首页 > 论文期刊知识库 > 关于纤维材料的论文摘要

关于纤维材料的论文摘要

发布时间:

关于纤维材料的论文摘要

1、 定义:纤维是天然或人工合成的细丝状物质,纺织纤维则是指用来纺织布的纤维。 2、 纺织纤维特点:纺织纤维具有一定的长度、细度、弹性、强力等良好物理性能。还具有较好的化学稳定性,例如:棉花、毛、丝、麻等天然纤维是理想的纺织纤维。 3、 纺织纤维分类:天然纤维和化学纤维。 ①天然纤维包括植物纤维、动物纤维和矿物纤维。 A 植物纤维 如:棉花、麻、果实纤维。 B 动物纤维 如:羊毛、免毛、蚕丝。 C 矿物纤维 如:石棉。 ②化学纤维包括再生纤维、合成纤维和无机纤维。 A 再生纤维 如:黏胶纤维、醋酯纤维。 B 合成纤维 如:锦纶、涤纶、晴纶、氨纶、维纶、丙纶等。 C 无机纤维 如:玻璃纤维、金属纤维等。4、 常见纺织纤维的纺织性能: ① 羊毛:吸湿、弹性、服用性能均好,不耐虫蛀、适酸性和金属结合染料。 ② 蚕丝:吸湿、透气、光泽和服用性能好,适用酸性及直接染料。 ③ 棉花:透气、吸湿、服用性能好、耐虫蛀、适直接还原偶氮、碱性媒介、硫化、活性染料。 ④ 黏胶纤维: 吸湿性、透气性好、颜色鲜艳、原料来源广、成本低,性质接近天然纤维,适用染料同棉花。 ⑤ 涤纶:织物、挺、爽、保形性好、耐磨、尺寸稳定、易洗快干,适用分散染料,重氮分散染料、可溶性还原染料。 ⑥ 锦纶:耐磨性特别好、透气性差、适用酸性染料,散染料。 ⑦ 晴纶:蓬松性好、有皮毛感、适用分散染料,阳离子染料我感觉以纺织纤维的种类为论点来扩展论述会更好

竹纤维的结构性能及其纺织品的生产工艺分析 摘要3-4Abstract4-7序言7-19 开发竹纤维产品的意义7-8 国内外的有关研究8-19第一章 竹纤维概况19-36 竹纤维自然生长与环保特性19 竹纤维的种类19-20 竹纤维的制造过程20-22 1 原生竹纤维20 2 竹浆纤维20-22 竹纤维的结构22-30 1 竹纤维的大分子结构22-26 2 超分子结构26-28 3 宏观形态结构28 4 微细结构28-30 竹纤维的化学成分30 竹纤维的基本性质30-36 1 具有较好的吸湿性、透气性30 2 天然抗菌性30-31 3 除臭作用31 4 防紫外线作用31-32 5 较好的染色均匀性32-33 6 不耐酸碱性33 7 较强的耐热性33 8 可生物降解性33 9 物理机械性能33-36第二章 竹纤维纺织品的开发与应用36-39 纯竹纤维产品36 交织、混纺产品36-38 1 竹纤维与真丝混纺36-37 2 棉、竹纤维混纺37 3 氨纶、竹纤维包芯纱产品37 4 竹纤维与多种纤维的混纺产品37-38 功能性产品38-39 1 远红外竹浆纤维38 2 负氧离子竹纤维38 3 芳香竹纤维38-39第三章 竹浆纤维纺纱工艺研究39-66 竹浆纤维纯纺特细特纱、细特纱的成纱工艺技术研究40-56 1 原料预处理40-41 2 纺纱工艺流程设计41 3 各工序纺纱定量的设定41 4 各工序工艺设计及技术措施41-56 竹浆纤维的混纺性能研究56-62 1 原料选择58 2 纺纱工艺流程58 3 各工序的工艺配置及技术措施58-62 竹/棉混纺氨纶包芯纱的纺制62-64 1 原料性能62-63 2 生产工艺分析63 3 纱疵控制63 4 成纱质量63-64 本章结论64-66第四章 竹浆纤维的织造工艺和产品开发66-72 服装面料的设计与开发66-69 1 色调与花型的设计66 2 纱支的选择66-67 3 密度和紧度的确定67 4 织物组织的设计67 5 织造主要工艺参数设计67-69 家纺产品面料的设计69-72 1 色调与花形的设计69 2 纱线的选择69 3 密度和紧度的确定69 4 织物组织的设计69 5 织造主要工艺参数设计69-72第五章 竹原纤维的纺纱工艺分析72-76 原料预处理72 车间温湿度72-73 工艺流程73 各工序主要工艺参数73-76 1 开清工序73 2 梳理工序73-74 3 并条工序74 4 粗纱工序74 5 细纱工序74-75 6 络筒工序

