首页 > 论文期刊知识库 > 材料学英文论文

材料学英文论文

发布时间:

材料学英文论文

Experimental results and discussion实验结果和讨论This study includes three The two main experiments were carried out from August 2008 toMarch 2009, to compare indoor thermal conditions in building A and building C underreal weather The first case considered free floating conditions inthe rooms, while in the second case the spaces were conditioned and electricityconsumption for air conditioning was The third experiment took placein September 2008, comparing coating effects applied on different envelopesurface In the following sections, representative experimentalresults are presented for all 本研究包括三个独立性实验,其中两个主要实验实施于2008年8月到2009年3月,实验内容是在真实天气条件下比较A建筑和C建筑的室内热力学状态。第一种情况中考虑到室内的自由浮动状态,第二种情况中空间有空调设备,并且测量了空调的耗电量。第三个实验实施于2008年9月,比较了应用在不同表面材料的涂层的影响。以下部分将会介绍所有情况下具有代表性的实验结果。

spinodal 分解首先发生在解答被对待的Al Zn (Cu) 合金被拿着在2500C 为另外时间, 轻微地是在eutectoid 温度之下的不连续的coarsening It 早先被发现了; thenthe spinodal 微结构被变换成美好薄片状一个由DP DP 完全地结束了在30 分钟之内在AlZn 合金里, 当在20 分钟之内在AlZn-2Cu 合金里[ 5]However, 美好的larneflar 微结构是不稳定的。何时AlZn 合金样品被拿着在250? 为2 h, 不连续的coarsening (DC) 细胞形成了在原始界限和多孔的界限DP (图1(a)) 。以老化时间增量, 不连续的coarsening 细胞吞下美好的薄片状微结构由多孔的界限的mi- gration 以高角度, 并且样品然后成为了coarsening 多孔的双重阶段微结构。同时, 新不连续的coarsening 细胞连续地形成了在高角度晶界(图1(b)) 。用老化时间进一步增加, 美好的薄片状微结构由coarsening 薄片状一个替换了(图1(c)) 。当AlZn-2Cu 样品被保留了在250?, DP 美好的薄片状微结构相似地被改变到coarsening 薄片状一个通过不连续coarsening, 但变革速度比那慢的在AIZn 合金(图1(d)) 。样品的微结构演变变老了在200? 同那是样品一样变老在250 吗? 在AlZn-(Cu) 合金, 即由生核和(2) 溶解不连续的coarsening mecha- nism 和spheroidization In AI Zn (Cu) 合金变老了在150? 为5 h 在解答治疗以后, DP 变革有al- 准备好完成, 并且DP 美好的薄片状微结构被溶化了入短rod-shaped 一个, 大小是相对地大的在原始的界限和多孔的界限(图2(a))The rod-shaped 微结构以大大小在和在界限增加了和gradu- 盟友附近被改变到球状一个以增量老化时间(图2(b)) 。以老化时间进一步引伸, rod-shaped 微结构在DP 细胞里面逐渐并且改变了到球状一个, 以便细Zn 微粒dispersedly 被分布在Al 矩阵(图2(c)) 。当AIZn-2Cu 合金样品被保留了在150?, 微结构演变与那是相似在AlZn 二进制合金, 但第三个阶段被观察了在三部组成的合金(图2(d)), 是亚稳的CuZn4 阶段由X-ray diffrac- tion 分析作证。与老化时间增量, CuZn4 阶段逐渐被变换成A14Cu3Zn 阶段和最后完全地被变换成A14Cu3Zn 阶段。

你还想要几篇,英文文献一篇平均6页以上,还要翻译??????????

材料科学英文论文

你还想要几篇,英文文献一篇平均6页以上,还要翻译??????????

