首页 > 论文期刊知识库 > 疫苗参考文献

疫苗参考文献

发布时间:

疫苗参考文献

还是有必要的,接受了这个加强针之后,还是可以更好的预防新冠病毒,体内有了更多的抗体了。

相信很多人最近都已经接种了疫苗,真的是为身为中国人感到幸福与自豪。新冠病毒的”危“力,相信大家都了解,全世界都受到了它的影响,而我们国家无论是在防疫工作还是医疗救助还是疫苗研发与接种方面都展现了中国速度,在国外几万甚至几十万的人还深受这个病毒的迫害时,我们国家已经第一时间研发了疫苗,并且让我们每一位公民都免费接种,这真的是让人骄傲。当然除了普通的疫苗外,还研发了新冠加强剂,那到底有没有必要接种呢?有必要,但可以缓一缓。一、加强针的作用加强针的接种,能够提高人体对病毒的免疫力,防止被感染;在感染后加强针能够我们对病毒的抵抗力,降低病毒对人体的危害。二、出于“人道主义”,应该暂缓加强针的接种世界卫生组织呼吁暂停加强针的接种,因为现在全球都在受到这种病毒的危害,而很多比较贫穷和发展比较落后的国家没有疫苗可以接种,生命安全得不到保障,所以出于“人道主义”,建议推迟加强针的接种。三、我国大范围的人民没有接种加强针我国的加强针仍处于研究实验阶段,对于加强针的具体功效以及是否会带来一些其他的副作用还在待考查阶段。并且我国疫苗的接种率也没有达到预想的效果,还是处于第一次接种的阶段,所以接种加强针还需要一段时间。以上为个人观点,疫苗的效能是一定的,所以加强针的接种是有必要的,但综合各种因素,加强针的接种安排目前还没有,我们就保持谨慎的态度,做好防护措施,也一定是没有错的,也不要着急和心慌,做好我们能做的事情就可以。

新冠疫苗加强针来啦你打了没?十一假期结束也有小一个月了,这一个月可说是危机四伏呀!全国多个省份发现本土新冠患者,你说吓人不吓人?不过在防疫工作人员的辛勤努力下,这波疫情终归过去。图源:国家卫健委官网如今,20余省份陆续启动新冠疫苗加强针接种,对于这个加强针,我们到底要不要打呢?有哪些需要注意的事情?今天就和大家聊一聊接种加强针的二三事儿~为何要打加强针?以后有第四、第五针吗?我们知道,接种疫苗后我们体内会产生保护性的抗体,如果我们接触了新冠病毒,抗体会中和掉病毒,从而起到预防感染,尤其是预防重症,降低致死率。然而如果时间过长,体内抗体水平会随着时间减弱,为了保证我们的免疫力稳固,需要根据不同疫苗的免疫特性来接种加强针。从而刺激机体提高体内抗体水平,维持更长时间,提高保护效果。《自然》杂志报道,美国耶鲁大学研究发现患者感染新冠病毒痊愈后,如不采取佩戴口罩和接种疫苗等措施,17个月后再次感染的风险升高50%,而美国疾病控制和预防中心今年8月份的研究也证明了这一点。很多人有这样的一个误区,我接种完疫苗后,是不是就不会感染新冠了呢?这种想法是错误的,即便接种了疫苗,也可能被新冠肺炎所感染。疫苗起到的作用是防止发展为重症,但不能100%的防止感染,因此即便接种了疫苗,甚至接种了加强针。马上要入冬了,多数专家预测,冬季新冠疫情会更严重,在这种情况下,我们更要做好戴口罩、勤洗手、保持社交距离等防护措施。至于未来还会不会有“第4针”、“第5针”,这个现在还不能确定,需要根据病毒变异和咱们体内抗体水平的变化来调整加强免疫的方式。加强针可以预防变异毒株吗?相信大家都领教到了新冠病毒的变异能力,自从疫情爆发以来,新冠病毒变异株超过1000个!尤其是前些时日闹得沸沸扬扬的德尔塔变异毒株,它的传播力是未发生变异病毒的2倍以上,甚至超过了SARS、天花、流感,因此有人怀疑打了加强针也没啥用处……这种想法是错误的!2021年5~6月间,我国广东省发生德尔塔新冠疫情,广东省疾病预防控制中心对完成2针疫苗接种者的感染者进行观察发现,我国灭活疫苗对德尔塔新冠病毒的保护效力达到70%,对重症新冠病毒感染的保护率为100%,没接种疫苗的人对新冠病毒则几乎没有免疫力。我们接种加强针后,体内抗体水平大幅度提升,加强了免疫,产生的抗体存在时间变长,可以对德尔塔等变异毒株有良好交叉中和保护作用。哪些人可以打加强针?现阶段,加强免疫优先在感染高风险人群和保障社会基本运行的关键岗位人员、重大活动疫情防控需要和60岁及以上老年人等符合条件、完成第二剂接种满6个月且有接种需要的人群中开展。符合接种条件的朋友,应秉持应接尽接的原则,及时接种新冠疫苗加强针。接种加强针需要根据疫苗种类作区分,如接种2针次新冠病毒灭活疫苗或接种1针次病毒载体疫苗等,需打完全程后间隔6个月才可接种加强针。这是因为加强针是为了巩固和提高疫苗效果,原则上之前接种的是哪种疫苗,加强针注射的就是对应的哪种疫苗。我国目前采取的加强免疫接种策略是同一种技术路线疫苗接种,一般也不建议混打(可以通过健康宝查看自己的疫苗接种记录,查看最后一针接种时间,后推6个月即可接种)。如这段时间有接种其他疫苗,接种时间上最好能与其他疫苗分开,相隔至少两周以上,尽量减少非预期的相互影响,同时也需要密切观察接种后的反应,最好咨询负责疫苗接种的医生。这些情况例外,当因动物致伤、外伤等原因需接种狂犬病疫苗、破伤风疫苗、免疫球蛋白时,可不考虑与新冠病毒疫苗的接种间隔。接种加强针需要哪些准备?接种前,请携带身份证及手机等有效证件及工具。接种后,需要在现场留观至少30分钟。回家后应多休息,多饮水。接种前3天不要饮酒,接种后3天也不要饮酒,接种当天不要洗澡,保持注射部位干净卫生,不挤压按摩接种部位,以防局部感染。接种后的饮食应以清淡为主,如果是易过敏体质,则要少吃辛辣、海鲜类食物。至于去哪接种呢?可以去当地卫生健康行政部门批准的新冠疫苗接种单位进行接种。【参考文献】[1]全媒体记者 滕伟伟 新冠疫苗加强针接种热点问题解答[N] 日照日报,2021-10-22(B01)[2]张佳星 全人群“第三针”接种是否必要?[N] 老年日报,2021-08-04(002)[3]佘惠敏 新冠疫苗第三针何时接种[N] 经济日报,2021-08-22(004)[4]记者 刘霞 新冠患者一到两年内或再“中招”[N] 科技日报,2021-10-22(004)

