首页 > 论文期刊知识库 > 天文学论文选题意义

天文学论文选题意义

发布时间:

天文学论文选题意义

A Thesis on the influence of astronomy on human beings

一、选题应依志趣怎样发现或选择论文题目呢?当着手写论文时,若是教授没有指定要写哪一类的题目,需要靠自己选择题目时,首先作者应考虑的问题,是必须对所选择的题目有其浓厚的兴趣,乐于作更深入的探讨。最简单的理由,是因为作者要花相当一段时间接触并研究这个问题。从看书、找资料,到分析撰写,如果没有兴趣,必定事倍功半。兴趣是一切行为的动力,所谓:“好之者不如乐之者”,乐之才能努力不懈,忠实而深入。有了兴趣才能发挥潜能并提供贡献。因此,如果教授没有指定研究报告的题目和范围,作者可就其本身的兴趣、本身的学术背景和条件,以及以往曾经选修过什么样的课程,作一权衡,以决定适当的题目。陶孟和先生在论科学研究时曾说:“一个人的实际生活,常包含多方面的兴趣,而历史上许多的发现与发明,也由研究以外的兴趣所引起。专一的兴趣,仅属于少数人的特质,并且也不见得是一种健全现象。但是在研究工作上,则必须具有这个为研究而研究,为了解而努力的态度。”这种探讨宇宙事物兴趣与科学求真的精神,是作论文必不可少也最需重视的条件。二、对所选题目应有相当准备作学术研究的人,对所选择的题目必须要了解适当的背景。在写论文之前,作者虽不一定需要对所选的题目完全内行,但必须有适当的准备。譬如要从事有关中美贸易对台湾经济影响的研究,必须对经济学及国际贸易要有适当的认识;要研究爱默生(Ralph waldo emerson,1803-1882)的“超越论”(Transcend mentalism),必须对美国文学以及西洋哲学有基础性的认识。同时要注意所选题目是否涉及外国语文,如果对所研究题目的外国语文没有相当基础,仅知道本国或地区的文字,以致材料不能蒐集齐全,则观点自然流于褊狭,研究时所遭遇的困难必然增多。此外,研究现代的社会科学及自然科学都需要适当的研究工具,诸如统计方法等,如果从事这类统计调查资料的研究,没有适当的训练,必然是吃力而不讨好。三、题目宜切实,不宜空泛选择题目时切忌空泛而不切实。题目若太空泛,观念容易混淆,不容易得到明确的结论,也找不出重心所在,其结果必然言之无物,漫无目标,一无是处。这种论文不是现代科学中所说的论文,尽管说的如何天花乱坠,对于研究本身,却无多大价值。此外,有些题目往往不值得花时间去研究。我们常听说“小题大做”,若干细枝末节的小题目,尤其是妇孺皆知之事,无须小题大做;但遇到要推翻一般妇孺皆知的公理时,不但需要小题大作,而且值得大做特做。最有名的例子是波兰天文学家哥白尼(Nicolaus copernicus,1473—1543)推翻以往学说,提出地圆说,在当时确具有其时代意义。又如:1898年2月15日,美国军舰“缅因号”(Maine)在当时西班牙殖民地古巴哈瓦那港作友好访问时,因爆炸而沉没,成为导致美国与西班牙战争的近因般历史学家都接受当时美国为此事所提出的调查报告,认为美国军舰“缅因号”是被西班牙所破坏。当时美西战争中,美国还有“毋忘缅因”(Remember maine)的口号。后来美国海军上将雷克福(Hyman Rickover)引用科学证据,著书指出“缅因号”系因内部机械爆炸触及船上火药而沉没,并非外来的人为因素所破坏。这种提出新论点的翻案文章,自然不在前面所说家喻户晓的事实之列。四、题目宜新颖致用学术研究的目的,有继往开来的意义和价值,任何研究论文都应以致用为目的,所以选择题目,必须新颖实际,能与实际生活有关者为佳。学术研究如依据个人兴趣而完全不顾时代的需要,必定会成为玄谈空论,与人类生活毫不相干。我们虽不应用狭隘的实利主义来批判学术价值,但学术研究假如完全抛弃功用的目标,就很容易变成玄虚荒诞、枉费精力、毫无意义。因此,理论与实用必须相互为用。根据以上的理由,如果论文的题目能对新问题从事新的研究,发现新的学理,创造新的原则,那是再好不过了。不过,我们也可以用新的方法研究老问题。研究老问题时必须首先反问,这个问题是否有再研究的价值?资料是否已有增加?前人研究这个问题的方法是否仍然可行?譬如说,八股文的写作现在早已废止,如果某人现在从事研究“如何写好八股文”?或“八股文的作法”,即使能把八股文的作法都研究透彻,毕竟对现代学术毫无补益。此外要注意不宜选太新的题目,因为题目太新,资料往往不足,无法深入讨论,很可能迫使作者半途而废。同时一篇研究报告必须要有事实依据,需要参考许多不同的资料,不能凭空杜撰。五、避免争论性的题目学术研究首重客观,一切玄谈空论或是由来已久、僵持不下的问题,常会受到主观感情的左右,而无法以客观科学的事实加以佐证。譬如讨论“男女之间有无真正友谊存在”时,全要看当事者双方所持态度而论,纸上谈兵,往往是隔靴搔痒,毫不相关。因此,我们应该避免主观或白热化的题目。同时,由于研究论文最重要的条件就是客观,以科学的资料作为结论的基础。假如研究者已有强烈的主观意识,例如选择“从厕所文学看现代大学生活”为题,则在执笔之初,其态度就很难客观,因为在厕所涂鸦的学生,只是大学生中少数中的少数,从少数中的少数反映整个现代大学生,难免以偏概全,除非能改从另一个角度研究此问题,譬如“从厕所文学看偏激学生(或无聊学生)的生活变化”,惟是否偏激学生,就一定会在厕所涂鸦乱画,则又是一个需要求证的问题。因此,诸如此类的题目应该避免。此外,在论文写作中,要尽量避免不切实际的个人意见,同时也不要仅陈述问题的面,而失去论文的客观性。六、避免高度技术性的题目学术研究的重要目的之一,固然在探讨新的知识,开辟新的学术领域。但是,我们必须量力而为,否则“眼高手低”,一定无所成就。因此,原则上宜避免高度技术性的题目,除非是少数专家的研究报告,否则一位普通物理系学生,写一篇有关“J粒子的发现与影响”的论文,充其量只是拾人牙慧,或是一些肤浅的心得罢了。对于初学者,这就是吃力而不讨好的研究工作,也非恰当的选择。七、避免直接概括的传记直接叙述式的传记,容易造成像百科全书式的文章,或者变成试图以很短的时间,为某人做盖棺论定的叙说,这是非常吃力不讨好的工作。通常以选择某人生平的某一段时间,或是作品的某一方面,或者是影响此人一生的某些事件,作为大学生学期论文报告的一部分,则比较实际。因为要为人写传,不是件容易的工作。美国一位研究马歇尔将军(George Marshall,1880—1959)传记的专家勃克博士(Forrest Pogue),就为了书中有关马歇尔在中国调停国共问题而远涉重洋,专程来台与政府有关人士交换意见。这可以说明真正要写好一部传记是多么不容易,更不是一个大学生在一学期中所能完成的工作。八、避免作摘要式的论文知识的累积固然必须作一综合分析,但是如果只有资料的综合而没有新的主题和论点,都不合现代论文的作法。因此除非有新的创见,否则单是重复别人已经发现的论点,只是炒冷饭的工作,没有学术价值。九、题目范围不宜太大题目范围宜小,因为题目太大,反而不易着手。有些人做文章常喜爱选择大题目,他们以为题目范围大,材料必多,殊不知题目愈大,材料过多,反而不易一一加以细读,愈难组织成章,愈难有系统。如果勉强凑合成篇,不过是概括笼统的陈说,难免百病俱呈,前后矛盾。反之,题目范围若小,材料容易搜集整理,观点亦易集中,往往可以从详细的研究而达到超越前人知识领域的创境。

