料表面工程研究 超细材料与应用研究 八 应用数学 应用微分方程与数值计算 应用概率统计 最优化与决策 石油工程仿真模拟计算 石油工程信息分析与处理 石油工程数值计算 九 仪器科学与技术 油气测试计量及标准化技术 油气检测与自动化装置 传感器及无损检测技术 油气智能测控系统 智能化仪器及计算机测控技术 智能结构系统与仪器 十 石油工程管理管理科学与工程工商管理应用经济学 油藏经营管理 石油人力资源管理 石油与天然气工程项目管理 石油与天然气工程技术经济及管理 石油与天然气工程系统管理和优化 管理科学理论、方法及应用 工业工程与管理工程 信息管理与企业信息化 物流与供应链管理 现代企业管理理论、方法及应用 现代营销理论与营销实践 人力资源管理 石油技术经济及管理 14.会计与财务管理 15.石油天然气经济研究 16.石油产业组织创新研究 17.企业理论研究 18.农林经济研究 十 一 马克思主义理论社会学 马克思主义与当代中国现实研究 马克思主义中国化理论研究 马克思主义基本原理运用研究 马克思主义基本理论 思想政治教育与管理 思想政治教育原理与方法 公共组织与人力资源管理 行政管理理论与实践 社会工作与管理 应用社会学 十二 法学 民商法学 刑事法学 经济法学 环境资源保护法学 国际法学 法理、行政法学 十三 外国语学及应用语言研究 外语教育理论与实践 翻译理论与实践 跨文化交际 英语教育 语言学 十四 体育学 体育教育训练学 体育人文社会科学 体育管理 科研成果 截至2016年3月底,学校先后承担国家杰出青年科学基金、优秀青年科学基金、自然科学基金,国家“973”、“863”、科技攻关(支撑)计划、科技重大专项,国家社科基金,教育部重点项目、新世纪优秀人才计划、教育部博士点基金,四川省杰出青年学术技术带头人基金等省部级以上项目2069项;获得包括国家科技进步特等奖、国家科技进步一等奖、国家科技进步发明二等奖在内的省部级以上奖励390多项。2015年学校实到科研经费56亿元。 “十一五”以来,发表论文13593篇,专著339部。 “十一五”期间,学校共申请专利2120项,其中发明专利1305项,实用新型专利815项,学校共授权专利1140项,其中发明专利569项,实用新型专利571项。 国家科技进步奖(十二五期间)  序号成果名称等级时间1 5000万吨级特低渗透-致密油气田勘探开发与重大理论技术创新 一 2015 2 海上稠油聚合物驱提高采收率关键技术及应用 二 2015 3 超深水半潜式钻井平台“海洋石油981”研发与应用 特等 2014 4 大型复杂储层高精度测井处理解释系统CIFLog及其工业化应用 二 2014 5 鄂尔多斯盆地中部延长组下组合找油突破的勘探理论与关键技术 二 2013 6 特大型超深高含硫气田安全高效开发技术及工业化应用 特等 2012 7 超高温钻井流体技术及工业化应用 二 2012 国家技术发明奖  序号成果名称等级时间1 碳酸盐岩油气藏转向酸压技术与工业化应用 二 2013 ESI国际高被引学术论文序号单位姓名论文名称期刊名称级别出版年份1 理学院 田俊康 Improveddelaypartitioningmethodtostabilityanalysisforneuralnetworkswithdiscreteanddistributedtime- AppliedMathematicsandComputation233(2014)152–164 ESI 2014年 科研经费 西南石油大学科研经费情况(单位:亿元人民币)年份金额2008年全年实到科研经费两亿多元2009年07亿元2010年7亿元2011年2亿元2012年67亿元2013年6亿元2014年3亿(以上资料来源: ) 学术期刊 《西南石油大学学报(自然科学版)》《西南石油大学学报(自然科学版)》前身为《西南石油学院学报》,创刊于1960年,是经国家教育部、科技部和新闻出版总署批准、由西南石油大学主办、以报道石油科技为主的学术性期刊。为中文核心期刊,2004年获教育部优秀科技期刊一等奖,2008年获“中国高校优秀期刊”称号。已被中国国外著名数据库Elsevier、美国石油文摘(PA)、美国化学文摘(CA)、剑桥科学文摘(CSA)、俄罗斯文摘杂志(AJ)、日本科学技术社数据库,以及中国国内大型数据库CPA、《中国学术期刊(光盘版)》、《中国科技论文统计与分析》、《中国科学引文数据库》、《中国石油文摘》等收录。主要刊登石油专业领域中具有创造性或创新性的学术与技术论文、基础理论研究论文、前沿问题的讨论与争鸣,突出反映石油天然气工业中的新理论、新方法、新工艺、新技术。《西南石油大学学报》(社会科学版)《西南石油大学学报》(社会科学版)是西南石油大学主办的综合性学术理论刊物、《CNKI 中国知网》收录期刊、《中国核心期刊(遴选)数据库》收录期刊、《中文科技期刊数据库(全文版)》收录期刊、《中国期刊网》全文入网期刊、《万方数据-数字化期刊群》全文入网期刊、《中国学术期刊综合评价数据库》来源期刊。主要刊登能源发展研究、政治学与社会学、法学、文史哲等学科领域的研究及应用中有独到见解或创新性的学术论文。 馆藏资源 据2016年3月学校图书馆官网信息显示,该校图书馆由成都校区图书馆和南充校区图书馆两部分组成。南充校区图书馆由应用技术学院管理。馆藏以石油天然气文献为特色,理、工、管、经、文、法、教等不同学科协调发展。纸本图书183万册,电子图书125万册,电子期刊3万种,订购印刷型期刊1834种,购买数据库40个。图书馆与国家科技文献中心(NSTL)、高校人文社科文献中心(CASHL)、国家图书馆、中国科学院国家科学图书馆、教育部CALIS中心、科技部西南信息中心、中国石油信息所、四川大学图书馆、成都理工大学图书馆等文献机构进行馆际互借、文献代复制和代传递服务。与西南交通大学图书馆和中国石油大学图书馆的教育部科技查新站合作,在该馆建立科技查新代办站,直接为该校科研工作者提供查新服务。图书馆结合该校的教学科研实际,自行研发多种服务类型的数据库系统平台:该校硕博士论文检索与提交系统、文献传递与咨询平台、远程访问系统、决策参考信息专题网站、图书馆事实数据库、图书馆读者问卷调查系统、教师教学参考园地等。1997 年,图书馆建成了以小型机SUN3000为主服务器的自动化集成管理系统,使图书馆的管理、采访、编目、流通、期刊、OPAC等有关业务都实现了自动化。1999 年,建成以 JVC 光盘库 +AXIS 光盘塔为数据中心的图书馆光盘网络服务器系统。2008年,建成以Sun4900、Sun6130、浪潮AS1000为核心设备的存储网络系统,以及本地镜像数字图书馆服务系统,共计服务器系统10套,磁盘阵列容量达到40TB。图书馆工作人员开展各种学术研究与信息报道。已在正式出版的各级学术刊物及学术会议上发表研究论文200 多篇,其中 4 篇英文论文在国际学术会议上发表。参加和主持国家、省、部、局、校级科研项目20余项。正式出版论文集《新时期石油高校图书馆工作》等。