2 动能学不连续coarsening 为不连续coarsening DP 在AIZn 和AlZn-2Cu 合金里在温度200 和250?, 成长速度coarsening 细胞是坚定的。不连续的coars- 的生核ening 是在原始界限和DP 多孔的界限。所以, 最大长度从原始的界限或DP 多孔的界限对DC 细胞成长前线, 和DC 的trans- 形成时期(老化时间减去了当需要为DP) 的时候被测量了。如此比前与后者是成长速度DC, 依照被显示在上图3 。当DP 在AlZn 和AlZn-2Cu 合金开始不连续地coarsen, 成长速度DC 细胞迅速地到达了最大值和单调然后减少了以老化时间增量。而且, 成长速度DC 细胞在250? 比那快的在200?; 成长速度DC 细胞在ter- 毫无合金比那慢的在二进制合金。在DC 开始, 成长速度DC 细胞迅速地到达了最大值由于最大驱动力。以老化时间引伸, DC 驱动力被减少了, 和同时, 相当数量DC 中坚力量被增加。从而, DC 进一步成长被克制了, 并且成长速度被减少了。与老化温度的ele- vation, 原子扩散加速了, 导致在成长速度的增量。DP 的DC 容量分数在AIZn 和AlZn-2Cu 合金变老在温度200 和2500C 由正割方法操作tical 显微镜确定了(图4) 。它能被看见, DC 的变革速度在2000C 比那快的在2500C, 是相对于成长速度的结果DC 细胞。它被暗示, DC 的变革速度不仅与成长速度DC 细胞有关, 而且对相当数量DC 生核。在老化温度200?, DP 细胞的大小小, 并且多孔的界限区域是大的。所以, 地区适当为DC 的生核被增加, 和相当数量中坚力量增加了。虽然成长速度是慢的, DC 的容量在弄皱。实验性结果由约翰逊的跟随ing 等式Mehl Avrami 适合了(JMA) 对ob- tain Avrami 索引n: f=1?exp(千吨") (1) f 代表DC 的容量分数的地方, 和t 代表DC 的变革时期。

spinodal 分解首先发生在解答被对待的Al Zn (Cu) 合金被拿着在2500C 为另外时间, 轻微地是在eutectoid 温度之下的不连续的coarsening It 早先被发现了; thenthe spinodal 微结构被变换成美好薄片状一个由DP DP 完全地结束了在30 分钟之内在AlZn 合金里, 当在20 分钟之内在AlZn-2Cu 合金里[ 5]However, 美好的larneflar 微结构是不稳定的。何时AlZn 合金样品被拿着在250? 为2 h, 不连续的coarsening (DC) 细胞形成了在原始界限和多孔的界限DP (图1(a)) 。以老化时间增量, 不连续的coarsening 细胞吞下美好的薄片状微结构由多孔的界限的mi- gration 以高角度, 并且样品然后成为了coarsening 多孔的双重阶段微结构。同时, 新不连续的coarsening 细胞连续地形成了在高角度晶界(图1(b)) 。用老化时间进一步增加, 美好的薄片状微结构由coarsening 薄片状一个替换了(图1(c)) 。当AlZn-2Cu 样品被保留了在250?, DP 美好的薄片状微结构相似地被改变到coarsening 薄片状一个通过不连续coarsening, 但变革速度比那慢的在AIZn 合金(图1(d)) 。样品的微结构演变变老了在200? 同那是样品一样变老在250 吗? 在AlZn-(Cu) 合金, 即由生核和(2) 溶解不连续的coarsening mecha- nism 和spheroidization In AI Zn (Cu) 合金变老了在150? 为5 h 在解答治疗以后, DP 变革有al- 准备好完成, 并且DP 美好的薄片状微结构被溶化了入短rod-shaped 一个, 大小是相对地大的在原始的界限和多孔的界限(图2(a))The rod-shaped 微结构以大大小在和在界限增加了和gradu- 盟友附近被改变到球状一个以增量老化时间(图2(b)) 。以老化时间进一步引伸, rod-shaped 微结构在DP 细胞里面逐渐并且改变了到球状一个, 以便细Zn 微粒dispersedly 被分布在Al 矩阵(图2(c)) 。当AIZn-2Cu 合金样品被保留了在150?, 微结构演变与那是相似在AlZn 二进制合金, 但第三个阶段被观察了在三部组成的合金(图2(d)), 是亚稳的CuZn4 阶段由X-ray diffrac- tion 分析作证。与老化时间增量, CuZn4 阶段逐渐被变换成A14Cu3Zn 阶段和最后完全地被变换成A14Cu3Zn 阶段。