专家对此表示一定要根据自己的体质来决定,不是每个人都适合打这个加强针的。

关于疫苗论文的参考文献

新冠疫苗加强针来啦你打了没?十一假期结束也有小一个月了,这一个月可说是危机四伏呀!全国多个省份发现本土新冠患者,你说吓人不吓人?不过在防疫工作人员的辛勤努力下,这波疫情终归过去。图源:国家卫健委官网如今,20余省份陆续启动新冠疫苗加强针接种,对于这个加强针,我们到底要不要打呢?有哪些需要注意的事情?今天就和大家聊一聊接种加强针的二三事儿~为何要打加强针?以后有第四、第五针吗?我们知道,接种疫苗后我们体内会产生保护性的抗体,如果我们接触了新冠病毒,抗体会中和掉病毒,从而起到预防感染,尤其是预防重症,降低致死率。然而如果时间过长,体内抗体水平会随着时间减弱,为了保证我们的免疫力稳固,需要根据不同疫苗的免疫特性来接种加强针。从而刺激机体提高体内抗体水平,维持更长时间,提高保护效果。《自然》杂志报道,美国耶鲁大学研究发现患者感染新冠病毒痊愈后,如不采取佩戴口罩和接种疫苗等措施,17个月后再次感染的风险升高50%,而美国疾病控制和预防中心今年8月份的研究也证明了这一点。很多人有这样的一个误区,我接种完疫苗后,是不是就不会感染新冠了呢?这种想法是错误的,即便接种了疫苗,也可能被新冠肺炎所感染。疫苗起到的作用是防止发展为重症,但不能100%的防止感染,因此即便接种了疫苗,甚至接种了加强针。马上要入冬了,多数专家预测,冬季新冠疫情会更严重,在这种情况下,我们更要做好戴口罩、勤洗手、保持社交距离等防护措施。至于未来还会不会有“第4针”、“第5针”,这个现在还不能确定,需要根据病毒变异和咱们体内抗体水平的变化来调整加强免疫的方式。加强针可以预防变异毒株吗?相信大家都领教到了新冠病毒的变异能力,自从疫情爆发以来,新冠病毒变异株超过1000个!尤其是前些时日闹得沸沸扬扬的德尔塔变异毒株,它的传播力是未发生变异病毒的2倍以上,甚至超过了SARS、天花、流感,因此有人怀疑打了加强针也没啥用处……这种想法是错误的!2021年5~6月间,我国广东省发生德尔塔新冠疫情,广东省疾病预防控制中心对完成2针疫苗接种者的感染者进行观察发现,我国灭活疫苗对德尔塔新冠病毒的保护效力达到70%,对重症新冠病毒感染的保护率为100%,没接种疫苗的人对新冠病毒则几乎没有免疫力。我们接种加强针后,体内抗体水平大幅度提升,加强了免疫,产生的抗体存在时间变长,可以对德尔塔等变异毒株有良好交叉中和保护作用。哪些人可以打加强针?现阶段,加强免疫优先在感染高风险人群和保障社会基本运行的关键岗位人员、重大活动疫情防控需要和60岁及以上老年人等符合条件、完成第二剂接种满6个月且有接种需要的人群中开展。符合接种条件的朋友,应秉持应接尽接的原则,及时接种新冠疫苗加强针。接种加强针需要根据疫苗种类作区分,如接种2针次新冠病毒灭活疫苗或接种1针次病毒载体疫苗等,需打完全程后间隔6个月才可接种加强针。这是因为加强针是为了巩固和提高疫苗效果,原则上之前接种的是哪种疫苗,加强针注射的就是对应的哪种疫苗。我国目前采取的加强免疫接种策略是同一种技术路线疫苗接种,一般也不建议混打(可以通过健康宝查看自己的疫苗接种记录,查看最后一针接种时间,后推6个月即可接种)。如这段时间有接种其他疫苗,接种时间上最好能与其他疫苗分开,相隔至少两周以上,尽量减少非预期的相互影响,同时也需要密切观察接种后的反应,最好咨询负责疫苗接种的医生。这些情况例外,当因动物致伤、外伤等原因需接种狂犬病疫苗、破伤风疫苗、免疫球蛋白时,可不考虑与新冠病毒疫苗的接种间隔。接种加强针需要哪些准备?接种前,请携带身份证及手机等有效证件及工具。接种后,需要在现场留观至少30分钟。回家后应多休息,多饮水。接种前3天不要饮酒,接种后3天也不要饮酒,接种当天不要洗澡,保持注射部位干净卫生,不挤压按摩接种部位,以防局部感染。接种后的饮食应以清淡为主,如果是易过敏体质,则要少吃辛辣、海鲜类食物。至于去哪接种呢?可以去当地卫生健康行政部门批准的新冠疫苗接种单位进行接种。【参考文献】[1]全媒体记者 滕伟伟 新冠疫苗加强针接种热点问题解答[N] 日照日报,2021-10-22(B01)[2]张佳星 全人群“第三针”接种是否必要?[N] 老年日报,2021-08-04(002)[3]佘惠敏 新冠疫苗第三针何时接种[N] 经济日报,2021-08-22(004)[4]记者 刘霞 新冠患者一到两年内或再“中招”[N] 科技日报,2021-10-22(004)

新冠的相关文献由于疫情的影响2020年发表了非常多,可以通过像维普这样的专业文献数据库进行检索查询,涉及疫情的角度,方向也是非常的多元化,所以你需要花点功夫来进行筛选,准确的定位所需的文献,再来仔细阅读学习。而且维普首页上面还有新冠专栏,更为集中,推荐看看。

怎么给你发呀 我有

疫苗与人类健康参考文献

想要降低副作用肯定是需要我们有一个比较好的身体,平时可以多去锻炼并且正常吃饭,不要熬夜,不要晚睡,不要吃一些油炸食品,辛辣的食物,就可以降低这个副作用。

接种疫苗是预防控制传染病最有效的手段。疫苗的发明和预防接种是人类最伟大的公共卫生成就。疫苗接种的普及,避免了无数儿童残疾和死亡。世界各国政府均将预防接种列为最优先的公共预防服务项目。我国通过接种疫苗,实施国家免疫规划,有效地控制了疫苗针对传染病发病。通过口服小儿麻痹糖丸,自1995年后,我国即阻断了本土脊髓灰质炎病毒的传播,使成千上万孩子避免了肢体残疾;普及新生儿乙肝疫苗接种后,我国5岁以下儿童乙肝病毒携带率已从1992年的7%降至2014年的3%;上世纪中期,我国麻疹年发病人数曾高达900多万,至2017年,发病人数已不到6000例普及儿童计划免疫前,白喉每年可导致数以十万计儿童发病,2006年后,我国已无白喉病例报告。上世纪60年代,我国流脑发病最高年份曾高达304万例,至2017年,发病人数已低于200例;乙脑最高年份报告近20万例,2017年发病数仅千余例。国家免疫规划的实施有效地保护了广大儿童的健康和生命安全。不断提高免疫服务质量,维持高水平接种率是全社会的责任。来源:新华社

要注意后续的保养,一定要吃一些有营养的食物,吃一些水果和蔬菜,要提高身体的免疫力,要注意休息,要避免感染。

首先一定要提高身体素质,同时在接种疫苗之前应该了解注意事项,接种疫苗之后不要暴饮暴食,不要吃辛辣的食物,饮食应该以清淡为主,多喝水,避免上火,这样就能够降低副作用。

疫苗接种文献

由于个体差异,每个人对于疫苗的敏感程度不尽相同,因此打完疫苗后形成保护的时间也各有差异。从目前国药集团中国生物新冠病毒灭活疫苗Ⅲ期临床试验的阶段性分析看,第一针注射10天后就可以产生抗体,但是,不同人之间抗体产生的差距很大,所以我们要打第二针。两针注射后,再过14天,就能产生高滴度抗体,形成有效保护,且全人群中和抗体阳转率达99%。如果你在有风险的地区,且上下班要乘坐公交,地铁等大人流量的交通工具,建议你还是打了吧。不说别的,打了疫苗之后确实使我有了许多安全感。再者,庸俗一点说,这疫苗它免费啊!我们国家这点做的带给了老百姓心安。况且,你每天上下班接触多少人,地铁有多少人乘坐过,你不知道这些人都来自哪,国外飞回来的,高风险地区溜达回来的,那么多未知的风险就在你身边,打了疫苗之后你被感染的风险要下降好多好多啊。女性接种前不在经期,孕期,哺乳期,备孕期,三压高的人不建议接种,感冒的不建议接种,一般地过敏体质在非发作期可以接种的,接种前不要吃药,不要吃药,不要吃药,接种后24h内不要洗澡,不要剧烈运动。全球化的脚步不会因为疫情停下来,中国也不可能闭关锁国。如果你有一颗奔赴山海的心,不管是出于避免传播疫情的角度还是避免你自己感染的想法,新冠疫苗必打。那有小伙伴就该说了:我本身免疫力很好,万一我因为打疫苗有什么严重反应我不就毁了吗? 我只想说,你没有那么独特,那几万分之一的可能性不会降临在你身上的。再退一步,就算你的反应比较严重,及时就医,没啥毛病。