最小二乘方法最早是有高斯提出的,他用这种方法解决了天文学方面的问题,特别是确定了某些行星和彗星的天体轨迹。这类天体的椭圆轨迹由5个参数确定,原则上,只要对它的位置做5次测量就足以确定它的整个轨迹。但由于存在测量误差,由5次测量所确定的运行轨迹极不可靠,相反,要进行多次测量,用最小二乘法消除测量误差,得到有关轨迹参数的更精确的值。最小二乘法近似将几十次甚至上百次的观察所产生的高维空间问题降到了椭圆轨迹模型的五维参数空间。假如想了解某个地方的月降雨量,一个月的观测当然不够,任何一个月都可能是异常晴朗或异常多雨。相反,人们应该研究几个月或至少一年甚至十年,并将所有数据加以平均。平均的结果对任何一个具体的月份并不一定能完全符合,但凭直觉,这个结果所给我们的标准降雨量图形将比只研究一个月所得到的结果要准确得多。这个原理在观察和实验科学领域是通用的。它是通过多次测量消除测量误差及随机波动。木匠的格言“量两次,再下手”也正是这个常识的一个例子。在降雨的例子中,我们用一个数来代表或一定程度地近似整个测定数据的效果。更一般的,鉴于各种理论和实际的原因,常用低维来近似说明高维的对象。在下面几种工作中都可以采用这个方法,象消除误差或忽略无关细节,从干扰数据中提取信号或找出趋势,将大量数据降低到可管理的数量或用简单的近似来代替复杂函数。我们并不期望这个近似值多么精确,事实上,在许多时候它也不用很精确。但尽管如此,我们还是希望它能保持对原始数据的相似之处。在线性代数领域,我们希望将一个高维空间的向量投影到低维子空间,完成这个工作的最普遍和最便于计算的方法之一就是最小二乘法。

现在需要帮你?

天文学相关论文选题意义

简约之:说天解地,造福人类,持续发展。

你知道为什麼一分钟有60秒吗?通过观测星象来决定的。知道人类是怎麼规定1秒钟的长度的吗?通过研究天文学决定的。知道为什麼一年会有365天吗,知道为什麼会有闰年吗?知道为什麼会有二十四节气吗?这都是古人通过反复观测星辰的运动规矩并利用数学计算推导出来的。知道为什麼人类能够种粮食吗?因为人类通过观测天文而发现了时间的存在,划分了春夏秋冬。。如果你不想让自己过了一辈子都没有时间的概念,如果你不想一辈子只能茹毛饮血吃不到粮食。那你就应该清楚天文学是有意义的。