英语材料论文

In flat vast Yudong

一、标题  一篇较长的英语论文(如英语毕业论文)一般都需要标题页,其书写格式如下:第一行标题与打印纸顶端的距离约为打印纸全长的三分之一,与下行(通常为by,居中)的距离则为5cm,第三、第四行分别为作者姓名及日期(均居中)。  如果该篇英语论文是学生针对某门课程而写,则在作者姓名与日期之间还需分别打上教师学衔及其姓名(如:D/PCPrager)及本门课程的编号或名称(如:English 734或British Novel)。打印时,如无特殊要求,每一行均需double space,即隔行打印,行距约为6cm(论文其他部分行距同此)。  二、提纲  英语论文提纲页包括论题句及提纲本身,其规范格式如下:先在第一行(与打印纸顶端的距离仍为5cm左右)的始端打上 Thesis 一词及冒号,空一格后再打论题句,回行时左边须与论题句的第一个字母上下对齐。  主要纲目以大写罗马数字标出,次要纲目则依次用大写英文字母、阿拉伯数字和小写英文字母标出。各数字或字母后均为一句点,空出一格后再打该项内容的第一个字母;处于同一等级的纲目,其上下行左边必须对齐。  需要注意的是,同等重要的纲目必须是两个以上,即:有Ⅰ应有Ⅱ,有A应有B,以此类推。如果英文论文提纲较长,需两页纸,则第二页须在右上角用小写罗马数字标出页码,即ii(第一页无需标页码)。  三、摘要  1、英文摘要是应用符合英文语法的文字语言,提供论文内容梗概为目的的短文。(内容基本与中文摘要相同,但不用完全逐句对应)。  2、英文题目、摘要、关键词自成一页(1页即可),放在中文摘要页之后。  3、英文字体与行间距: 统一使用“西文字体”中的“Times New Roman”,5倍行间距。  4、英文题目: 使用三号字加粗。  5、英文摘要: “Absract”顶格,使用四号字,并加粗。  英文摘要具体内容使用四号字。  6、英文关键词: “Key Words”顶格,使用四号字并加粗。  四、正文  有标题页和提纲页的英语论文,其正文第一页的规范格式为:论文标题居中,其位置距打印纸顶端约5cm,距正文第一行约5cm。段首字母须缩进五格,即从第六格打起。  正文第一页不必标页码(但应计算其页数),自第二页起,必须在每页的右上角(即空出第一行,在其后部)打上论文作者的姓,空一格后再用阿拉伯数字标出页码;阿拉伯数字(或其最后一位)应为该行的最后一个空格。  在打印正文时尚需注意标点符号的打印格式,即:句末号(句号、问号及感叹号)后应空两格,其他标点符号后则空一格。  五、文中引述  正确引用作品原文或专家、学者的论述是写好英语论文的重要环节;既要注意引述与论文的有机统一,即其逻辑性,又要注意引述格式 (即英语论文参考文献)的规范性。  引述别人的观点,可以直接引用,也可以间接引用。无论采用何种方式,论文作者必须注明所引文字的作者和出处。美国学术界通行的做法是在引文后以圆括弧形式注明引文作者及出处。  六、文献目录  论文作者在正文之后必须提供论文中全部引文的详细出版情况,即文献目录页。美国高校一般称此页为 Works Cited, 其格式须注意下列几点:  目录页应与正文分开,另页打印,置于正文之后。  目录页应视为英语论文的一页,按论文页码的顺序在其右上角标明论文作者的姓和页码;如果条目较多,不止一页,则第一页不必标出作者姓和页码(但必须计算页数),其余各页仍按顺序标明作者姓和页码。  标题Works Cited与打印纸顶端的距离约为5cm,与第一条目中第一行的距离仍为6cm;各条目之间及各行之间的距离亦为6cm,不必留出更多空白。  各条目内容顺序分别为作者姓、名、作品名、出版社名称、出版地、出版年份及起止页码等;各条目应严格按各作者姓的首字母顺序排列,但不要给各条目编码,也不必将书条与杂志、期刊等条目分列。各条目第一行需顶格打印,回行时均需缩进五格,以将该条目与其他条目区分开来。  英语论文摘要又称文摘,是论文的重要组成部分,它是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。摘要应具有独立性和自明性,并拥有与文献同等量的主要信息,即不需阅读全文,就可获得重要的信息。  摘要通常置于文题之后,文章之首。在论文发表后,论文摘要常被文献检索系统所收集。英语论文摘要一般为200-300单词,并有与英文摘要表达观点一致的中文摘要与之对应。(内容来源:学术堂)