专家给出了比较中肯的建议,一般人是不需要打这个加强针的,如果是老年人,或者是疫苗快要过期的人就可以打。

新冠疫苗加强针来啦你打了没?十一假期结束也有小一个月了,这一个月可说是危机四伏呀!全国多个省份发现本土新冠患者,你说吓人不吓人?不过在防疫工作人员的辛勤努力下,这波疫情终归过去。如今,20余省份陆续启动新冠疫苗加强针接种,对于这个加强针,我们到底要不要打呢?有哪些需要注意的事情?今天就和大家聊一聊接种加强针的二三事儿~为何要打加强针?以后有第四、第五针吗?我们知道,接种疫苗后我们体内会产生保护性的抗体,如果我们接触了新冠病毒,抗体会中和掉病毒,从而起到预防感染,尤其是预防重症,降低致死率。然而如果时间过长,体内抗体水平会随着时间减弱,为了保证我们的免疫力稳固,需要根据不同疫苗的免疫特性来接种加强针。从而刺激机体提高体内抗体水平,维持更长时间,提高保护效果。《自然》杂志报道,美国耶鲁大学研究发现患者感染新冠病毒痊愈后,如不采取佩戴口罩和接种疫苗等措施,17个月后再次感染的风险升高50%,而美国疾病控制和预防中心今年8月份的研究也证明了这一点。很多人有这样的一个误区,我接种完疫苗后,是不是就不会感染新冠了呢?这种想法是错误的,即便接种了疫苗,也可能被新冠肺炎所感染。疫苗起到的作用是防止发展为重症,但不能100%的防止感染,因此即便接种了疫苗,甚至接种了加强针。马上要入冬了,多数专家预测,冬季新冠疫情会更严重,在这种情况下,我们更要做好戴口罩、勤洗手、保持社交距离等防护措施。至于未来还会不会有“第4针”、“第5针”,这个现在还不能确定,需要根据病毒变异和咱们体内抗体水平的变化来调整加强免疫的方式。加强针可以预防变异毒株吗?相信大家都领教到了新冠病毒的变异能力,自从疫情爆发以来,新冠病毒变异株超过1000个!尤其是前些时日闹得沸沸扬扬的德尔塔变异毒株,它的传播力是未发生变异病毒的2倍以上,甚至超过了SARS、天花、流感,因此有人怀疑打了加强针也没啥用处……这种想法是错误的!2021年5~6月间,我国广东省发生德尔塔新冠疫情,广东省疾病预防控制中心对完成2针疫苗接种者的感染者进行观察发现,我国灭活疫苗对德尔塔新冠病毒的保护效力达到70%,对重症新冠病毒感染的保护率为100%,没接种疫苗的人对新冠病毒则几乎没有免疫力。我们接种加强针后,体内抗体水平大幅度提升,加强了免疫,产生的抗体存在时间变长,可以对德尔塔等变异毒株有良好交叉中和保护作用。哪些人可以打加强针?现阶段,加强免疫优先在感染高风险人群和保障社会基本运行的关键岗位人员、重大活动疫情防控需要和60岁及以上老年人等符合条件、完成第二剂接种满6个月且有接种需要的人群中开展。符合接种条件的朋友,应秉持应接尽接的原则,及时接种新冠疫苗加强针。接种加强针需要根据疫苗种类作区分,如接种2针次新冠病毒灭活疫苗或接种1针次病毒载体疫苗等,需打完全程后间隔6个月才可接种加强针。这是因为加强针是为了巩固和提高疫苗效果,原则上之前接种的是哪种疫苗,加强针注射的就是对应的哪种疫苗。我国目前采取的加强免疫接种策略是同一种技术路线疫苗接种,一般也不建议混打(可以通过健康宝查看自己的疫苗接种记录,查看最后一针接种时间,后推6个月即可接种)。如这段时间有接种其他疫苗,接种时间上最好能与其他疫苗分开,相隔至少两周以上,尽量减少非预期的相互影响,同时也需要密切观察接种后的反应,最好咨询负责疫苗接种的医生。这些情况例外,当因动物致伤、外伤等原因需接种狂犬病疫苗、破伤风疫苗、免疫球蛋白时,可不考虑与新冠病毒疫苗的接种间隔。接种加强针需要哪些准备?接种前,请携带身份证及手机等有效证件及工具。接种后,需要在现场留观至少30分钟。回家后应多休息,多饮水。接种前3天不要饮酒,接种后3天也不要饮酒,接种当天不要洗澡,保持注射部位干净卫生,不挤压按摩接种部位,以防局部感染。接种后的饮食应以清淡为主,如果是易过敏体质,则要少吃辛辣、海鲜类食物。至于去哪接种呢?可以去当地卫生健康行政部门批准的新冠疫苗接种单位进行接种。请点击输入图片描述【参考文献】[1]全媒体记者 滕伟伟 新冠疫苗加强针接种热点问题解答[N] 日照日报,2021-10-22(B01)[2]张佳星 全人群“第三针”接种是否必要?[N] 老年日报,2021-08-04(002)[3]佘惠敏 新冠疫苗第三针何时接种[N] 经济日报,2021-08-22(004)[4]记者 刘霞 新冠患者一到两年内或再“中招”[N] 科技日报,2021-10-22(004)

灭活疫苗上市后,价格不是很高,估计一针几百元,如果你有两针,价格应该在1000元以下,一针疫苗后,保护率约为97%,抗体生产缓慢,呈曲线状缓慢增

疫苗文献综述

综述性论文并不是摘别人的东西,而是根据人家的实验内容你总结出你想要的东西,如是工艺你可以根据他实验的结果得出该工艺的适用范围、优点(一般文献里是很明显的),而缺陷则一般比较隐蔽,你想要多看相关的文献,然后根据这些文献得出该工艺的缺点或不足。  通过大量的阅读相关文献,你需要最后总结一下该工艺目前还存在不足之处,前景或改进处,而这些并不是你的感受而是目前的的确确存在的问题,是根据你阅读大量文献得到的结论。  为了不出现错误,你不应当把某一篇文献的结论当成所以的结论,而是大量文献的结论综合起来得到的,这样得到的综述性文献才有深度,才令别人信服。  EBOLA病毒  我个人觉得你可以查查该病毒到底是什么东西(即专家实验分析结果),引发什么疾病或作为什么疫苗,目前研究现状,以后的研究的方向等等。  我查了下这方面的文献,涉及的知识很多,你应当重点介绍某一方面,并且这方面有介绍得有特色和深度,这样你的文章才可能发表。  如:  1埃博拉病毒的研究进展  [期刊论文] 《中国畜牧兽医》 ISTIC PKU -2006年10期-聂福平,范泉水,王灵强,郄翠仙,郭松辉,龙贵伟,李丽红,张念祖  埃博拉病毒是一种致死性病原体,是能引起人类和灵长类动物产生埃博拉出血热的病原随着研究的深入,埃博拉病毒逐渐被人类认识作者着重介绍了埃博拉病毒的分子生物学特性,以使人们更加了解埃博拉病毒  埃博拉病毒疫苗的研究进展  [期刊论文] 《免疫学杂志》 ISTIC PKU -2005年z1期-刘萍,张庆华  对高致死埃博拉病毒的控制一直是公共健康关注的热点埃博拉病毒的防治方法中最有效的是疫苗早期较为常见的是以载体疫苗和DNA疫苗为代表的亚单位疫苗以及用DNA激发配合腺病毒增强疫苗本文主要综述针对灵长类动物埃博  关键词:埃博拉病毒 疫苗 腺病毒  埃博拉病毒及其免疫研究进展  [期刊论文] 《生物学教学》 PKU -2009年7期-高秋月,肖露平,李海燕,方献平  埃博拉病毒是一种高致死性病原体,能引发人畜共患病埃博拉出血热本文从分子结构、免疫等方面介绍了这种病毒的研究进展  关键词:埃博拉病毒 宿主 免疫  埃博拉病毒(EBOV)蛋白的最新研究进展  [期刊论文] 《生物技术通报》 PKU -2005年5期-  埃博拉病毒(EBOV)是一种高致死性的病毒,在其RNA编码的7种蛋白中,糖蛋白GP、基质蛋白VP40以及膜蛋白VP24在病毒粒子的装配、出芽以及致病过程中起着关键的作用详细介绍了这三种蛋白的结构、功能以及作用机制的最新研究进展  关键词:埃博拉病毒(EBOV) GP VP40 VP24  等等,很多,你自己查看吧。