172 评论

yangdandan

油藏工程研究是一项系统工程,在油藏地质特征认识的基础上研究确定油田开发方针、原则、层系划分、开采方式、天然能量利用、注水方式、注水时机、压力保持水平、开发井井距、合理采油速度、投产次序、实施要求、生产指标预测等一系列问题,最终确定油田总体开发方案。由于油田实际情况十分复杂,而海上油田又受到诸多条件限制,在油田方案编制过程中对于那些不确定因素,主要采用全体油藏模型或辅助模型的敏感性分析予以解决。随着油田投产后静态及动态资料增加,还需要修改原有的地质模型,通过全体油藏模型数值模拟研究加深对地质模型的新认识,并在油田生产历史拟合基础上进行生产预测。因此,油藏数值模拟技术是油藏工程研究、油田动态分析中的一项十分重要的手段。中国海油的油藏数值模拟研究起步于20世纪80年代初。为了尽快缩短这项技术与国际先进水平的差距,当时从美国岩心公司引进3套大型油藏模拟软件(黑油模型软件、组分模型软件、裂缝模型软件),购置了计算机设备,用于埕北油田、渤中34-2/4油田、渤中28-1油田、涠洲10-3油田、惠州21-1油田的油藏工程研究。80年代后期,利用世界银行贷款和中国海油出资从美国SSI公司引进compⅡ、Ⅲ、Ⅳ模型软件,并装备了VAX8650型计算机,用于锦州20-2凝析气田总体开发方案及射孔方案的编制、渤中28-1油田生产历史拟合、流花11-1油田、绥中36-1油田试验区、锦州9-3油田方案编制。必须指出的是,由于不同时期应用的模拟软件及计算机设备的差别,研究成果的精度有较大的差别。就以模型网格设计来看,它要求与油藏地质模式、油藏类型相符合,又必须与所使用的计算机运算能力相适应。以埕北油田为例,在80年代初编制A、B平台射孔方案时,由于计算机内存较小、运算速度较慢,因此模拟网格设置较粗。该油田面积虽不大,但水体即为油藏含油面积的100多倍,而且已钻完54口开发井,油层分为上、下互相连通的5个不同渗透性小层,受计算机能力的限制,在设置全体油藏模型网格时不得不将纵向上5个层合并为2层,采用的网格数仅为1344个。同是这个油田,90年代初在研究油田注水可行性、生产预测时在纵向上就采用了5个层,全体油藏模型的网格数为4485个,使节点数增加了3倍,为较高精度油藏数值模拟创造了条件。90年代中后期,又从SSI公司引进WORKBENCH、从GeoQuest公司引进Eclipse模型软件。通过每年支付一定数额维护费方式从软件公司及时获得最新软件版本,保证模拟软件的先进性。在充分利用取得的三维地震资料、岩心描述和测井数据,通过对油藏精细描述,弄清了油田储集层分布及变化、孔隙结构、油水分布规律,建立了油田地质模型、油藏模型这样一个完整的模拟体系。这项技术应用于绥中36-1油田试验区可采储量标定、秦皇岛32-6油田开发方案编制、流花11-1油田动态分析中。例如在绥中36-1油田试验区可采储量标定时,采用Eclipse模型软件,按照试验区实际情况建立油藏模型网格节点就多达28244个,秦皇岛32-6油田总体开发方案编制时所采用模型网格节点数高达188160个,流花11-1油田在动态历史拟合及生产预测时采用Eclipse模型软件,使预测结果更加接近油田的实际生产指标。总之,应用最新油藏数值模拟软件以及计算机功能的增强,为高精度油藏数值模拟创造了必要条件。海上油气田的开发实践充分表明,油藏数值模拟技术不仅在油气田评价和总体开发方案编制阶段是必不可少的,而且在方案实施进程中、开采过程中的动态分析、调整措施确定、注水方案制定、生产前景预测以及可采储量研究中也十分重要。一、编制油田开发方案和射孔方案(一)建立与地质模式相适应的油藏模型埕北油田是我国在海上第一个与外国石油公司合作开发的油田。该油田位于渤海湾西部海域,于1972年由中方发现,探明石油地质储量2084×104t,是一个具有气顶和边水的构造层状油藏。1977年底至1981年10月,油田经过历时4年的试采,查明了油田驱动类型、边水能量及油气水性质等,为编制油田开发方案积累了重要数据。