材料学文献英文

Composite Materials (Composite materials), is based on a matrix material (Matrix), a material for the reinforcement (reinforcement) material Performance on a variety of materials in each other, creating synergies, so that the integrated performance of composite materials than the original composition of material to meet a variety of different Matrix material is divided into two major categories of metal and non- Commonly used in metal matrix aluminum, magnesium, copper, titanium and its Mainly non-metallic matrix of synthetic resin, rubber, ceramics, graphite, carbon and so Main reinforcement glass fiber, carbon fiber, boron fiber, aramid fiber, silicon carbide fibers, asbestos fibers, whiskers, wires and other fine-grained and The use of composite materials can be traced back to ancient From ancient times to enhance the use of straw and clay for centuries has been the use of reinforced concrete formed by the two types of composite The 20th century, 40's, due to the needs of the aviation industry, the development of glass fiber reinforced plastic (commonly known as glass fiber reinforced plastic), a composite material from the After the 50's, have developed a carbon fiber, graphite fibers and boron fibers high strength and high modulus 70's a aramid fiber and silicon carbide These high-strength, high modulus fibers with synthetic resin, carbon, graphite, ceramic, rubber and other non-metallic substrate or aluminum, magnesium, titanium and other metal matrix composites, which constitute the composite material [Edit this paragraph] Classification Is a mixture of composite Composite materials into their component metals and metal composites, non-metallic composite materials and metals, non-metallic and non-metallic composite According to their structural characteristics are divided into: ① fiber composite Body will be placed in a variety of fiber-reinforced matrix--《复合材料学报》2004年05期