New Development on Research and Application of Microbial Epoxide HydrolasesTang Yanfa, Xu Jianhe, Ye Qin(The State Key Laboratory of Bireactor Engineering, Shanghai 200237)Abstract Enantiopure epoxides, as well as their corresponding vicinal diols, are highly valuable chiral synthons useful for the synthesis of various biologically active One of the presently emerging approaches is the use of the enantioselective hydrolysis of racemic epoxides using epoxide hydrolases (EHs) In this context, major characteristics, substrate specificities and enantioselectivities of epoxide hydrolases from various microbial sources, such as bacteria and fungi, are Key words Epoxide hydrolase, Chiral epoxide, Chiral vicinal diol, Biotransformation, Optical resolution摘要 手性环氧化物及邻二醇是一些生物活性物质不对称合成中的重要中间体。应用细菌和真菌产生的环氧化物水解酶不对称水解消旋环氧化物来制备这些物质已引起人们的高度重视。此文对此进行了综述,并对它们的对映选择性进行了评价。关键词 环氧化物水解酶 手性环氧化物 手性邻二醇 生物转化 光学拆分--------------------------------------------------------------------------------微生物环氧化物水解酶的研究与应用新进展唐燕发 许建和 叶勤(华东理工大学生物反应器工程国家重点实验室 上海 200237) 手性环氧化物及其开环产物邻二醇能与各种亲核试剂反应,因而在手性化合物的合成过程中被广泛应用,是一种重要的有价值的中间体。近年来很多研究小组都对它们的生产方法进行了研究[1],如烯烃的Katsuki-Sharpless不对称环氧化和不对称二羟基化;烯烃的Jacobsen不对称环氧化。另一方面很多利用生物催化合成这类物质的方法已有报道,如水解酶类(特别是脂肪酶和酯酶), a-卤酸脱卤素酶,乳酸脱氢酶或甘油脱氢酶,单加氧酶,过氧化物酶和卤过氧化物酶。以上各种方法有的对底物有特殊要求,有的对映选择性不高,有的需要氧化还原辅酶如NAD(P)H,这些都限制了它们的应用。不依赖于辅因子的环氧化物水解酶[ECX]可以有效地代替以上各种方法,环氧化物水解酶最初是在哺乳动物肝组织的解毒功能研究中被发现,但由于从哺乳动物中得到的这种酶来源有限,故限制了其大规模应用,但近年来发现在一些微生物如细菌、真菌中也存在环氧化物水解酶,有效地解决了这一问题。本文将综述各类细菌和真菌产生的环氧化物水解酶。1 环氧化物水解酶作用机理 酶的一个天冬氨酸残基进攻被酶的一个赖氨酸残基部分质子化的环氧化物的一端形成一个共价结合的二元醇单酯-酶中间体[2,3],酶的组氨酸残基[4]从落到酶活性中的一个水分子中夺取一质子从而产生一个羟基,这个羟基进攻二醇-单酯-酶中间体,水解产生二醇,如图1。 图1 环氧化物水解酶的作用机理图2 环氧化物微生物水解时构型保持和构型反转 水解时有两个不同的途径,如图2。 (1) 羟基进攻取代较少的碳原子,手性中心构型不变(如by Asper- gillus niger)[5]。 (2) 羟基进攻取代较多的碳原子(即手性中心)从而使手性中心构型反转(如by B sulfurescens)[5]。 在两种途径中,进入的羟基都是以反式立体方式进入的,若环氧环的两碳原子都是手性碳,则羟基进攻的任何位置碳原子的构型都将反转。虽然保持构型不变的第一种方式较普遍,但也有一些构型反转的例子已报道[5-7]。2 细菌产生的环氧化物水解酶 早期美国Illinois大学等小组发现Pseudomonad NRRL 2944[8]、Psedomonas pautida[9]、Bacillus megaterium ATCC 14581[10]中存在环氧化物水解酶,但真正开始对环氧化物水解酶的研究是由奥地利的K Faber研究小组进行的。他们最初在用Rhodococcus NOVO 409的固定化酶水解腈化合物的研究中发现该酶具有未知的能水解环氧化物的活性。对1,1-二取代环氧化物,当R1为甲基,R2为一长碳链时,对映选择性最高,剩余R-环氧化物和水解产物S-二醇ee值分别为72%和40%;对单取代环氧化物,ee值都很低;而内消旋环氧化物则不能作为底物[11],如图3。 图3 Rhodococcus NOVO 409不对称水解1,1-二取代环氧化物 之后他们[12]筛选了43种菌,其中7种显示活性,即4种细菌:Rhodococcus NCIMB 11216, NCIMB11215 和NCIMB 11540及Corynebacterium UPT 9;3种真菌:Diploida gossypina ATCC 10936, Fusarium solani DSM 62416 和Glomerella Cingulata ATCC 10534。其中第一和第四种细菌对2-环氧辛烷有中等活性,都优先水解R型环氧化物形成R-1,2-二羟基辛烷,但对映选择性很低。NCIMB11540水解2-甲基-1,2-环氧庚烷时产生的S-二醇和剩下的R-环氧化物ee值分别为89%和51%,E值为29。NCIMB 11216[13]水解2-甲基-1,2-环氧庚烷,2-甲基-1,2-环氧壬烷和2-甲基-1,2-环氧十一烷时,产物S-二醇ee值分别高达96%、98%和99%,剩下的R-环氧化物ee值亦分别为71%、25%和55%,E值分别为104、126和200,可见两个取代基差别愈大,选择性愈高,当把甲基改为乙基时,对映选择性E值急剧下降,其纯酶[14]表明该酶不需要辅酶,是一个溶解性的寡酶,分子量为35 kDa,等电点为7。催化2-甲基-1,2-环氧庚烷时,最佳温度为30°C,最佳pH为0,这个菌可运用于芳樟醇[15](一些植物和果实的香味物质)的合成中。 另有两种菌Rhodococcus equi IFO 3730和Mycobacterium paraffinicum NCIMB 10420[1]对1,1-二取代环氧化物也显示相似的对映选择性,E值大于200,其中第一个菌可应用于昆虫性信息激素(S)-(-)-Frantalin[16]的合成中,在拆分过程中E=39。 最近又发现另外4种菌,Nocardia H8, Nocardia EH1, Nocardia TB1和Rhodococcus ruber DSM 43338[17]对2-甲基-1,2-环氧庚烷也具有很好的选择性(E>200)。以前的情况是若得到的二醇光学活性高,但转化率总是较低,使收率很低,并且剩下的环氧化物光学活性也很低,然而,两种新菌Nocardia EH1和Nocardia TB1对底物的转化率都达到50%,并且剩下的R-环氧化物和形成的S-二醇ee值都大于99%。在长侧链上引入一个芳香基团(即底物为4-苯基-2-甲基-1,2-环氧丁烷)则Nocardia菌对此底物的选择性急剧降低(EH1, E=12; TB1, E=13)。若酶水解后,再加酸处理,即两步反应在一起连续进行,则得到同一种构型的二醇[18,19],收率都大于90%,ee值都大于99%。从Nocardia EH1中提取的粗酶[20,21]水解顺式2,3-环氧庚烷,得到单一的产物(2R,3R)-2,3-二羟基庚烷,收率为79%,ee值为91%。两种异构体的水解都发生在分子中构型为S的碳原子上,故得到(2R,3R)-二醇这一种产物。此粗酶固定化[22]于DEAE-Cellulose后,酶的对映选择性只有很小的下降,但酶活提高了1倍多(为原来的225%),最佳温度可从35°C提高到45°C,重复反应5次后,酶活仍有55%。纯化后得到的纯酶[23]表明该酶不需要辅酶,是一种寡酶,分子量为34kDa,最佳pH为8~9。 以上所研究的细菌酶都显示出相似的对映选择性,比如它们都优先水解S-2-甲基-1,2-环氧烷烃,Faber等还分离到了另外两种具有相反对映选择性的菌株,即Mycoplana rubra和"Rot" [24],第二种菌在分类学上还没有确定。对1,1-二取代环氧化物都优先水解R型,但对映选择性都不高。 Faber所研究的环氧化物水解酶都属于组成型酶,它们对2-甲基-2-烷基环氧化物等具有分支的末端1,2-环氧化物具有很高的对映选择性,但对于无分支的末端1,2-环氧化物只有很低的对映选择性,并且不水解内消旋环氧化物,而南非Botes等[25]应用Chryseomonas luteola拆分1,2-环氧辛烷,剩余的S-环氧化物和形成的R-二醇ee值分别为98%和86%,这是到目前为止首次报道在细菌中存在的对末端1,2-环氧化物具有很高对映选择性的环氧化物水解酶。 1995年英国Carter 和Leak [26]分离到一株菌Corynebacterium C12, 所产环氧化物水解酶为诱导型酶。Archer等[27]应用此菌拆分1-甲基-1,2-环己烯环氧化物,有很好的对映选择性,得到(1R,2S)环氧化物,(收率30%, ee>99%)和(1S,2S)-1-甲基-1,2-二羟基环己烷(收率42% , 89% ee)。若随后再用酸水解剩下的环氧化物,则两步串级反应就得到单一的(1S,2S)-二醇产物(收率80%, ee>95%)。这种诱导型酶的底物特异性范围较小,只对与诱导物相关的底物有相对较高的活性。分离得到的纯酶[28]表明该酶是一种聚合酶,其亚单位分子量为43140Da。 1989年荷兰Van den Wijingard等[29]从淡水沉淀物富集培养液中分离得到革兰氏阴性菌Pseudomonas AD1,所产环氧化物水解酶也为诱导型酶。纯化[30,31]后表明该酶是一种寡酶,分子量是35kDa,该酶能水解表氯醇、表溴醇、环氧辛烷及苯乙烯环氧化物。基因克隆后在E coli中表达[32]的重组酶水解苯乙烯环氧化物和对氯苯乙烯环氧化物[33]时对映选择性分别为2和2。Rink等[34]研究了其催化机理。除此之外,日本Nakamura等[35,36]发现在Corynebacterium N-1074中存在两种环氧化物水解酶(IIa, IIb)也能降解表氯醇,其中酶IIb具有较高的对映选择性。 1999年荷兰Van Der Werf等报道[37]发现了一类新的产生于Rhodococcus erythropolis DCL 14的环氧化物水解酶。单萜能诱导该菌产酶,该酶是一种寡酶,分子量为17kDa,不需辅酶,在pH=7和50°C时酶活最高。只有柠檬烯-1,2-环氧化物,1-甲基-1,2-环己烯环氧化物,环己烯环氧化物和茚环氧化物可作为其底物。水解1-甲基-1,2-环己烯环氧化物时对映选择性同Corynebacterium C12[27]相反,但两种情况下都得到(1S,2S)-二醇,说明该酶具有不同的催化机理。 