Bamboo fiber as a new type of green fiber, more and more people's In recent years, the right of bamboo fiber, also known as a hot Natural cross-section of high hollow, are made within the expert said bamboo fiber "breathes" the fiber, also known as "fiber Q" "Takeshiro Cotton" Not only will it ease the demand for natural fibers, but also for the reasonable use of bamboo opens up a new In this paper, bamboo fiber properties of raw materials, spinning process, applications do an objective review and analyze, that the current bamboo fiber study the issue and its application and development Also, several Keywords Translation : renewable fiber spinning process performance

关于纤维材料的论文摘要怎么写

总结 谢谢工程塑料,谢谢合成树脂 谢谢玻璃纤维增强塑料 谢谢玻璃纤维增强塑料罐 是你们让我想到了玻璃纤维增强塑料技术 土豆你个西红柿,番茄你个马铃薯

回答 论文摘要是对论文的内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等,重点是结论,是一篇具有独立性和完整性的短文,根据内容的不同,摘要可分为以下三大类:报道性摘要、指示性摘要和报道指示性摘要。 提问 研究方法指的是什么 回答 “研究方法是指在研究中发现新现象、新事物,或提出新理论、新观点,揭示事物内在规律的工具和手段。论文的研究方法:规范研究法,实证研究法,案例分析法,比较分析法,思维方法,内容分析法,文献分析法,数学方法。” 提问 研究结论又是什么 回答 也就是论文的主体段落,虽然可能看起来没什么,但做起来可能还比论文内容还要麻烦许多。首先,写作要点允许稍微改变和操纵想法和评论,用证据支持每一个陈述。因为这是一篇研究论文,任何评论都不应该直接得到研究中的事实支持。为研究提供一个好的解释,和没有事实的陈述相反,陈述事实而不发表评论,可能你确实想提供一些证据,但要保证论文是独一无二的,需要尽可能的添加评论。不过要防止内容过长而直接使用引号,虽然论文是基于研究,但关键还是由自己提出了想法,除非打算使用的引用是非常有必要的,不然可以试着用自己的话来解释和分析 提问 上面提到的教学方法是什么意思? 回答 升级一下服务吧,以便更好的咨询 更多5条 

关于纤维材料的论文

1 邱雁临纤维素酶的研究和应用前景[J]粮食与饲料科技,2001,30~31 2 刘耘,鄢满秀纤维素酒精发酵的研究进展[J]广州食品工业发酵,1999,15(2):51~54,63 3 戴四发,金光明,王立克,等纤维素酶研究现状及其在畜牧业中的应用[J]安徽技术师范学院学报,2001,45(3):32~38 4 阎伯旭,齐飞,张颖舒,等纤维素酶分子结构和功能研究进展[J]生物化学与生物物理进展,1999,26(3):233~237 5 张鸿雁,陈锡时微生物纤维素酶分子生物学研究进展[J]生物技术,2003,13(3):41~42 6 杨礼富,微生物学通报,2003, 30 (4):9 987 史雅娟,吕永龙,环境科学进展1999, 7 ( 6)3} 378 宋桂经,纤维素科学与技术,广西人学学报:自然科学版) 29(1):73- 769 曲杳波,高培基开展生物质转化为洒精研究实现液态燃料可持续供应}c}发酵工程学科的进展一第一次全国发酵工程学术讨论会北京:中国轻工业出版社,2002, 34一