1980年5月与日中石油开发株式会社签订合作开发埕北油田的合同,中、日双方合作进行以油田地质、油藏数值模拟为主要内容的综合研究。油藏数值模拟研究包括下列内容:①模型建立;②油藏模型建成后,输入各种网格参数和油水、油气界面数据,模型自动计算地质储量;③模拟限制条件和不确定因素敏感性分析;④油藏模拟生产历史拟合,通过全体模型模拟试采阶段生产历史和生产预测;⑤利用单井径向模型进行油井底水锥进研究。在此基础上编制油田开发方案,方案预测油田以年产47×104t稳产2年,采油速度3%,开采15年(至2000年)累积产油8×104t,采出程度1%,综合含水5%。油田自1985年9月、1987年1月(B、A平台)投产以来,在没有进行大的方案调整情况下,截至1996年油田已累积产油429×104t,采出程度6%,综合含水2%,提前4年实现方案预计15年的生产指标(图9-30)。图9-30 埕北油田方案设计与开发实施年产油量对比图油藏模拟技术在埕北油田方案编制中的成功应用进一步表明建立一个与地质模式相适应的油藏模型是非常关键的。(二)充分利用延长测试信息编制油田总体开发方案流花11-1油田是由中国海油与美国阿莫科东方石油公司合作开发的一个大型生物礁油田,油田属于生物礁圈闭块状底水油藏,探明石油地质储量15378×104t,全油田探明加控制地质储量达24015×104t。编制总体开发方案前,为确定油藏开采特征和对不同工艺技术的适应性,在礁体不同部位布置1口直井(流花11-1-3井)、1口大角度斜井(流花11-1-5井)及1口水平井(流花11-1-6井),并对上述3口井分别进行了累积生产天数48天、57天及116天的测试(延长地层测试——EDST),取得较为准确丰富的资料,加深了对该油田储层特征、油藏类型、流体性质、油井产能及主要影响因素的认识,揭露了油田开发中必然出现的基本矛盾。油藏数值模拟采用comp软件,全油藏模型网格总节点数17160个。应用新建全油藏模型拟合了流花11-1-5井和流花11-1-6井的EDST历史,并用于预测全油田开发指标。最后提交的油田推荐方案也是用流花11-1-6井EDST历史拟合成果验证修改后完成的(图9-31)。图9-31 流花11-1油田实际生产指标与总体开发方案对比开发方案于1993年3月获政府主管部门批准,1994年10月开始钻井作业,1996年3月29日(首批12口井)投产,至1997年底水平井总数达到24口,高峰年产油量52×104m3,年采油速度54%。经过近3年的油田开发实践,加深了对大型礁灰岩块状底水油藏的认识,在此基础上应用三维地震资料解释成果修改了油藏地质模式,采用Eclipse软件进行数值模拟研究,并通过动态历史拟合和生产预测,使预测结果更接近实际的开发指标(表9-1)。表9-1 方案预测与实际产量对比表实践表明,建立一个与油田地质相适应的油藏地质模型,充分利用评价井的EDST历史拟合成果,对编制油田总体开发方案是十分重要的。(三)优化开发方案,提高油田开发的经济效益锦州9-3油田是中国海油1988年在辽东湾北部海域发现的一个中等规模重油油田,石油地质储量为3080×104t,1991年11月完成了油藏评价、油藏数值模拟及总体开发方案的编制,1992年1月方案获政府主管部门批准。总体开发方案共设计平台3座,开发井68口,采用反九点注水开发,预测15年累积采油604×104m3,油田综合含水2%,采出程度5%。经过多次工程概算和工程经济评价,都由于平台及开发井数过多、工程投资大、效益差,开发方案不能投入实施。围绕锦州9-3油田能否高效开发,1992~1996年公司进行多轮滚动分析,尤其是1995年在构造高部位钻的评价井锦州9-3-8D井,进行了历时40天的延长测试,发现并证实具有较高产能的3套气层及2套油层。气层测试日产气13×104m3。新增天然气地质储量68× 108m3,解决了油田开发中气资源紧张的问题。锦州9-3-8D井的测试结果证实提高单井产能成为可能。在此基础上重新建立地质模型和油藏数值模拟计算,最终确定了第三次优化后的开发方案。