从以上的综述可以看出,含有环氧化物水解酶的细菌比五六年前所认为的要普遍的多,这些细菌分别属于Pseudomonas, Rhodococcus, Corynebacterium, Mycobacterium, Nocardia, Mycoplana,“Rot”, Bacillus, Agrobacterium, Xanthobacter及Chryseomonas 等,其中Rhodococcus NCIMB 11216, Nocardia EH1 和Nocardia TB1对2-甲基-2-烷基环氧化物等具有分支的末端1,2-环氧化物具有很高的对映选择性;Chryseomonas luteola对无分支的脂肪族末端1,2-环氧化物具有特别高的对映选择性。底物结构与酶的对映选择性的关系才刚被探讨,只有当底物具有严格的取代方式时,才具有高对映选择性。同单取代环氧化物相比,C-2位的甲基对对映选择性有重要的作用,然而,当甲基变为乙基后就丧失了对映选择性,这表明存在着一个相当严密的活性位点,只有一部分底物能符合它。大多数酶对被测试的底物显示相同程度的对映选择性,甚至对单取代和双取代环氧化物显示相似的对映选择性的变化,这些相似性表明这些酶在进化上是具有联系的。相信随着研究的深入,会有更多的有关这方面的研究报道。组成型酶对1,1-二取代环氧化物具有较高的对映选择性,但比活力都不高;而诱导型酶虽然比活力较高,但仅对有限的底物有活力。盼望在不久的将来可运用基因工程技术来解决这一问题。3 真菌产生的环氧化物水解酶 虽然早期日本Suzuki等[38]和美国Kolattukudy[39]等发现真菌Helminthosporum sativum和Fusariun solani pis中存在环氧化物水解酶,但真正集中研究真菌环氧化物水解酶是由法国Furstoss等首先进行的。他们发现Aspergillus niger LCP 521能不对称水解香叶醇衍生物,制备Bower's compound[40](一种保幼激素类似物);还可以选择性地水解非对映的8,9-环氧柠檬烯立体异构体,制备Bisabolol的4种天然立体异构体[41]。 1993年Furstoss等[5]报道了Aspergillus niger水解苯乙烯环氧化物剩下S-苯乙烯环氧化物(收率23%, 96% ee),另一种菌Beauveria sulfurescens水解苯乙烯环氧化物具有良好的互补对映选择性,给出R-苯乙烯环氧化物(收率19%, 98% ee),两种菌都产生同样的R-二醇,[18O]标记实验[42]结果表明A niger水解发生于C-2,构型不变,而B sulfurescens水解发生于C-1,构型反转。若在一个反应器中,同时用这两种菌水解苯乙烯环氧化物消旋物,则得到单一的二醇产物R-1-苯基-1,2-二羟基乙烷,收率92%,ee值为89%。在水解一系列取代苯乙烯环氧化物[43](底物结构如图4)时若苄位引入一个甲基如2就降低了A niger的对映选择性,剩余S-环氧化物和R-二醇ee值分别为73%和32%;若在b位有取代如3-7,则都不能作为酶的底物。 图4 与A niger 和 B sulfurescens 反应的底物 B sulfurescens水解a -甲基苯乙烯环氧化物2时对映选择性不高;水解顺式-b -甲基苯乙烯环氧化物3形成的(1R,2R)-二醇在所有转化率下几乎都光学纯,而剩下的(1R,2S)-环氧化物在所有转化率下ee值都很低(20%);b ,b -二甲基苯乙烯环氧化物5不能作为B sulfurescens的底物;水解茚环氧化物6和1,2-环氧四氢奈7后剩余的(1R,2S)- 环氧化物光学纯度很高(ee>98%);水解反式-b -甲基苯乙烯环氧化物4产生的(1R,2R)-环氧化物和(1R,2S)-二醇收率(分别为30%和38%)和ee值(分别为98%和90%)都很好,它是唯一在转化率接近50%时,剩余的环氧化物和二醇产物光学纯度都很高的底物,但反式-环氧化物的对映选择性水解在文献中少有报道。 对一系列对位取代苯乙烯环氧化物[44],A niger都仍优先水解R-环氧化物形成R-二醇,剩余S-环氧化物ee值都大于96%,收率28%~38%。水解对硝基苯乙烯环氧化物时,若随后进行酸水解[45],则得到单一的R-二醇(收率94%, 80% ee),可用于制备b-肾上腺素阻断剂(R)-Nifenalol。酶水解时,若用粗酶[46,47]代替菌丝体,DMSO是抑制影响最小的一种助溶剂,反应后剩下的S-环氧化物ee值可达97%,转化率为47%,对映选择性也很高(E=41),底物浓度可提高到330mmol/L(l-1)而不影响ee值,因此这个方法在制备规模的环氧化物拆分上很有用。B sulfurescens仍显示互补的对映选择性,当取代基是-H, -CH3, -F, -Br时,水解剩余的R-环氧化物ee值都大于96%,除对硝基苯乙烯环氧化物外,水解所形成的二醇仍都具有R构型,给电子基团如p-CH3,使反应速度增加4倍,而吸电子基团不仅降低反应速率还降低对映选择性,这两种现象都显示有酸催化过程存在,并且在过渡态时有碳正离子存在。 另外,A niger还可以对映选择性地水解对溴-α-甲基苯乙烯环氧化物[48]和缩水甘油环缩醛衍生物[49]。该酶已进行了优化生产[50],纯化酶[51]表明该酶由4个相同亚基组成,每个亚基分子量为45kDa,40°C和pH=0时酶活最高。 除此之外,韩国Choi[52]也筛选得到另一株A niger;英国Grogan[53]也发现另一株真菌Beauveria densa CMC 3240,都可以不对称水解苯乙烯环氧化物。 1998年Furstoss等[54,55]用单取代、1,1-二取代、反式-1,2-二取代、顺式-1,2-二取代环氧化物作为底物对42种真菌进行筛选,得到7株有一定对映选择性的菌种,即A niger LCP 521, A terreus CBS 116-46, B bassina ATCC 7159, C globosum LCP 679, C elegans LCP 1543,M isabellina ATCC 42613, Syncephalastrum racemosum MUCL 28766。 对每一类底物几乎都可以用一二个菌水解得到光学纯的对映体,结果如表1。在用Syncephalastrum racemosum无细胞提取物[56]水解一系列对位取代苯乙烯环氧化物时,若对位是给电子基团如甲基有利于苄位(a位)进攻,若对位是吸电子基团如硝基则有利于β位进攻,决定反应速率的步骤是氧环的断裂,并且是第一次揭示出在反应过程中很可能存在着环氧化物的酸活化机理。表1 几种真菌对脂肪族环氧化物的不对称水解 底物 菌种 环氧化物收率/% ee/% 二醇收率/% ee/% 1,2-环氧辛烷 M isabellina 18 97(S) 54 35(R) 2-甲基-1,2-环氧庚烷 A niger 22 99(S) 62 32(R) 反式-1-甲基-1,2-环氧庚烷 C globosum 12 97(1S,2S) 60 78(1R,2S) 反式-1-甲基-1,2-环氧庚烷 M isabellina 11 98(1R,2R) 62 59(1R,2S) 顺式-1-甲基-1,2-环氧庚烷 C globosum 8 97(1R,2S) 59 58(1R,2R) 1995年美国Merck研究人员[57]在80种真菌中筛选到2株能产生几乎光学纯(100% ee,但收率很低,只有14%)(1S,2R)-茚环氧化物(是HIV蛋白酶抑制剂MK639侧链的前体,是一个有价值的手性合成子)的真菌,即Diploida gossipina ATCC 16391和Lasiodiploa theobro- mae MF5215,另两种菌能产生光学纯度相当好(91% ee)的另一种对映异构体(1R,2S)-茚环氧化物,即Gilmaniella humicola MF 5363和Alentaria tenius MF 4352。第一种菌可用于制备规模的拆分。 图5 与Rhodotorula glutinis反应的底物 1997年荷兰Weijers等[58,59]发现Rhodotorula glutinis(一种酵母菌)可以水解一系列芳基取代、烷基取代和脂环族环氧化物,并具有较好的对映选择性,如图5。水解芳基取代环氧化物1, 4, 8,剩余环氧化物ee值大于98%,收率可高达48%;末端、中间、顺式和反式环氧化物水解得到的二醇ee值经常高达98%;可以高对映选择性水解内消旋环氧化物9和10,相应的二醇产物ee值分别可达98%和90%;(-)-柠檬烯环氧化物11的水解具有很高的非对映体选择性,剩余(1S, 2R,4S)-环氧化物,并产生(1R,2R,4S)-二醇产物(收率好,ee>98%);对脂肪族末端1,2-环氧化物,当底物的链长具有6个以上碳原子时,酶活较高,对1,2-环氧庚烷和1,2-环氧己烷都可获得较高的对映选择性,对后者,剩余S-环氧化物和产物R-二醇ee值分别为98%和83%,收率分别为48%和47%,E值可达84,但此菌水解1,2-环氧辛烷时对映选择性相对较低,这促使作者以此化合物作为底物,对187株酵母菌进行了筛选[60],虽然很多菌对此底物有活性,但具有一定对映选择性的菌很少,只有一些担子菌包括Trichosporon、Rhodotorula和Rhodosporidium具有较高的对映选择性,其中Rhodotorula araucariae CBS 6031和Rhodosporidium toruloides CBS 0349这两种菌既具有活性又具有较高的对映选择性(E值分别大于200和100),水解时都是优先水解R-环氧化物,生成R-二醇,作者应用这两种菌进行了制备规模的拆分,把环氧化物的浓度提高500mmol/L,无明显不良影响,反应速率只分别下降了14%和16%。 除以上这些真菌外,Faber等筛选得到的3种真菌[12](见细菌部分),Corynosporium cassiieda [61]和两种暗色真菌Ulocladium atrum CMC 3280及Zopfiella karachiensis CMC 3284[62]中也存在环氧化物水解酶,但对映选择性较低。 真菌环氧化物水解酶一般是组成型酶,可以用普通碳源大规模培养生产。它们具有相对较广的底物范围,对芳香族、取代脂环族和无分支的脂肪族末端1,2-环氧化物具有特别高的对映选择性。同细菌一样,含有环氧化物水解酶的真菌也比五六年前认为的多,这些真菌分别属于Helminthosporum, Fusarium, Aspergillus, Beauveria, Cunning- hamella, Syncephalastrum, Candida, Diploida, Lasiodiploida, Gilmaniella, Alentaria, Pleurotus, Rhodotorula, Trichosporon, Rhodosporidium, Glo-merella, Corynosporium,Ulocladium, Zopfiella, Saccharomyces等。4 结语 目前含有环氧化物水解酶的细菌和真菌的获得仍然是通过从已知菌种中筛选(组成型酶)[1,12,17,54,55,57,60]和从土壤中分离(诱导型酶)[26,29,37,52]。在一些真核生物生物异源物质特别是芳香族化合物的生物降解过程中和一些原核生物烯烃的生物利用过程中,环氧化物及其邻二醇都作为重要的中间体,这揭示出在这些生物中都存在着环氧化物水解酶,有利于对新菌种的发现。我室已从土壤中分离到一株Bacillus ,水解缩水甘油苯基醚时优先R-环氧化物产生R-二醇,并具有较高的对映选择性(E=5),这是到目前为在止对这个底物对映选择性最高的微生物。微生物环氧化物水解酶可通过微生物发酵培养大量获得,可以设想,在不久的将来具有较高对映选择性的微生物环氧化物水解酶必可应用于工业生产上,通过拆分价格较便宜的消旋环氧化物来制备光学纯的环氧化物及邻二醇