高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 2GPa,断 裂伸长率为 5%。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 97g/cm , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 5N/tex 以上的强度 和 84N/tex 以上弹性模量, 经热处理后可得到强度不变、 模量达 4N/tex 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 54 56 抗拉强度(GPa) 8 8 拉伸模量(GPa) 180 280 断裂延伸率(%) 5 5 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 56 24 8 280 5 45 12 2 115 0 80 6 58 230 5 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 7GPa。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 58 5 230 10 90 80 0 一 43 0 0 一 一 97 一 一 2 0 115 58 50 45 5 29 8 5 280 40 15 56 6 68 0 5 330 70 50 70 0 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好文中还展望了M5纤维的应用前景前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2]通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3]由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能1高性能纤维M1 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构1 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键因此,其压缩和扭曲性能为目前所有聚合物纤维之最M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5]图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5]图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图2 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能表2和表3所列出的实验结果也证实了这一结论[16,19]如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16]从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示)单斜和三斜的晶胞参数分别为:单斜结晶: a=49 ,b=48 ,c=01 ,=90°,=107°,=90°三斜结晶:a=68 ,b=48 ,c=02 ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a=33 ,b=462 ,c=16 ,=84°,=4°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16]1 M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为0×104~5×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥图7 M5纤维的热处理示意图2 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的因此,热处理温度与热处理时间对M5纤维的模量影响很大4 M5纤维的性能1 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的7Gpa提高到7Gpa,而经过400℃热处理的初生纤维压缩强度由原来的7Gpa提高到1G显然对于PIPD的初生纤维来讲,并非热处理温度越高越好通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为4%;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17]表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/(-3)回潮率/%Twaron-HM5C-HS0PBO6M0纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和6GPa,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11]如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多2 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)PIPD-AS76061PIPD-HT89062PBO-HM17072T09811N08724PVC05515注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值纤维试样放在一块1cm2的线网上试样原始重量在3g-5g之间从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为7kWm-2,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为76sm2kW-从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7]3 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8]4 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为MGNoRTHoLIT[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图研究发现将1g试样材料放在一个开放的测试槽内,以2℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用