+Science&printsec=frontcover&source=web&ots=EYOdzukZQ7&sig=bskKId1Ujx5wNc8wLgAqP7KWILw材料科学 Materials ScienceMaterials science or materials engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and This science investigates the relationship between the structure of materials and their It includes elements of applied physics and chemistry, as well as chemical, mechanical, civil and electrical With significant media attention to nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront at many It is also an important part of forensic engineering and forensic materials engineering, the study of failed products and HistoryThe material of choice of a given era is often its defining point; the Stone Age, Bronze Age, and Steel Age are examples of Materials science is one of the oldest forms of engineering and applied science, deriving from the manufacture of Modern materials science evolved directly from metallurgy, which itself evolved from A major breakthrough in the understanding of materials occurred in the late 19th century, when Willard Gibbs demonstrated that thermodynamic properties relating to atomic structure in various phases are related to the physical properties of a Important elements of modern materials science are a product of the space race: the understanding and engineering of the metallic alloys, and silica and carbon materials, used in the construction of space vehicles enabling the exploration of Materials science has driven, and been driven by, the development of revolutionary technologies such as plastics, semiconductors, and Before the 1960s (and in some cases decades after), many materials science departments were named metallurgy departments, from a 19th and early 20th century emphasis on The field has since broadened to include every class of materials, including: ceramics, polymers, semiconductors, magnetic materials, medical implant materials and biological [edit] Fundamentals of materials scienceIn materials science, rather than haphazardly looking for and discovering materials and exploiting their properties, one instead aims to understand materials fundamentally so that new materials with the desired properties can be The basis of all materials science involves relating the desired properties and relative performance of a material in a certain application to the structure of the atoms and phases in that material through The major determinants of the structure of a material and thus of its properties are its constituent chemical elements and the way in which it has been processed into its final These, taken together and related through the laws of thermodynamics, govern a material’s microstructure, and thus its An old adage in materials science says: "materials are like people; it is the defects that make them interesting" The manufacture of a perfect crystal of a material is currently physically Instead materials scientists manipulate the defects in crystalline materials such as precipitates, grain boundaries (Hall-Petch relationship), interstitial atoms, vacancies or substitutional atoms, to create materials with the desired Not all materials have a regular crystal Polymers display varying degrees of crystallinity, and many are completely non- Glasses, some ceramics, and many natural materials are amorphous, not possessing any long-range order in their atomic The study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic, as well as mechanical, descriptions of physical In addition to industrial interest, materials science has gradually developed into a field which provides tests for condensed matter or solid state New physics emerge because of the diverse new material properties which need to be [edit] Materials in industryRadical materials advances can drive the creation of new products or even new industries, but stable industries also employ materials scientists to make incremental improvements and troubleshoot issues with currently used Industrial applications of materials science include materials design, cost-benefit tradeoffs in industrial production of materials, processing techniques (casting, rolling, welding, ion implantation, crystal growth, thin-film deposition, sintering, glassblowing, ), and analytical techniques (characterization techniques such as electron microscopy, x-ray diffraction, calorimetry, nuclear microscopy (HEFIB), Rutherford backscattering, neutron diffraction, )Besides material characterisation, the material scientist/engineer also deals with the extraction of materials and their conversion into useful Thus ingot casting, foundry techniques, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a metallurgist/ Often the presence, absence or variation of minute quantities of secondary elements and compounds in a bulk material will have a great impact on the final properties of the materials produced, for instance, steels are classified based on 1/10th and 1/100 weight percentages of the carbon and other alloying elements they Thus, the extraction and purification techniques employed in the extraction of iron in the blast furnace will have an impact of the quality of steel that may be The overlap between physics and materials science has led to the offshoot field of materials physics, which is concerned with the physical properties of The approach is generally more macroscopic and applied than in condensed matter See important publications in materials physics for more details on this field of The study of metal alloys is a significant part of materials Of all the metallic alloys in use today, the alloys of iron (steel, stainless steel, cast iron, tool steel, alloy steels) make up the largest proportion both by quantity and commercial Iron alloyed with various proportions of carbon gives low, mid and high carbon For the steels, the hardness and tensile strength of the steel is directly related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and The addition of silicon and graphitization will produce cast irons (although some cast irons are made precisely with no graphitization) The addition of chromium, nickel and molybdenum to carbon steels (more than 10%) gives us stainless Other significant metallic alloys are those of aluminium, titanium, copper and Copper alloys have been known for a long time (since the Bronze Age), while the alloys of the other three metals have been relatively recently Due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively The alloys of aluminium, titanium and magnesium are also known and valued for their high strength-to-weight ratios and, in the case of magnesium, their ability to provide electromagnetic These materials are ideal for situations where high strength-to-weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering Other than metals, polymers and ceramics are also an important part of materials Polymers are the raw materials (the resins) used to make