大部分同学写的都是综述,因此,就综述进行简单的说明。 综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文, 它是科学文献的一种。 文献综述是反映当前某一领域中某分支学科或重要专题的最新进展、学术见解和建议的。它往往能反映出有关问题的新动态、新趋势、新水平、新原理和新技术等等。 文献综述与“读书报告”、“文献复习”、“研究进展”等有相似的地方,它们都是从某一方面的专题研究论文或报告中归纳出来的。但是,文献综述既不象“读书报告”、“文献复习”那样,单纯把一级文献客观地归纳报告,也不象“研究进展”那样只讲科学进程,其特点是“综”,“综”是要求对文献资料进行综合分析、归纳整理,使材料更精练明确、更有逻辑层次;“述”就是要求对综合整理后的文献进行比较专门的、全面的、深入的、系统的论述。总之,文献综述是作者对某一方面问题的历史背景、前人工作、争论焦点、研究现状和发展前景等内容进行评论的科学性论文。 写文献综述一般经过以下几个阶段:即选题,搜集阅读文献资料、拟定提纲(包括归纳、整理、分析)和成文。 一、选题和搜集阅读文献 按照你们学校的要求,大家应该正确选择文章题目,最好是某一种化学药品的研究进展类进行综述,这样比较简单,大家容易把问题弄清楚,容易通过答辩。千万不要照网上的什么“浅谈”、“论”等抄,主要是这类问题一般是工作几十年的领导谦虚点写的文章,你们弄不懂,根本没有办法答辩。还有就是不要选你们根本就接触不到的东西,如“医院管理”、“互联网”等,也是你们都接触不到,根本就是明显告诉人家你在瞎抄! 文献综述选题范围广,题目可大可小,大到一个领域、一个学科,小到一种疾病、一个方法、一个理论,可根据自己的需要而定,初次撰写文献综述,特别是实习同学所选题目宜小些,这样查阅文献的数量相对较小,撰写时易于归纳整理,否则,题目选得过大,查阅文献花费的时间太多,影响实习,而且归纳整理困难,最后写出的综述大题小作或是文不对题。