天文学史的研究可以从认识宇宙方面阐明人类思维发展的规律,有助于人们掌握正确的宇宙观和方法论,也有助于更全面、更深刻地认识宇宙。天文学史的研究可以总结经验,探明天文学研究的规律,使当前和今后的天文学研究工作有所借鉴。对于一个具体的天文学研究课题,探讨它的历史也常常可以得到重要的历史信息。有些天文学课题的研究,如超新星爆发、地球自转速率的变化、太阳黑子等活动,十分需要长期的观测资料。在这方面,天文学史的研究可以作出许多贡献。天文学史的研究成果丰富了文化史的内容,有助于历史学的研究。尤其是因为时间的量度是由天体的运动决定的,所以历史上的许多年代问题往往需要用天文方法来考,如中国历史上武王伐纣的时间、屈原的生年的确定和中西历的换算,都需要天文学史工作者的帮助。研究世界的近代、现代天文学史,总结近代尤其是二十世纪以来天文学发展的经验教训,吸取各国成功的经验,对于中国今天发展天文科学事业具有迫切的现实意义。

天文学专业论文选题意义

把标题

宇宙奥秘一一神秘(太阳系),(黑洞)。。。。。等

最小二乘方法最早是有高斯提出的,他用这种方法解决了天文学方面的问题,特别是确定了某些行星和彗星的天体轨迹。这类天体的椭圆轨迹由5个参数确定,原则上,只要对它的位置做5次测量就足以确定它的整个轨迹。但由于存在测量误差,由5次测量所确定的运行轨迹极不可靠,相反,要进行多次测量,用最小二乘法消除测量误差,得到有关轨迹参数的更精确的值。最小二乘法近似将几十次甚至上百次的观察所产生的高维空间问题降到了椭圆轨迹模型的五维参数空间。假如想了解某个地方的月降雨量,一个月的观测当然不够,任何一个月都可能是异常晴朗或异常多雨。相反,人们应该研究几个月或至少一年甚至十年,并将所有数据加以平均。平均的结果对任何一个具体的月份并不一定能完全符合,但凭直觉,这个结果所给我们的标准降雨量图形将比只研究一个月所得到的结果要准确得多。这个原理在观察和实验科学领域是通用的。它是通过多次测量消除测量误差及随机波动。木匠的格言“量两次,再下手”也正是这个常识的一个例子。在降雨的例子中,我们用一个数来代表或一定程度地近似整个测定数据的效果。更一般的,鉴于各种理论和实际的原因,常用低维来近似说明高维的对象。在下面几种工作中都可以采用这个方法,象消除误差或忽略无关细节,从干扰数据中提取信号或找出趋势,将大量数据降低到可管理的数量或用简单的近似来代替复杂函数。我们并不期望这个近似值多么精确,事实上,在许多时候它也不用很精确。但尽管如此,我们还是希望它能保持对原始数据的相似之处。在线性代数领域,我们希望将一个高维空间的向量投影到低维子空间,完成这个工作的最普遍和最便于计算的方法之一就是最小二乘法。

现在需要帮你?

天体物理学论文选题意义

天文学是研究天体、宇宙的结构和发展的科学,内容包括天体的构造、性质和运行规律等。 人类生在天地之间,从很早的年代就在探索宇宙的奥秘,因此天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。它同数学、物理、化学、生物、地学同为六大基础学科。 天文学的研究对于我们的生活有很大的实际意义,如授时、编制历法、测定方位等。天文学的发展对于人类的自然观有很大的影响。哥白尼的日心说曾经使自然科学从神学中解放出来;康德和拉普拉斯关于太阳系起源的星云说,在十八世纪形而上学的自然观上打开了第一个缺口。 天文学的一个重大课题是各类天体的起源和演化。天文学的主要研究方法是观测,不断的创造和改良观测手段,也就成了天文学家们不懈努力的一个课题。天文学和其他学科一样,都随时同许多邻近科学互相借鉴,互相渗透。天文观测手段的每一次发展,又都给应用科学带来了有益的东西。 天文学循着观测-理论-观测的发展途径,不断把人的视野伸展到宇宙的新的深处。