化学纤维工业发展史1664年,英国人R胡克在他所著的《微晶图案》一书中,首次提到人类可以模仿食桑蚕吐的丝而用人工方法生产纺织纤维。经过200多年的不断探索,终于在1891年首次用人工的方法工业生产了化学纤维,由此开始了化学纤维工业的历史。 人造纤维的工业化 1884年,法国HB夏尔多内将硝酸纤维素,溶解在乙醇或乙醚中制成粘稠液,再通过细管吹到空气中凝固而成细丝。这是最早的人造纤维——硝酸酯纤维。于1891年在法国贝桑松建厂进行工业生产。由于硝酸酯纤维易燃,生产中使用的溶剂易爆,纤维质量差,未能大量发展。 1899年,由纤维素的铜氨溶液为纺丝液,经化学处理和机械加工制得的铜氨纤维实现工业生产,1905年粘胶纤维问世,因原料(纤维素)来源充分、辅助材料价廉、穿着性能优良,而发展成为人造纤维的最主要品种。其间,1900年英国托珀姆还开发了金属喷丝头、离心式纺丝罐、纺丝泵等,从而完善了粘胶纤维的加工设备。继粘胶纤维之后,又实现了醋酯纤维(1916)、再生蛋白质纤维(1933)等人造纤维的工业生产。1922年,人造纤维产量超过了真丝产量,成为重要的纺织原料。1940年,粘胶纤维的世界产量超过1Mt。40年代以来,人造纤维的发展速度相对减慢,人们主要致力于提高现有纤维的质量。50年代,出现了各种粘胶纤维强力丝。60年代,石油蛋白质纤维稍有发展。 合成纤维的工业化 由于人造纤维原料受自然条件的限制,人们试图以合成聚合物为原料,经过化学和机械加工,制得性能更好的纤维。1939年杜邦公司首先在美国特拉华州的锡福德实现了聚酰胺66纤维(见聚酰胺纤维)的工业化生产。随后德国于1941年、1946年分别进行了聚酰胺 6纤维、聚氯乙烯纤维的工业化生产。50年代以后,聚乙烯醇缩甲醛纤维(见聚乙烯醇纤维)、聚丙烯腈纤维、聚酯纤维等合成纤维品种相继工业化。1953年由英国卜内门化学工业公司R希尔博士主编的《合成纤维》一书出版,总结了合成纤维工业发展初期的研究成果和生产实践,对合成、加工工艺和理论作了全面的阐述,并对以后的发展作了预测。 化学纤维的高速发展 60年代,石油化工的发展,促进了合成纤维工业的发展,合成纤维产量于1962年,超过羊毛产量,1967年又超过人造纤维,在化学纤维中占主导地位,成为仅次于棉的主要纺织原料。70年代初,化学纤维的总产量超过了10Mt。在这期间,人造纤维的产量一直维持在 3Mt左右。70年代合成纤维仍然得到一定发展,1978年突破10Mt,1984年达到9Mt(见图)。在生产技术方面,70年代以后,合成纤维技术开发的重点,从创制新的成纤聚合物,转向通过改性或纺丝加工去改进纤维的性能。通过化学和物理改性,纤维的使用性能,如染色、光热稳定、抗静电、防污、抗燃、抗起球、蓬松、手感、吸湿等都有较大改进。各种仿棉、仿毛、仿丝、仿麻的改性品种逐步开发,并投入生产。生产工艺技术向着连续化、自动化、大型化和高速化的方向发展。逐步采用了聚合、纺丝和后处理连续工艺,熔体纺丝卷绕速度由500~1500m/min提高到3000~4000m/min,从而制得性能优异的部分取向丝。部分取向丝经拉伸和变形制得的变形丝称拉伸变形丝,其工艺是纺丝和拉伸、变形、热定型、卷曲联合在一起,缩短了工序,降低了成本。化学纤维的应用领域不断扩大,开发了一些具有特殊性能的合成纤维品种。1957年,杜邦公司生产了耐腐蚀的聚四氟乙烯纤维。 1967年,又生产了耐高温纤维——聚间苯二甲酰间苯二胺纤维和高强高模量纤维——聚对苯二甲酰对苯二胺纤维(见芳香族聚酰胺纤维)。此外,还有作为增强材料的碳纤维等问世。同时,对现有的化学纤维品种的改性也取得了明显成效,有改变纤维性能的抗静电、吸湿、吸汗、抗起球、耐热、阻燃、高卷曲、高收缩、高蓬松纤维,有改变纤维形状的异形、中空、超细、特殊立体卷曲纤维,还有仿棉、仿毛、仿麻、仿丝类纤维。在人造纤维中也生产了三超、四超粘胶纤维等。此外,用于三废处理的反渗透膜、离子交换纤维以及高分子光导纤维、导电纤维、医用纤维、超细纤维等也纷纷投入使用。