what we commonly call Plastics are really the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final Polymers which have been around, and which are in current widespread use, include polyethylene, polypropylene, PVC, polystyrene, nylons, polyesters, acrylics, polyurethanes, and Plastics are generally classified as "commodity", "specialty" and "engineering" PVC (polyvinyl-chloride) is widely used, inexpensive, and annual production quantities are It lends itself to an incredible array of applications, from artificial leather to electrical insulation and cabling, packaging and Its fabrication and processing are simple and well- The versatility of PVC is due to the wide range of plasticisers and other additives that it The term "additives" in polymer science refers to the chemicals and compounds added to the polymer base to modify its material Polycarbonate would be normally considered an engineering plastic (other examples include PEEK, ABS) Engineering plastics are valued for their superior strengths and other special material They are usually not used for disposable applications, unlike commodity Specialty plastics are materials with unique characteristics, such as ultra-high strength, electrical conductivity, electro-fluorescence, high thermal stability, It should be noted here that the dividing line between the various types of plastics is not based on material but rather on their properties and For instance, polyethylene (PE) is a cheap, low friction polymer commonly used to make disposable shopping bags and trash bags, and is considered a commodity plastic, whereas Medium-Density Polyethylene MDPE is used for underground gas and water pipes, and another variety called Ultra-high Molecular Weight Polyethylene UHMWPE is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low-friction socket in implanted hip Another application of material science in industry is the making of composite Composite materials are structured materials composed of two or more macroscopic An example would be steel-reinforced concrete; another can be seen in the "plastic" casings of television sets, cell-phones and so These plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile-butadiene-styrene (ABS) in which calcium carbonate chalk, talc, glass fibres or carbon fibres have been added for added strength, bulk, or electro-static These additions may be referred to as reinforcing fibres, or dispersants, depending on their [edit] Classes of materials (by bond types)Materials science encompasses various classes of materials, each of which may constitute a separate Materials are sometimes classified by the type of bonding present between the atoms:Ionic crystals Covalent crystals Metals Intermetallics Semiconductors Polymers Composite materials Vitreous materials [edit] Sub-fields of materials scienceNanotechnology – rigorously, the study of materials where the effects of quantum confinement, the Gibbs-Thomson effect, or any other effect only present at the nanoscale is the defining property of the material; but more commonly, it is the creation and study of materials whose defining structural properties are anywhere from less than a nanometer to one hundred nanometers in scale, such as molecularly engineered Microtechnology - study of materials and processes and their interaction, allowing microfabrication of structures of micrometric dimensions, such as MicroElectroMechanical Systems (MEMS) Crystallography – the study of how atoms in a solid fill space, the defects associated with crystal structures such as grain boundaries and dislocations, and the characterization of these structures and their relation to physical Materials Characterization – such as diffraction with x-rays, electrons, or neutrons, and various forms of spectroscopy and chemical analysis such as Raman spectroscopy, energy-dispersive spectroscopy (EDS), chromatography, thermal analysis, electron microscope analysis, , in order to understand and define the properties of See also List of surface analysis methods Metallurgy – the study of metals and their alloys, including their extraction, microstructure and Biomaterials – materials that are derived from and/or used with biological Electronic and magnetic materials – materials such as semiconductors used to create integrated circuits, storage media, sensors, and other Tribology – the study of the wear of materials due to friction and other Surface science/Catalysis – interactions and structures between solid-gas solid-liquid or solid-solid Ceramography – the study of the microstructures of high-temperature materials and refractories, including structural ceramics such as RCC, polycrystalline silicon carbide and transformation toughened ceramics Some practitioners often consider rheology a sub-field of materials science, because it can cover any material that However, modern rheology typically deals with non-Newtonian fluid dynamics, so it is often considered a sub-field of continuum See also granular Glass Science – any non-crystalline material including inorganic glasses, vitreous metals and non-oxide Forensic engineering – the study of how products fail, and the vital role of the materials of construction Forensic materials engineering – the study of material failure, and the light it sheds on how engineers specify materials in their product [edit] Topics that form the basis of materials scienceThermodynamics, statistical mechanics, kinetics and physical chemistry, for phase stability, transformations (physical and chemical) and Crystallography and chemical bonding, for understanding how atoms in a material are Mechanics, to understand the mechanical properties of materials and their structural Solid-state physics and quantum mechanics, for the understanding of the electronic, thermal, magnetic, chemical, structural and optical properties of Diffraction and wave mechanics, for the characterization of Chemistry and polymer science, for the understanding of plastics, colloids, ceramics, liquid crystals, solid state chemistry, and Biology, for the integration of materials into biological Continuum mechanics and statistics, for the study of fluid flows and ensemble Mechanics of materials, for the study of the relation between the mechanical behavior of materials and their 材料科学材料是人类可以利用的物质,一般是指固体。而材料科学是研究材料的制备或加工工艺、材料结构与材料性能三者之间的相互关系的科学。涉及的理论包括固体物理学,材料化学,与电子工程结合,则衍生出电子材料,与机械结合则衍生出结构材料,与生物学结合则衍生出生物材料等等。材料科学理论物理冶金学 晶体学 固体物理学 材料化学 材料热力学 材料动力学 材料计算科学[编辑] 材料的分类按化学状态分类 金属材料 无机物非金属材料 陶瓷材料 有机材料 高分子材料 按物理性质分类 高强度材料 耐高温材料 超硬材料 导电材料 绝缘材料 磁性材料 透光材料 半导体材料 按状态分类 单晶材料 多晶质材料 非晶态材料 准晶态材料 按物理效应分类 压电材料 热电材料 铁电材料 光电材料 电光材料 声光材料 磁光材料 激光材料 按用途分类 建筑材料 结构材料 研磨材料 耐火材料 耐酸材料 电工材料 电子材料 光学材料 感光材料 包装材料 按组成分类 单组分材料 复合材料 [编辑] 材料工程技术金属材料成形 机械加工 热加工 陶瓷冶金 粉末冶金 薄膜生长技术 表面处理技术 表面改性技术 表面涂覆技术 热处理 [编辑] 材料的应用结构材料 信息材料 存储材料 半导体材料 宇航材料 建筑材料 能源材料 生物材料 环境材料 储能材料和含能材料 参考%E6%9D%90%E6%96%99%E7%A7%91%E5%AD%A6