(4)量子引力理论20世纪基础物理研究的巨大成就,当归功于相对论、量子论与引力论的建立。相对论、量子论和引力论都具有普适性,它们的普适性的一个重要体现分别表现在c、h和G这三个普适常数上。然而,三个理论是否真的具有普适性,还在于它们彼此间的相容性,广义相对论的建立证实了引力论与相对论的相容性。量子理论的发展证明,物质的各种运动形态都遵从量子化的要求,与此同时,一切相对论性场,如电磁场也应是量子化的。在场量子化研究的初期,曾出现了一系列的发散困难。在40年代末,量子化电磁场的发散困难初步通过重正化理论得以解决。发散困难的最根本解决是在60年代完成。弱电统一理论的建立,不仅解决了弱相互作用中的发散困难,而且在类似弱相互作用的框架之中,还可望在强相互作用领域解决相对论与量子论的相容性。最困难的一步就是引力论与量子论的相容,这一步骤的一个主要目标就是建立量子化的引力理论。量子引力理论的研究还起源于广义相对论的奇点问题。由彭罗塞提出,后经霍金和杰罗奇等人最终建立的奇点定理表明,在相当宽的物态条件下,引力场方程的解必定具有奇性。奇性的存在表明,广义相对论属于服从因果律的经典物理范畴,在奇点处,这一理论不再适用。有可能在考虑到引力场的量子性之后,奇性自然消失,这一猜测随后在霍金黑洞蒸发理论中得到了支持。迫使人们研究量子引力理论的第三个动机来源于大统一理论。弱电统一理论已经建成,弱电与强相互作用的大统一理论正是当前的热门课题,研究过程表明,必须同时考虑到它们与引力作用的统一,而这一统一的实质就是建立量子引力理论。经典物理学的理论框架是建立在因果律的基础上的,经典物理学依赖于物理定律和它相应的边界条件,然而当问题涉及到奇点,而这个奇点又不是数学或模型的缺陷由人为造成的时,奇点很难消除,又很难给出合理的边界条件,这就迫使人们必须重新考虑原有的理论。沿着膨胀和暴涨的宇宙反向历程,应用经典宇宙学所给出的框架,回溯宇宙在暴涨之前的状态,很自然地会得到宇宙的尺度将趋于零。这意味着,引力场的强度以及物质场的能量密度将趋于无限大,宇宙是从一个奇点演化而来的,而这个奇点并非由于模型的缺陷人为引起的。早在60年代,彭罗塞和霍金就曾利用整体微分几何证明过①,奇点不仅是高度对称的,而且是广义相对论的必然产物。这意味着,在广义相对论的理论框架之中,不可能找到解决奇点的方案,或者说,尽管广义相对论揭示了时空的引力弯曲,但它对于极高曲率的空间并不适用。量子论的鼻祖普朗克很早就主张,应在所有的自然力之间建立联系。1899年,他首先提出了“普朗克长度”这一普适的这一最小长度Lp,以后又陆续提出了“普朗克时间”tp、“普朗克温度”Tp与“普朗克质量”Mp,它们分别为Lp=(hG/c3)1/2=05×10-33cm, tp=(hG/c5)1/2=35×10-43s,Mp=(hc/G)1/2=45×10-5g,Tp=(hc5/k2G)1/2=56×1032K。由于h、c和G三个常量都是相对论不变量,以它们为基准的普朗克自然单位将是不变和唯一的,这一点具有深刻意义。审查上述量的大小不难看出,温度Tp极高,甚至比宇宙大爆炸时刻的温度还高,长度Lp、时间tp却极小,质量Mp也不很大,虽然这些值都是实验室条件下无法得到的,它们却使人们想到,在暴涨之前的宇宙这些是否是可以接近的尺度,因此,应该由一个量子化的广义相对论取代经典广义相对论。本世纪初,量子力学诞生之后,量子力学原理首先用于解释微小系统——原子结构方面的困难,确立了薛定谔方程,同时也得到了有关原子特征的一系列量子力学描述。本世纪60年代以来,当人们试图用量子力学解释巨大的体系——宇宙结构时,却发现它们之间有着惊人的相似①。首先,在具有电磁作用的质子与电子微小体系中,重要自由度r(t)在趋于零时,产生奇点的经典困难,而在具有引力作用的大物质体系中,重要自由度标度因子R(t)在趋于零时,也产生奇点的经典困难;微小电磁体系具有玻尔半径10-8cm的量子长度,而引力作用体系则具有普朗克长度10-33cm的量子长度;微小体系服从薛定谔方程的动力学规律,而引力体系则有惠勒-德维特方程。关于这两个体系间的相似与联系,近年来的研究又有了新的进展。本世纪60~70年代,德维特(DeWitt,BS)、米斯纳(Misner,CW)和惠勒等人在量子宇宙学方面做出了重要的基础性工作,他们建立了描述宇宙量子特征的惠勒-德维特方程,然而求解这个方程却面临边界条件的确立。因为最初宇宙究竟处于什么状态仍然不能确定。D、宇宙学的进展在物理学研究深入发展的同时,人们也在力求对时空大尺度上,即从整体上认识宇宙。宇宙的起源、结构和演化都是人们关心的课题。物理学与高科技的结合,创造了口径相当于25米的巨型光学望远望、空间X射线和红外线望远镜以及地域甚大的天线阵列射电望远镜,这不仅使人们观测宇宙的窗口从红外、可见光一直延伸到X射线和γ射线整个波段,还使观测宇宙的时空尺度伸展到了170亿光年。如今,在人类面前,已展现出一幅生动壮丽的宇宙画面。以现代高能粒子物理与广义相对论为基础建立起来的理论宇宙学,已能从理论上描述出从原始火球大爆炸,到星系形成和演化的整个过程。大爆炸模型已经由现代天文学的观测,如河外星系谱线红移、3K微波背景辐射以及氦丰度等得到了一定的证实。与此同时,在解决这一模型自身的问题,如视界问题、平坦性问题和磁单极问题等的过程中,与高能物理真空相变理论相结合,又发展成更为完善的暴胀宇宙模型。