碳纤维材料论文摘要

现面以结构加固用的碳纤维布为例说明碳纤维的性能: 碳纤维布加固技术是利用碳素纤维布和专用结构胶对建筑构件进行加固处理,该技术采用的碳素纤维布强度是普通二级钢的10倍左右。具有强度高、重量轻、耐腐蚀性和耐久性强等优点。厚度仅为2mm左右,基本上不增加构件截面,能保证碳素纤维布与原构件共同工作。 1、碳纤维介绍 碳纤维根据原料及生产方式的不同,主要分为聚丙烯腈(PAN)基碳纤维及沥青基碳纤维。碳纤维产品包括PAN基碳纤维(高强度型)及沥青基碳纤维(高弹性型)。 2、环氧树脂 不同类型的树脂还可以保证其对砼具有良好的渗透作用,例如底涂树脂;以及对碳纤维片与砼结构的粘接作用,例如环氧粘结树脂等。 (1)环氧树脂简介 仅仅依靠碳纤维片本身并不能充分发挥其强大的力学特性及优越的耐久性能,只有通过环氧树脂将碳纤维片粘附于钢筋混凝土结构表面并与之紧密地结合在一起形成整体共同工作,才能达到补强的目的。因此,环氧树脂的性能是重要的关键之一。环氧树脂因类型不同而有不同的性能,适应于各个部位的不同要求。例如底涂树脂对混凝土具有良好的渗透作用,能渗入到混凝土内一定深度;粘贴碳纤维片的环氧树脂易于"透"过碳纤维片,有很强的粘结力。依使用温度的不同,树脂还分为夏用及冬用类树脂。2、碳纤维材料与其他加固材料对比 (1)抗拉强度:碳纤维的抗拉强度约为钢材的10倍。 (2)弹性模量:碳纤维复合材料的拉伸弹性模量高于钢材,但芳纶和玻璃纤维复合材料的拉伸弹性模量则仅为钢材的一半和四分之一。 (3) 疲劳强度:碳纤维和芳纶纤维复合材料的疲劳强度高于高强纲丝。金属材料在交变应力作用下,疲劳极限仅为静荷强度的30%~40%。由于纤维与基体复合可缓和裂纹扩展,以及存在纤维内力再分配的可能性,复合材料的疲劳极限较高,约为静荷强度的70%~80%,并在破坏前有变形显著的征兆。 (4)重量:约为钢材的五分之一。 (5)与碳纤维板的比较:碳纤维片材可以粘贴在各种形状的结构表面,而板材更适用于规则构件表面。此外,由于粘贴板材时底层树脂的用量比片材多、厚度大,与混凝土界面的粘接强度不如片材。

如果脱模方便的话就做个模具·直接卷模具上,厚度还好控制,成像后直接把铁芯拿掉就好了。但是形状复杂的还是这个用充气袋的比较好!