总体开发方案和优化方案在编制的过程中对井网、井距、井数、采油速度及产能进行了敏感性分析和详细论证,对比方案中包括了各种不确定因素和可能引起的变化。通过38个方案数值模拟研究,最终确定出推荐方案(表9-2)。优化后的推荐方案与总体开发方案比较,平台数由3个减为2个,总井数由68口减为44口,单井产能由40~60m3/d增加到60~80m3/d,累积产油量由604×104m3增加到9×104m3,因此大大增强了开发效果。1997年11月开发井钻井工作正式启动。表9-2 锦州9-3油田历次方案指标对比表(四)确定油井最佳射孔位置1.埕北油田1985年,为配合埕北油田B平台射孔方案编制,选择通过油田内部的4条剖面进行剖面模型的数值模拟研究。找寻位于油田不同部位油井的生产动态特征、不同射孔井段与气侵和水淹之间的关系,提出适用于全油田的最佳射孔井段及合理射开程度,保证开发方案设计的单井产能,保护气顶区压力、减缓气窜、防止底水锥进和沿高渗透层突进的最佳射孔原则。模拟工作首先通过调整地层参数拟合在剖面上的3口试采井的生产动态(含水率、气油比及地层压力),然后通过4条剖面所设置的不同方案进行模拟计算。油藏剖面模型网格构成见图9-32。图9-32 油藏剖面模型网格构成图最终确定的最佳射孔原则为:纯油区油井油层全部射开;邻近气顶的井,油气界面以下5m;气顶区的井,油气界面以下8~10m;邻近过渡带的井,避射底部高渗透层;油水过渡带的井,油水界面以上6~7m。埕北油田投产后以年产油量40×104t连续稳产5年,油田开采14年综合含水84%,累积产油18×104t,采出程度3%。事实证明数值模拟研究所确定的射孔原则是合理的。2.锦州20-2凝析气田锦州20-2凝析气田中高点,是由不同层位和不同岩性组合构成的具底油、底水的块状凝析气藏。为了防止或减少气井生产时底油的锥进,在编制射孔方案时应用CompⅣ模型及部分双孔、双渗单井径向模型,通过输入拟合井DST测试产量、井底压力随时间变化的资料,调整气层参数使压力随时间变化的实测值与计算值相吻合,以此来确定不同层位地层的垂直和水平渗透率以及裂缝的高度。在此基础上预测气井的生产动态和气井生产时底油、底水锥进的状况。最后确定气井最佳射孔位置。锦州20-2凝析气田投产10年来每年以5×108m3左右的气量稳定向下游供气,事实表明总体开发方案和射孔方案是合理的。二、贯穿油气田开采全过程的模拟跟踪研究数值(一)及时调整油田开发技术政策流花11-1油田1996年3月陆续投入开采,至1997年底时年产油量39×104m3,采油速度5%。此时油井生产动态反映的特点是有近30%的油井含水上升速度快,有46%的油井含水上升速度较快。油田动态分析时除了应用在油田范围内重新完成的8km2三维地震资料及高分辨率处理、解释成果外,结合流花11-1-5井数值模拟生产历史拟合结果,验证油藏所谓的相对致密层段。验证结果表明,致密层段平均渗透率都不低于10×10-3μm3,而且垂向渗透率等于或大于水平渗透率,在生产压差较大时起不到有效遮挡底水锥进的作用。采用Eclipse软件进行动态历史拟合和生产预测,该油田开采到2010年累积产油量2×104m3(较ODP方案预测减少了2×104m3)。在新一轮数值模拟预测的基础上确定油田开采技术政策:努力做好设备维修保养,保证有较高的开井率和综合时率,以侧钻为主要措施,做好提液、堵水作业,控制含水上升和减缓油量递减速度,以改善开发效果和经济效益。实施此项油田开采技术政策后获得了较好的稳油控水的效果。(二)确定注水技术政策,提高水驱效果绥中36-1油田生产试验区自投产以来,每年都以2%左右的开采速度进行生产,至1995年底部分地区地层压力已处于饱和压力点附近,按照试验区方案要求油田应转入注水开采。为此开展了关于水驱油模型的数值模拟和相关问题敏感性研究。根据绥中36-1油田储集层具有明显反韵律弱亲水的特征,建立了一个相应的反韵律数值机理模型。为了便于反韵律与正韵律储层在油田开采过程中的差异对比,同时也建立了一个正韵律数值机理模型。