虽然具有暴胀机制的大爆炸模型为宇宙学的发展奠定了基础,然而随着量子引力理论的发展,有关量子宇宙学的一系列更深层次的问题,如宇宙时空拓扑结构、基本耦合常数的真空参数问题、宇宙常数的动力学解释等,又引起了更新一轮的激烈争论。这场理论研究的重要进展的源头,即把世人的目光从一般天体引向宇宙整体的就是哈勃定律的建立。哈勃定律与膨胀的宇宙研究表明,宇宙的年龄、演变及结局,在很大的程度上决定于它的膨胀速率。对宇宙膨胀的观测大体分成两个方面,这就是测定星系的运动速率与测定地球到星系的距离。前者关系到宇宙的形成模型及有关理论的发展,而后者则是估算天体亮度、质量和大小的重要依据,然而无论哪一种,都取决于哈勃常数的测量。哈勃常数已成为近代宇宙学中最重要的基本常数之一。20世纪初,几台口径1米的大型望远镜陆续建造成功,它们为河外星系的系统观测创造了条件。美国天文学家哈勃(Hubble,EdwinPowell1889~1953)在这种条件下,为现代天文学与宇宙学做出了重要的贡献。哈勃1910年毕业于芝加哥大学天文学系,后到英国牛津大学读书,在那里获得法律学硕士学位。1914年至1917年在耶基斯天文台攻读天文学博士学位。第一次世界大战期间,曾在法国服役,战后在威尔逊山天文台从事星系的观测研究。当时的威尔逊山天文台已建成100英寸的天文望远镜。利用这台望远镜,哈勃把观测的目标集中在他所称的“一片片的亮雾”之上,这就是星云。与哈勃同时代的一些天文学家也在对这些星云做了大量的观测工作,例如在里克天文台工作的美国天文学家柯蒂斯(Curtis,HeberDoust1872~1942)致力于河外星系的研究,他借助对新星的观测及利用星系角大小估算距离,认为所观测到的绝大部分星云都属于河外星系。热衷于星系观测与研究的还有美国天文学家沙普利(Shap-ley,Harlow1885~1972),他曾任美国哈佛大学天文台台长,1915~1920年间,曾用威尔逊山天文台100英寸望远镜研究旋涡星云,他利用勒维特(Leavitt,HenriettaSwan1868~1921)发现的造父变星作为量天尺,确定了这些星云的距离,认为它们大约距太阳5万光年左右,应该属于银河系,因此将银河系的尺度扩展到原有的3倍。沙普利还第一个提出,太阳系不处在银河系的中心,虽然他把太阳从银河系的中心地位赶了下来,却又把银河系放到了宇宙的中心之上。柯蒂斯的看法则不同,他认为宇宙中充满着大量的像银河系那样的恒星系统。1920年,在美国国家科学院,柯蒂斯与沙普利的两种不同观点正式交锋,虽然在这场论战中柯蒂斯占了上风,却并未有得出公认一致的结论,直到三年后,哈勃给出的观测事实,才使上述论战有了决定性的结果。1923年,威尔逊山天文台建成了5米口径的天文望远镜,哈勃利用它在仙女座星云外缘找到一颗造父变星,根据其光变周期与光度之间的关系,他推断出该星的距离为15万秒差距(实际为80万秒差距),比沙普利的银河系要大得多。这表明,仙女座大星云是一个河外星系,从而结束了河外天体是否存在的辩论,使天文学家的研究领域迈出了银河系。与哈勃同时代的另一位天文学家斯里弗(Slipher,VestoMelvin 1875~1969)也对星云研究感兴趣。他对星系光谱做了大量的观测。1921年,他首先把多普勒-斐索效应用于仙女座大星云,发现所观测到的星系光谱波长大多比实验室观测到的要长,这表明,这些星云都在远离地球退行,其退行速度大大地高于恒星的视向速度。 1929年,在同行们研究成果的基础上,哈勃仅以24个已知距离星系的观测资料为依据,做出了速率-距离的关系图。图中显示速率与距离值成正比,即vr=H0r,vr为星系对银河系的视向速率,上式即为哈勃定律,式中的常数H0就是哈勃常数,由这一常数得到的宇宙年龄H0-1=84×108年,该值恰与当时用散射方法观察到的地壳中古老岩石年龄8×108年惊人地一致,哈勃的结果,很快地得到认同。哈勃的这一结果,不仅证明了整个宇宙处于膨胀之中,而且这种膨胀速度与距离r成正比,因而既是处处没有中心又是处处为中心的。为了扩展观测的范围,需要能观测到更为遥远星系团中的星系。由于工作量的骤增,哈勃开始与赫马逊(Huma-son,MiltonLaSalle1891~1972)合作。哈勃负责测量星系的亮度,赫马逊负责测量红移量。赫马逊并非科班出身,最初只是威尔逊山天文台的一位看门人,工作之便使他热爱上了天文学,在为别人假期代班的天文观测中,显示了他出众的才华和娴熟的观测技巧,不久即正式投入天文学研究。在哈勃去世后,他继续了哈勃的天文观测事业,1956年,他又与其他人合作,利用观测到的资料,改进了哈勃定律,因而与勒梅特和盖莫夫的大爆炸理论取得了一致。哈勃常数值修正的三次高潮从原理上看,似乎哈勃常数的测定是简单的,即只要测出星系距离与退行速率,即可由哈勃定律得到哈勃常数。然而在实际上并非如此,星系的速率可以直接从谱线红移获得,可是距离的测量却是既困难又复杂的。对于1000万光年以内附近星系的距离,天文学家们的测量结果都比较一致,这种测量以造父变星为量天尺进行。1908年,在哈佛天文台工作的勒维特在南非观测时发现,造父变星的亮度周期性变化,光变周期越长,平均亮度也越大。这一发现具有不寻常的意义,因为观察亮度变化的整个过程,就可以得到光变周期和视亮度,随后即可计算得到它的绝对亮度。