外文我给你

材料成型英文论文

撰写毕业论文是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节。大学生在毕业前都必须完成毕业论文的撰写任务。申请学位必须提交相应的学位论文,经答辩通过后,方可取得学位。可以这么说,毕业论文是结束大学学习生活走向社会的一个中介和桥梁。毕业论文是大学生才华的第一次显露,是向祖国和人民所交的一份有份量的答卷,是投身社会主义现代化建设事业的报到书。一篇毕业论文虽然不能全面地反映出一个人的才华,也不一定能对社会直接带来巨大的效益,对专业产生开拓性的影响。实践证明,撰写毕业论文是提高教学质量的重要环节,是保证出好人才的重要措施。通过撰写毕业论文,提高写作水平是干部队伍“四化”建设的需要。党中央要求,为了适应现代化建设的需要,领导班子成员应当逐步实现“革命化、年轻化、知识化、专业化”。这个“四化”的要求,也包含了对干部写作能力和写作水平的要求。提高大学生的写作水平是社会主义物质文明和精神文明建设的需要。在新的历史时期,无论是提高全族的科学文化水平,掌握现代科技知识和科学管理方法,还是培养社会主义新人,都要求我们的干部具有较高的写作能力。在经济建设中,作为领导人员和机关的办事人员,要写指示、通知、总结、调查报告等应用文;要写说明书、广告、解说词等说明文;还要写科学论文、经济评论等议论文。在当今信息社会中,信息对于加快经济发展速度,取得良好的经济效益发挥着愈来愈大的作用。写作是以语言文字为信号,是传达信息的方式。信息的来源、信息的收集、信息的储存、整理、传播等等都离不开写作。

俺这,应该有你要的

高分子材料成型的毕业论文,你好,帮你就是的啊

下个金山快译2009就可以了,让她给你翻译

  • 索引序列
  • 材料学英文论文
  • 材料科学英文论文
  • 英语材料论文
  • 材料学文献英文
  • 材料成型英文论文
  • 返回顶部