两种模型的采出程度明显不同,反韵律储集层其采出程度要较正韵律储集层高5%。另外建立了以A8井组为代表的井组数值模型,通过该井组模型进行了与注水相关的分析、研究:①注水速度与注采效果;②流体性质与采收率;③不同注水时机与采收率;④合注合采及分注合采对采收率的影响。井组模型模拟结果得出主要结论:①低、中含水期不同注水速度下,含水与采出程度虽有些差别,但当含水98%以后,不同注水速度下其最终采收率基本相同;②相同注入倍数下原油黏度小的模型驱油效率高,黏度大的模型驱油效率明显降低;③当地层压力降至饱和压力处转注较合理;④分注合采可减少层间干扰、提高采收率。据此结论,确定绥中36-1油田试验区注水阶段开发技术政策为“利用天然能量,保护气顶能量;油田全面转注、提高地层压力;实施分层配注、调剖解堵相结合”。1996年试验区按此技术政策转入注水开发,水驱效果较好。(三)跟踪油田生产动态,分析高速开采对采收率的影响根据1994年的统计,珠江口盆地已投产的砂岩底水油藏都以年平均5%~5%的采油速度开采。究竟这种高速开采对油田最终采收率有无不利影响?为了回答这一问题,通过投产油田生产情况,结合各项地质资料进行新一轮单井生产动态历史拟合和一系列采油速度敏感性分析。例如,对惠州26-1油田(M-10层)进行了从1991年11月~1994年9月间生产历史拟合及采油速度与含水变化等的敏感性分析,并对油藏中无低渗透夹层的惠州26-1-8井和有泥质夹层的惠州26-1-22井进行采油速度相关的敏感性分析,分析结果表明高速开采对含水上升无太大影响。另外对惠州21-1油田(2970层)自1990年11月~1994年3月的生产历史拟合和敏感性分析的结论是,高速开采对含水上升规律和最终采油量并无大影响。研究结果表明,对珠江口盆地砂岩底水油藏高速开采并不会降低这类油藏的最终采收率,相反还能提高油藏中低渗透层段储量动用程度。高速开采将带来的直接效益是提前回收投资。惠州油田群、西江油田群以及陆丰13-1油田等生产实践,也证实了以上结论是正确的。(四)适时进行可采储量标定,搞清油田剩余可采储量绥中36-1油田生产试验区至1999年初已投产5年多,准确标定油田可采储量对指导油田今后的开发是十分必要的。为此在可采储量标定中采用水驱曲线法、经验公式法、相似油田类比法以外,主要运用油藏数值模拟方法,因为此种方法预测时考虑的因素比较全面系统,同时又拟合了试验区5年多生产历史,其预测结果比较切合实际。在具体进行可采储量标定预测中又从技术采收率、经济采收率和海上平台寿命的采收率等各个方面预测可采储量(表9-3)。表9-3 缓中36-1油田已开发区可采储量汇总表技术采收率:包括应用理论公式计算、试验区实际及油藏数值模拟等计算方法所求得的弹性采收率、溶解气驱采收率和注水开发采收率。经济采收率:根据1998年原油价格和油田生产操作费所确定的盈亏平衡点的年产量,通过油藏数值模拟计算,求得达到盈亏平衡点生产年限及产量。平台寿命采收率:按平台设备设计寿命20年,预测试验区可采储量及采收率。考虑到绥中36-l油田二期工程陆续投产,油田将进入总体开发阶段,届时试验区和“J”区将借用总体开发的设施,生产操作费将会降低,达到盈亏平衡点的生产年限可以延长,加上实施注采井网调整、注水井调剖、生产井堵水等技术措施,采收率会有所提高,故推荐已开发可采储量为8×104t,采收率为5%。(五)通过气田生产历史拟合核实气田储量1997年使用从SSI引进的CompⅢ全组分软件,根据1995年重新处理并解释的地震解释成果及地质研究结果建立的新的地质模型,对锦州20-2凝析气田中、南两高点上采气井5年的开采历史进了生产历史拟合,在各项敏感性分析的基础上进行气田储量拟合计算,数值模拟结果全气田地质储量为27×108m3。这一结果基本与1987年向国家储委申报并经审批后的气田地质储量一致,两者仅差76×108m3,相差4%(表9-4)。表9-4 锦州20-2凝析气田南、中高点数值模拟与审批储量对比表锦州20-2凝析气田气资源的动态核实结果,为制定今后凝析气田开采方案提供了可靠的资料依据。