再根据距离加大,视亮度递减的关系,即可由绝对亮度与视亮度之比,确定造父变星的距离。因此,把造父变星作为量天尺,利用三角视差法,逐步扩大测量范围,不仅可以量出银河系的大小,还能测量出各河外星系的大小和距离。在20年代,哈勃用造父变星证实了银河系以外还存在有其它星系以后,从30年代到50年代,哈勃与桑德奇(Sandage,Allen Rex 1926~)等人,又在附近星系中寻找更多的造父变星以确立更新的量天尺,为此做了大量的工作。他们成功地测量了十几个星系的距离,改进了确定哈勃常数的基础。最初的哈勃常数值为H0=550千米/秒/百万秒差距(以下单位略)。1936年,考虑到星际消光因素,哈勃常数被修定为H0=526。在最初,这一数值被认为是准确的,因为按H0-1得到的宇宙年龄恰好与当时的地质观测结果相一致。二战之后,利用造父变星为量天尺,使哈勃常数逐渐得到了修正。1952年,在威尔逊山帕洛马文天台工作的旅美德国天文学家巴德(Baade,Walter 1893~1960)掀起了哈勃常数修正的第一个高潮。这次高潮是由修改量天尺引起的。此时,帕洛马天文台5米口径天文望远镜建成并开始运转。巴德利用他的精确而系统的测量,不仅在仙女星座中找到了300个以上的造父变星,而且还发现恒星分为两种星族,每一星族都有自己的造父变星,它们只适用于附近星系,而原有哈勃定律所针对的则都是建立在第一星族基础上的造父变星。随着对造父变星周光曲线的修定,随着观测尺度的加大,必须更换原有哈勃常数测定中的量天尺。经巴德计算,遥远星系的距离比原来的估计值增加了一倍,哈勃常数将比原来减小一倍。1952年,巴德在罗马举行的第8届国际天文学大会上,宣布了他的结果,H0=260。哈勃常数修正的第二个高潮由哈勃的接班人桑德奇掀起。桑德奇是一位著名的实测天文学家,从1956年开始,他在帕洛马天文台对哈勃常数进行了系统的测量工作。在几年的时间内,他得到了600多个星系的数据,最大的红移量值达到Z=202,所得到的哈勃常数值为H0=180。在此基础上,桑德奇又对哈勃常数做了进一步的修正,他们再度更换量天尺并把观测范围进一步加大,此时原有确定距离的方法已不再适用,因为当星系距离达到了几百万秒差距时,望远镜已无法区分星系中单个的星,必须寻找代替造父变星做为新距离标准的“指示体”。他们通过天体的绝对星等和视星等的关系,先确定指示体的距离,再由指示体确定星系距离。他们认为能作为距离指示体的有,造父变星、HⅡ区、球状星云、超新星和椭圆星系等。1961年,桑德奇在美国伯克利召开的国际天文学大会上宣布,总估各种测量结果,哈勃常数值应在75与113之间,最或然值为H=98±15,一般可取为100。这一结果表明,宇宙的尺度要比人们早期预期结果远大得多。进入70年代以来,哈勃常数的测定日益受到天文学家们的重视,对它的测量方法也更加系统,测量的精度也日益提高,因而形成了哈勃常数修正的第三次高潮。然而,这次修正高潮之后,局面却日益复杂化。哈勃常数的各次测量值越来越多地接近高低两个值上。桑德奇和他的合作者塔曼得到的值是50,而德克萨斯大学的德瓦科列尔(de Vaucouleurs)的结果却是100,两个值的测量方法都是以造父变星为起点,其后选用不同距离的指示体进行的,结果竟然相差一倍,不仅出现了哈勃常数纷争的局面,也使人们在实际运算中,出现了任意选择的局面,有人选取50,有人选取100,还有人选择平均值75,虽然这些值的选取都具有权威性,但是仍无法最后判定哪一个最准确。目前,对哈勃常数做出裁决为时尚早,但是,从其它方面得到的佐证中,仍然可以提出带有倾向性的意见。根据哈勃常数值,宇宙的哈勃年龄应为t0=7×109年和t9=8×109年。然而宇宙的年龄还有其它的估算方法。一种方法是测量矿石中放射性元素的含量,根据其半衰期加以估算。对各种放射性元素综合测量的结果,所给出的宇宙年龄是1×1010另一种较为有效的方法是测定球状星团的年龄。根据球状星团的赫罗图,得出它们的年龄在(10~20)×1010综合这些从不同角度得到的估算结果,宇宙的年龄不超过200亿年,这表明取小值哈勃常数更符合实际。由于哈勃常数已成为近代宇宙学中最重要也最基本的常数之一,近年来,对它的研究已成为十分活跃的课题。正式发表的有关哈勃常数的论文已有数百篇。1989年,著名天体物理学家范登堡(Van den Bergh)为天文学和天体物理评论杂志撰写了一篇权威性论文①,它综述了截止到80年代末所有关于哈勃常数的测量和研究结果,最后认为,哈勃常数的取值应为H0=67±8。3.多余天线温度的发现1963年初,在贝尔实验室工作的年青物理学家彭齐亚斯(Penzias,Arno Allan 1933~)和射电天文学家威尔逊(Wilson,Robert Woodrow 1936~)合作,测量银河系内高纬星系的银晕辐射。他们所使用的射电望远镜原是用于接收人造卫星“回声号”回波用的大喇叭口天线加辐射计制成。他们还采用了当时噪音最低的红宝石行波微波激射器,并利用液氦致冷的波导管作为参考噪音源,因为它能产生功率确定的噪音以作为噪音的基准,使噪音的功率可以用等效的温度表示。由于当时的手头正好有一台35cm的红宝石行波微波激射器,他们就先在7cm波段上开始了天线的测试工作。