微生物环氧化物水解酶的研究与应用新进展 唐燕发 许建和 叶勤 (华东理工大学生物反应器工程国家重点实验室 上海 200237) 手性环氧化物及其开环产物邻二醇能与各种亲核试剂反应,因而在手性化合物的合成过程中被广泛应用,是一种重要的有价值的中间体。近年来很多研究小组都对它们的生产方法进行了研究[1],如烯烃的Katsuki-Sharpless不对称环氧化和不对称二羟基化;烯烃的Jacobsen不对称环氧化。另一方面很多利用生物催化合成这类物质的方法已有报道,如水解酶类(特别是脂肪酶和酯酶), a-卤酸脱卤素酶,乳酸脱氢酶或甘油脱氢酶,单加氧酶,过氧化物酶和卤过氧化物酶。以上各种方法有的对底物有特殊要求,有的对映选择性不高,有的需要氧化还原辅酶如NAD(P)H,这些都限制了它们的应用。不依赖于辅因子的环氧化物水解酶[ECX]可以有效地代替以上各种方法,环氧化物水解酶最初是在哺乳动物肝组织的解毒功能研究中被发现,但由于从哺乳动物中得到的这种酶来源有限,故限制了其大规模应用,但近年来发现在一些微生物如细菌、真菌中也存在环氧化物水解酶,有效地解决了这一问题。本文将综述各类细菌和真菌产生的环氧化物水解酶。 1 环氧化物水解酶作用机理 酶的一个天冬氨酸残基进攻被酶的一个赖氨酸残基部分质子化的环氧化物的一端形成一个共价结合的二元醇单酯-酶中间体[2,3],酶的组氨酸残基[4]从落到酶活性中的一个水分子中夺取一质子从而产生一个羟基,这个羟基进攻二醇-单酯-酶中间体,水解产生二醇,如图1。 图1 环氧化物水解酶的作用机理 图2 环氧化物微生物水解时构型保持和构型反转 水解时有两个不同的途径,如图2。 (1) 羟基进攻取代较少的碳原子,手性中心构型不变(如by Asper- gillus niger)[5]。 (2) 羟基进攻取代较多的碳原子(即手性中心)从而使手性中心构型反转(如by B sulfurescens)[5]。 在两种途径中,进入的羟基都是以反式立体方式进入的,若环氧环的两碳原子都是手性碳,则羟基进攻的任何位置碳原子的构型都将反转。虽然保持构型不变的第一种方式较普遍,但也有一些构型反转的例子已报道[5-7]。 2 细菌产生的环氧化物水解酶 早期美国Illinois大学等小组发现Pseudomonad NRRL 2944[8]、Psedomonas pautida[9]、Bacillus megaterium ATCC 14581[10]中存在环氧化物水解酶,但真正开始对环氧化物水解酶的研究是由奥地利的K Faber研究小组进行的。他们最初在用Rhodococcus NOVO 409的固定化酶水解腈化合物的研究中发现该酶具有未知的能水解环氧化物的活性。对1,1-二取代环氧化物,当R1为甲基,R2为一长碳链时,对映选择性最高,剩余R-环氧化物和水解产物S-二醇ee值分别为72%和40%;对单取代环氧化物,ee值都很低;而内消旋环氧化物则不能作为底物[11],如图3。 图3 Rhodococcus NOVO 409不对称水解1,1-二取代环氧化物 之后他们[12]筛选了43种菌,其中7种显示活性,即4种细菌:Rhodococcus NCIMB 11216, NCIMB11215 和NCIMB 11540及Corynebacterium UPT 9;3种真菌:Diploida gossypina ATCC 10936, Fusarium solani DSM 62416 和Glomerella Cingulata ATCC 10534。其中第一和第四种细菌对2-环氧辛烷有中等活性,都优先水解R型环氧化物形成R-1,2-二羟基辛烷,但对映选择性很低。NCIMB11540水解2-甲基-1,2-环氧庚烷时产生的S-二醇和剩下的R-环氧化物ee值分别为89%和51%,E值为29。NCIMB 11216[13]水解2-甲基-1,2-环氧庚烷,2-甲基-1,2-环氧壬烷和2-甲基-1,2-环氧十一烷时,产物S-二醇ee值分别高达96%、98%和99%,剩下的R-环氧化物ee值亦分别为71%、25%和55%,E值分别为104、126和200,可见两个取代基差别愈大,选择性愈高,当把甲基改为乙基时,对映选择性E值急剧下降,其纯酶[14]表明该酶不需要辅酶,是一个溶解性的寡酶,分子量为35 kDa,等电点为7。催化2-甲基-1,2-环氧庚烷时,最佳温度为30°C,最佳pH为0,这个菌可运用于芳樟醇[15](一些植物和果实的香味物质)的合成中。 另有两种菌Rhodococcus equi IFO 3730和Mycobacterium paraffinicum NCIMB 10420[1]对1,1-二取代环氧化物也显示相似的对映选择性,E值大于200,其中第一个菌可应用于昆虫性信息激素(S)-(-)-Frantalin[16]的合成中,在拆分过程中E=39。 最近又发现另外4种菌,Nocardia H8, Nocardia EH1, Nocardia TB1和Rhodococcus ruber DSM 43338[17]对2-甲基-1,2-环氧庚烷也具有很好的选择性(E>200)。以前的情况是若得到的二醇光学活性高,但转化率总是较低,使收率很低,并且剩下的环氧化物光学活性也很低,然而,两种新菌Nocardia EH1和Nocardia TB1对底物的转化率都达到50%,并且剩下的R-环氧化物和形成的S-二醇ee值都大于99%。在长侧链上引入一个芳香基团(即底物为4-苯基-2-甲基-1,2-环氧丁烷)则Nocardia菌对此底物的选择性急剧降低(EH1, E=12; TB1, E=13)。若酶水解后,再加酸处理,即两步反应在一起连续进行,则得到同一种构型的二醇[18,19],收率都大于90%,ee值都大于99%。从Nocardia EH1中提取的粗酶[20,21]水解顺式2,3-环氧庚烷,得到单一的产物(2R,3R)-2,3-二羟基庚烷,收率为79%,ee值为91%。两种异构体的水解都发生在分子中构型为S的碳原子上,故得到(2R,3R)-二醇这一种产物。此粗酶固定化[22]于DEAE-Cellulose后,酶的对映选择性只有很小的下降,但酶活提高了1倍多(为原来的225%),最佳温度可从35°C提高到45°C,重复反应5次后,酶活仍有55%。纯化后得到的纯酶[23]表明该酶不需要辅酶,是一种寡酶,分子量为34kDa,最佳pH为8~9。 以上所研究的细菌酶都显示出相似的对映选择性,比如它们都优先水解S-2-甲基-1,2-环氧烷烃,Faber等还分离到了另外两种具有相反对映选择性的菌株,即Mycoplana rubra和"Rot" [24],第二种菌在分类学上还没有确定。对1,1-二取代环氧化物都优先水解R型,但对映选择性都不高。 Faber所研究的环氧化物水解酶都属于组成型酶,它们对2-甲基-2-烷基环氧化物等具有分支的末端1,2-环氧化物具有很高的对映选择性,但对于无分支的末端1,2-环氧化物只有很低的对映选择性,并且不水解内消旋环氧化物,而南非Botes等[25]应用Chryseomonas luteola拆分1,2-环氧辛烷,剩余的S-环氧化物和形成的R-二醇ee值分别为98%和86%,这是到目前为止首次报道在细菌中存在的对末端1,2-环氧化物具有很高对映选择性的环氧化物水解酶。 1995年英国Carter 和Leak [26]分离到一株菌Corynebacterium C12, 所产环氧化物水解酶为诱导型酶。