199 评论

相关问答

  • 油气藏评价与开发期刊官网查询系统

    还不是北大核心

    请叫我癸小亥 3人参与回答 2024-05-21
  • 油气藏评价与开发期刊官网查询

    一、火山岩油气藏评价预测流程火山岩具有较强磁性、较高电性和较大密度等地球物理特性,重磁电方法在火山岩区域预测中可发挥重要作用,在国内、外火山岩勘探中得到了证实。

    萌萌哒蜗牛 2人参与回答 2024-05-18
  • 油气藏评价与开发期刊官网网址查询

    cssci 是南大核心,南京大学评选的《中文社会科学引文索引》,每两年评一次核心期刊,通常是指北大核心,也就是平常说的中文核心,北京大学评选的,4年一次每个单位

    smiley0603 2人参与回答 2024-05-21
  • 油气藏评价与开发期刊官网查询网址

    还不是北大核心

    李吉吉jjj 2人参与回答 2024-05-18
  • 油气藏评价与开发期刊官网查询入口

    (一)黔南桂中坳陷油气、沥青显示丰富,并发现众多古油藏据前人在黔南坳陷开展的地面地质调查成果统计,该区共发现油气苗及沥青586处,层位以寒武-志留系为主;发现的

    主君的太阳Soo 2人参与回答 2024-05-21