彭齐亚斯和威尔逊的测量结果①表明,天线的等效温度约为7±3K,天线自身的温度为2±7K,其中大气贡献为3±3K,天线自身欧姆损耗和背瓣响应的贡献约为1K,扣除这些因素,最后得到,天线存在有多余噪音,它的等效温度约为5±1K。尽管他们采用了各种措施,把各种估计到的噪音来源尽量消除,这个多余噪音的等效温度值依然存在,它不仅稳定,而且均匀无偏振,在任何方向都能接收到。彭齐亚斯和威尔逊观测到天线多余噪音温度现象,带有一定的偶然性,因为实验并没有在理论的预言或指导下进行。然而可贵的是,他们重视观测的结果,忠实于原始资料,不但没有轻易放弃偶然观测到的现象,反而抓住它们一追到底。并想方设法挖掘观测事实背后的意义,这就使他们能不失时机地做出重大发现。在这一成功之中,更难能可贵的是贝尔实验室对实验工作的支持。这一当今最大的工业实验室,拥有数千名才华出众的科技工作者,他们在进行电话、电报技术发展与开发业务的同时,始终重视基础科学,特别是基础物理学的研究工作。它在世界通讯事业中起着中流砥柱的作用,在物理学的研究中,也取得了许多令世人瞩目的成果,例如,在天体物理学方面,1931年,贝尔实验室的电信工程师央斯基(Jansky,Kart Guthe 1905~1950)首先发现了来自银心的周期性噪音射电辐射,从此开创了射电天文学的新领域。这次彭齐亚斯与威尔逊的观测是贝尔实验室与国家射电天文观测台合作进行,贝尔实验室远见卓识地从人力、设备与资金上给予了大力支持,提供了当时世界一流的灵敏毫米波谱线射电望远镜、热电子辐射计、液氦致冷参照噪音源,为实验的成功起到了至关重要的作用。4.宇宙微波背景辐射的证实在与彭齐亚斯、威尔逊实验观测的同时,另一些人也在对同一目标搜寻着。他们是以迪克(Dicke,Robert Henry 1916~)为首的普林斯顿大学的一个研究小组,正在开展一项有关宇宙学的探索性研究。1941年,迪克从罗彻斯特大学获得博士学位。1946年前,他在普林斯顿大学物理系执教。迪克成名于他的一项重要成果——标量-张量场论的提出①。这一理论与爱因斯坦的引力理论并驾齐驱,也能成功地解释引力研究中的一些观测现象,以致在引力场研究中,谁是谁非还一时难见分晓。在60年代,随着宇宙学研究的兴起,迪克对伽莫夫的宇宙原始大爆炸理论产生了浓厚的兴趣。他曾设想,至今宇宙应残存有大爆炸的遗迹,例如宇宙早期炽热高密时期残留的某种辐射。他与他的合作者认为,这种辐射有可能是一种可观测到的射电波②。迪克建议罗尔(Roll,PG)和威尔金森(Wilkinson,DT)进行观测,还建议皮布尔斯(Peebles,PJE)对此进行理论分析。皮布尔斯等人在1965年3月所发表的论文中①明确指出,残存的辐射是一种可观测的微波辐射。叙述了极早期宇宙中重元素分解后,轻元素重新产生的图景。皮布尔斯后来在霍普金斯大学做过的一次学术报告中,也阐明了这个想法。1965年,彭齐亚斯在给麻省理工学院射电天文学家伯克(Burke,B)的电话中,告之他们难以解释的多余天线噪音,伯克立即想起了在卡内基研究所工作的一个同事特纳(Turner,K)曾提到过的皮布尔斯的那次演讲,就建议彭齐亚斯与迪克小组联系。就这样,实验上和理论上的两大发现由此汇合并推动事态迅速地发展起来。先是彭齐亚斯与迪克通了电话,随即迪克寄来一份皮布尔斯等人论文的预印本,接着迪克及其同事访问了彭齐亚斯和威尔逊的实验基地,他们在离普林斯顿大学只有几英里之遥的克劳福德山讨论了观测的结果之后,双方协议共同在《天体物理学》杂志上发表了两篇简报,一篇是迪克小组的理论文章《宇宙黑体辐射》②,另一篇是彭齐亚斯与威尔逊的实验报导《在4080MHz处天线多余温度的测量》③,虽然后一篇论文考虑到自己尚未在宇宙论方面做出什么工作,出于慎重,论文并未涉及背景辐射宇宙起源的理论,只是提到“所观察到的多余噪音温度的一种可能解释,由本期Dicke、Peebles、Roll和Wikinson所写的另一篇简讯中给出”,但是,两篇论文分别从理论与实验的不同角度表述的研究成果竟如此珠联璧合,不能不令人惊叹。两篇论文发表后,引起了极大的反响。人们意识到,如果能给出天线多余温度确实来自宇宙背景辐射的证明,这个成果对宇宙学的发展的影响将是不可估量的。根据理论分析,早期宇宙极热状态下的光辐射是处于热平衡状态下的,它应具有各向同性且热辐射能量密度分布遵守普朗克定律等特点。随着宇宙的热膨胀,宇宙逐渐冷却,残存的光辐射谱仍应保持普朗克分布。彭齐亚斯与威尔逊所检验到的辐射是否遵从这一分布,应是检验天线多余温度是否来源于宇宙背景辐射的一项重要标准。从1965年到70年代的中期的近十年时间里,不少研究小组相继完成了各种测试。迪克小组在2cm波段上得到了0±5K,夏克斯哈夫特和赫威尔在7cm上测得8±6K,彭齐亚斯和威尔逊在1cm上测得2±1K。然而3K黑体辐射的峰值应在1cm附近,为取得1cm附近的测量值,康奈尔大学的火箭小组和麻省理工学院的气球小组的高空观测结果是,在远红外区有相当于3K的黑体辐射。加州大学伯克利分校的伍迪小组用高空气球测出,在25cm到06cm波段,有99K的黑体辐射。至此,实验结果与理论已得到极好的符合,彭齐亚斯和威尔逊观测到的多余天线温度确实是宇宙微波背景辐射,这种辐射在宇宙各处的各向同性、无偏振、具有大约3K的黑体谱。这项成果对宇宙学的研究具有重大意义,为此,彭齐亚斯和威尔逊获得了1978年诺贝尔物理学奖。