Archer等[27]应用此菌拆分1-甲基-1,2-环己烯环氧化物,有很好的对映选择性,得到(1R,2S)环氧化物,(收率30%, ee>99%)和(1S,2S)-1-甲基-1,2-二羟基环己烷(收率42% , 89% ee)。若随后再用酸水解剩下的环氧化物,则两步串级反应就得到单一的(1S,2S)-二醇产物(收率80%, ee>95%)。这种诱导型酶的底物特异性范围较小,只对与诱导物相关的底物有相对较高的活性。分离得到的纯酶[28]表明该酶是一种聚合酶,其亚单位分子量为43140Da。 1989年荷兰Van den Wijingard等[29]从淡水沉淀物富集培养液中分离得到革兰氏阴性菌Pseudomonas AD1,所产环氧化物水解酶也为诱导型酶。纯化[30,31]后表明该酶是一种寡酶,分子量是35kDa,该酶能水解表氯醇、表溴醇、环氧辛烷及苯乙烯环氧化物。基因克隆后在E coli中表达[32]的重组酶水解苯乙烯环氧化物和对氯苯乙烯环氧化物[33]时对映选择性分别为2和2。Rink等[34]研究了其催化机理。除此之外,日本Nakamura等[35,36]发现在Corynebacterium N-1074中存在两种环氧化物水解酶(IIa, IIb)也能降解表氯醇,其中酶IIb具有较高的对映选择性。 1999年荷兰Van Der Werf等报道[37]发现了一类新的产生于Rhodococcus erythropolis DCL 14的环氧化物水解酶。单萜能诱导该菌产酶,该酶是一种寡酶,分子量为17kDa,不需辅酶,在pH=7和50°C时酶活最高。只有柠檬烯-1,2-环氧化物,1-甲基-1,2-环己烯环氧化物,环己烯环氧化物和茚环氧化物可作为其底物。水解1-甲基-1,2-环己烯环氧化物时对映选择性同Corynebacterium C12[27]相反,但两种情况下都得到(1S,2S)-二醇,说明该酶具有不同的催化机理。 从以上的综述可以看出,含有环氧化物水解酶的细菌比五六年前所认为的要普遍的多,这些细菌分别属于Pseudomonas, Rhodococcus, Corynebacterium, Mycobacterium, Nocardia, Mycoplana,“Rot”, Bacillus, Agrobacterium, Xanthobacter及Chryseomonas 等,其中Rhodococcus NCIMB 11216, Nocardia EH1 和Nocardia TB1对2-甲基-2-烷基环氧化物等具有分支的末端1,2-环氧化物具有很高的对映选择性;Chryseomonas luteola对无分支的脂肪族末端1,2-环氧化物具有特别高的对映选择性。底物结构与酶的对映选择性的关系才刚被探讨,只有当底物具有严格的取代方式时,才具有高对映选择性。同单取代环氧化物相比,C-2位的甲基对对映选择性有重要的作用,然而,当甲基变为乙基后就丧失了对映选择性,这表明存在着一个相当严密的活性位点,只有一部分底物能符合它。大多数酶对被测试的底物显示相同程度的对映选择性,甚至对单取代和双取代环氧化物显示相似的对映选择性的变化,这些相似性表明这些酶在进化上是具有联系的。相信随着研究的深入,会有更多的有关这方面的研究报道。组成型酶对1,1-二取代环氧化物具有较高的对映选择性,但比活力都不高;而诱导型酶虽然比活力较高,但仅对有限的底物有活力。盼望在不久的将来可运用基因工程技术来解决这一问题。 3 真菌产生的环氧化物水解酶 虽然早期日本Suzuki等[38]和美国Kolattukudy[39]等发现真菌Helminthosporum sativum和Fusariun solani pis中存在环氧化物水解酶,但真正集中研究真菌环氧化物水解酶是由法国Furstoss等首先进行的。他们发现Aspergillus niger LCP 521能不对称水解香叶醇衍生物,制备Bower's compound[40](一种保幼激素类似物);还可以选择性地水解非对映的8,9-环氧柠檬烯立体异构体,制备Bisabolol的4种天然立体异构体[41]。 1993年Furstoss等[5]报道了Aspergillus niger水解苯乙烯环氧化物剩下S-苯乙烯环氧化物(收率23%, 96% ee),另一种菌Beauveria sulfurescens水解苯乙烯环氧化物具有良好的互补对映选择性,给出R-苯乙烯环氧化物(收率19%, 98% ee),两种菌都产生同样的R-二醇,[18O]标记实验[42]结果表明A niger水解发生于C-2,构型不变,而B sulfurescens水解发生于C-1,构型反转。若在一个反应器中,同时用这两种菌水解苯乙烯环氧化物消旋物,则得到单一的二醇产物R-1-苯基-1,2-二羟基乙烷,收率92%,ee值为89%。在水解一系列取代苯乙烯环氧化物[43](底物结构如图4)时若苄位引入一个甲基如2就降低了A niger的对映选择性,剩余S-环氧化物和R-二醇ee值分别为73%和32%;若在b位有取代如3-7,则都不能作为酶的底物。 图4 与A niger 和 B sulfurescens 反应的底物 B sulfurescens水解a -甲基苯乙烯环氧化物2时对映选择性不高;水解顺式-b -甲基苯乙烯环氧化物3形成的(1R,2R)-二醇在所有转化率下几乎都光学纯,而剩下的(1R,2S)-环氧化物在所有转化率下ee值都很低(20%);b ,b -二甲基苯乙烯环氧化物5不能作为B sulfurescens的底物;水解茚环氧化物6和1,2-环氧四氢奈7后剩余的(1R,2S)- 环氧化物光学纯度很高(ee>98%);水解反式-b -甲基苯乙烯环氧化物4产生的(1R,2R)-环氧化物和(1R,2S)-二醇收率(分别为30%和38%)和ee值(分别为98%和90%)都很好,它是唯一在转化率接近50%时,剩余的环氧化物和二醇产物光学纯度都很高的底物,但反式-环氧化物的对映选择性水解在文献中少有报道。 对一系列对位取代苯乙烯环氧化物[44],A niger都仍优先水解R-环氧化物形成R-二醇,剩余S-环氧化物ee值都大于96%,收率28%~38%。水解对硝基苯乙烯环氧化物时,若随后进行酸水解[45],则得到单一的R-二醇(收率94%, 80% ee),可用于制备b-肾上腺素阻断剂(R)-Nifenalol。酶水解时,若用粗酶[46,47]代替菌丝体,DMSO是抑制影响最小的一种助溶剂,反应后剩下的S-环氧化物ee值可达97%,转化率为47%,对映选择性也很高(E=41),底物浓度可提高到330mmol/L(l-1)而不影响ee值,因此这个方法在制备规模的环氧化物拆分上很有用。B sulfurescens仍显示互补的对映选择性,当取代基是-H, -CH3, -F, -Br时,水解剩余的R-环氧化物ee值都大于96%,除对硝基苯乙烯环氧化物外,水解所形成的二醇仍都具有R构型,给电子基团如p-CH3,使反应速度增加4倍,而吸电子基团不仅降低反应速率还降低对映选择性,这两种现象都显示有酸催化过程存在,并且在过渡态时有碳正离子存在。

  • 索引序列
  • 疫苗参考文献
  • 关于疫苗论文的参考文献
  • 疫苗与人类健康参考文献
  • 疫苗接种文献
  • 疫苗文献综述
  • 返回顶部