关于纤维材料的论文4000字

高分子材料的制品属於最年轻的材料它不仅遍及各个工业领域,另外,(材料科学)里面的资料,让你找找自己的灵感

化学纤维工业发展史1664年,英国人R胡克在他所著的《微晶图案》一书中,首次提到人类可以模仿食桑蚕吐的丝而用人工方法生产纺织纤维。经过200多年的不断探索,终于在1891年首次用人工的方法工业生产了化学纤维,由此开始了化学纤维工业的历史。 人造纤维的工业化 1884年,法国HB夏尔多内将硝酸纤维素,溶解在乙醇或乙醚中制成粘稠液,再通过细管吹到空气中凝固而成细丝。这是最早的人造纤维——硝酸酯纤维。于1891年在法国贝桑松建厂进行工业生产。由于硝酸酯纤维易燃,生产中使用的溶剂易爆,纤维质量差,未能大量发展。 1899年,由纤维素的铜氨溶液为纺丝液,经化学处理和机械加工制得的铜氨纤维实现工业生产,1905年粘胶纤维问世,因原料(纤维素)来源充分、辅助材料价廉、穿着性能优良,而发展成为人造纤维的最主要品种。其间,1900年英国托珀姆还开发了金属喷丝头、离心式纺丝罐、纺丝泵等,从而完善了粘胶纤维的加工设备。继粘胶纤维之后,又实现了醋酯纤维(1916)、再生蛋白质纤维(1933)等人造纤维的工业生产。1922年,人造纤维产量超过了真丝产量,成为重要的纺织原料。1940年,粘胶纤维的世界产量超过1Mt。40年代以来,人造纤维的发展速度相对减慢,人们主要致力于提高现有纤维的质量。50年代,出现了各种粘胶纤维强力丝。60年代,石油蛋白质纤维稍有发展。 合成纤维的工业化 由于人造纤维原料受自然条件的限制,人们试图以合成聚合物为原料,经过化学和机械加工,制得性能更好的纤维。1939年杜邦公司首先在美国特拉华州的锡福德实现了聚酰胺66纤维(见聚酰胺纤维)的工业化生产。随后德国于1941年、1946年分别进行了聚酰胺 6纤维、聚氯乙烯纤维的工业化生产。50年代以后,聚乙烯醇缩甲醛纤维(见聚乙烯醇纤维)、聚丙烯腈纤维、聚酯纤维等合成纤维品种相继工业化。1953年由英国卜内门化学工业公司R希尔博士主编的《合成纤维》一书出版,总结了合成纤维工业发展初期的研究成果和生产实践,对合成、加工工艺和理论作了全面的阐述,并对以后的发展作了预测。 化学纤维的高速发展 60年代,石油化工的发展,促进了合成纤维工业的发展,合成纤维产量于1962年,超过羊毛产量,1967年又超过人造纤维,在化学纤维中占主导地位,成为仅次于棉的主要纺织原料。70年代初,化学纤维的总产量超过了10Mt。在这期间,人造纤维的产量一直维持在 3Mt左右。70年代合成纤维仍然得到一定发展,1978年突破10Mt,1984年达到9Mt(见图)。在生产技术方面,70年代以后,合成纤维技术开发的重点,从创制新的成纤聚合物,转向通过改性或纺丝加工去改进纤维的性能。通过化学和物理改性,纤维的使用性能,如染色、光热稳定、抗静电、防污、抗燃、抗起球、蓬松、手感、吸湿等都有较大改进。各种仿棉、仿毛、仿丝、仿麻的改性品种逐步开发,并投入生产。生产工艺技术向着连续化、自动化、大型化和高速化的方向发展。逐步采用了聚合、纺丝和后处理连续工艺,熔体纺丝卷绕速度由500~1500m/min提高到3000~4000m/min,从而制得性能优异的部分取向丝。部分取向丝经拉伸和变形制得的变形丝称拉伸变形丝,其工艺是纺丝和拉伸、变形、热定型、卷曲联合在一起,缩短了工序,降低了成本。化学纤维的应用领域不断扩大,开发了一些具有特殊性能的合成纤维品种。1957年,杜邦公司生产了耐腐蚀的聚四氟乙烯纤维。 1967年,又生产了耐高温纤维——聚间苯二甲酰间苯二胺纤维和高强高模量纤维——聚对苯二甲酰对苯二胺纤维(见芳香族聚酰胺纤维)。此外,还有作为增强材料的碳纤维等问世。同时,对现有的化学纤维品种的改性也取得了明显成效,有改变纤维性能的抗静电、吸湿、吸汗、抗起球、耐热、阻燃、高卷曲、高收缩、高蓬松纤维,有改变纤维形状的异形、中空、超细、特殊立体卷曲纤维,还有仿棉、仿毛、仿麻、仿丝类纤维。在人造纤维中也生产了三超、四超粘胶纤维等。此外,用于三废处理的反渗透膜、离子交换纤维以及高分子光导纤维、导电纤维、医用纤维、超细纤维等也纷纷投入使用。

纤维素简介 这个能肯定好,肯定好的

  • 索引序列
  • 关于纤维材料的论文摘要
  • 关于纤维材料的论文摘要怎么写
  • 关于纤维材料的论文
  • 碳纤维材料论文摘要
  • 关于纤维材料的论文4000字
  • 返回顶部