天体物理测距的意义:人类对宇宙的认识不断扩大,不仅使人们愈来愈深入地了解宇宙的结构和演化规律,同时也促使物理学在揭示微观世界的奥秘方面取得进展。氮元素就是首先在太阳上发现的,过了二十五年后才在地球上找到。热核聚变概念是在研究恒星能源时提出的。由于地面条件的限制,某些物理规律的验证只有通过宇宙这个“实验室”才能进行。以天体作为参考坐标测定地面点在地球上的坐标,是实用天文学的课题,用于大地测量、地面定位和导航。地球自转的微小变化,都会使天球上和地球上的坐标系的关系复杂化。为了提供所需的修正值,建立了时间服务和极移服务。地球自转与地壳运动的研究又发展成为天文地球动力学,它是天体测量学与地学各有关分支之间的边缘学科。天体测量学的这些任务是相互联系,相互促进的。

露天采矿论文选题意义

根据你的选题来决定形式,同时研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。对于创作上的问题可以来职称驿站网看看。

选题目的和选题意义的区别 :选题的目的:(1)课题的延续。我校在“九五”“十五”期间,一直从事信息技术与课堂教学的整合研究,成效显著。新一轮课程改革的全面推进,让我们充分认识到:信息技术其实就是课堂教学资源的组成部分。“十一五”期间,我们拟定将课堂教学资源研究泛化深化,所以将课题定为:课堂教学资源开发与利用研究。(2)推进课堂教学改革。新基础教育课程改革明确了课堂教学新的价值取向,即由统一和求同指向尊重多元和个性差异,由预定性和封闭性指向生成性和开放性,由知识本位指向学生发展本位。这一切,都需要教师更新资源观念,增强资源意识。(3)解决存在的问题:各门学科都有着广泛的可待开发和利用的教学资源。然而,从现实情况来看,目前带有共性的问题是教师对课堂教学资源的地位和作用重视不够,资源意识较为淡薄。不少教师将教科书视为教学资源的全部,近而把教学过程窄化为“教教材、学教材、考教材”。这不符合学习的规律,也阻碍着着学生个性的充分发展,掩埋着课堂中生命的灵性。也是由于资源意识淡漠,一些很好的课堂教学资源被闲置、浪费,从而影响课堂教学效率。例如,课堂中学生偏离教师“预设轨道”的个性化发言,课堂中学生之间的个体差异等,这些都是宝贵的教学资源。然而,他们被漠视的现象比比皆是。缺乏发现教学资源的“慧眼”,当然也就没有利用教学资源的“慧心”了。因此,增强教师的资源意识,研究如何充分合理的利用课堂教学资源,提高教学质量就显得尤为重要了。选题的意义:(1)增强教师的资源意识,改变教师落后的教学观念,转变教与学的方式,促进教师和学生的和谐发展。(2)提高教师充分合理利用课堂教学资源的能力,提升课堂效益,提高教学质量。一、选题能够体现论文的价值和效用论文的成果与价值,最终是需要根据论文的完成客观效用来进行评价的,但是论文的选题对其有重要作用。选题不是给论文定一个题目和规定一个范围,选择论文标题是初步进行科学研究的过程。一个好的标题,需要经过作者深思熟虑、互相比较、反复推敲、精心策划才进行敲定的。论文选题好了,也就表示作者已经大致形成了论文的轮廓。二、选题能够提前对文章做出估计好标题能够对论文作出一个基本的估计,这是因为在确定题目之前,作者一般是经过整理资料、并进行分析整理后才能进行论文标题的敲定。在论文写作的时候,我们所找到的客观事物或资料中所反映的对象与作者思维不断碰撞并产生共鸣,正是在这种对立统一的矛盾过程中,使作者产生了认识上的思想火花和飞跃。一般选题来源于自选课题,上级主管部门指定课题与横向联系单位委托课题(包括联合攻关课题)三种形式。无论那种形式的课题都来自两大方面:(1)引领:解决社会实践的紧迫需要。这是一种直接性来源。例如:《北京古树神韵》图书,献给第29届北京绿色奥运的一份特殊礼物 。(2)总结:从查阅文献资料,了解研究领域最新的成果和有关学科发展的趋势及前沿中挖掘课题。这是一种间接性来源。通过查阅大量的文献资料,即从前人的理论总结基础上派生、外延与升华出来,从而选出具有更高价值的能充实、完善甚至能填补其空白的课题。如“中国森林生态网络体系工程建设系列著作”出版工程,是“中国森林生态网络体系工程建设”等系列研究的成果集成。按国家精品图书出版的要求,以打造国家精品图书,为生态文明建设提供科学的理论与实践。

目的是重在阐述论文要解决的问题即为什么选这样一个题目进行论述,要论述出什么东西。意义是重在表明论文选题对理论研究有哪些贡献,或对实践具有哪些帮助和指导。选题的创新性,可以指理论、观点上的创新,也可以指研究方法上的创新,或者应用领域的创新。往小处说,自己的研究至少应该有一处是区别于以往研究的。选题注意事项大小适中是课题研究的原则,同样是选题的原则。选题太大或太小,都是有问题的。其中,选题太大是比较容易出现的问题。也有的课题太小,比如"学生正确握笔姿势的研究",这样的题目太细小,作为一般的日常研究可以,作为一个课题就显得小了。选题太大,无从下手;选题太小,研究意义不大。因此,选题要尽量做到大小适中。

选题决定着论文的价值也关系着学术研究的成败,有人说,选对了题等于完成了一半,“选对了”包涵两层意义:①选题与客观需要相符合;②选题与主体状况的适应。选题为科学研究活动确定了一个明确的目标。选题是研究者才学知识的集中体现。

  • 索引序列
  • 天文学论文选题意义
  • 天文学相关论文选题意义
  • 天文学专业论文选题意义
  • 天体物理学论文选题意义
  • 露天采矿论文选题意义
  • 返回顶部