首页 > 论文期刊知识库 > 有机材料期刊

有机材料期刊

发布时间:

有机材料期刊

AIP的新杂志,开放获取的。最近有篇文章投到上面了,版面费死贵,而且感觉审稿人比较严格,提问的问题很细致。但是看了下 ,这个杂志的文章,内容上看起来还行,但是引用率相当差。。。。。。。。都说这个杂志要求高,将来的IF也可能会高!

不知道常不常见呀,但是看过里面的很多文章,叫有机化学研究

《美国化学会志》。化学中的JACS跟物理中的PRL可谓是南慕容,北乔峰。都是各自领域的顶级期刊。《美国化学会志》(Journal of the American Chemical Society,简称JACS)由美国化学协会创办于1897年,至今已经有110多年历史,跟只有它一半年纪的PRL相比,资格老了很多。和跟PRL只有letter文章相比,JACS的文章类型就丰富多了,既有article,也有communication,还有新书综述等等。就跟乔峰精通降龙十八掌,而慕容世家却以武功博学而著称,更号称可以“以彼之道,还施彼身”。JACS在2011年一共发表了3176篇文章,被引用次数达到408307,在所有期刊中位列第四,影响因子为907,由此可见它在化学领域中的地位,也是美国化学协会的旗舰刊物,在业界有极高的声誉。JACS的创刊宗旨是想通过发表化学领域最好的论文,来追踪化学领域的最新前沿,包括重要问题的应用性方法论,新的合成方法,新理论和重要结构和反应的新进展。JACS要求文章有比较强的原创性,这种原创性不一定要是那种非常重大的创新,但是一定要有新意并且可以解决某类问题,否则的话也需要文章的工作量很大。在审稿方面,communication都是比较快的,平均审稿周期是10周,一共是2个审稿人。全文文章的审稿周期要长一些,为3个审稿人。在文章质量方面,整体水平肯定是非常高的,但是貌似也存在一些小人情关系,一些大牛的文章即使没有那么重要也会被接受。但是人情这个事情,不管在哪个期刊,隐隐约约都是会有一些的。最近的JACS上发表的生物类的文章渐渐多起来了,可能也是因为单纯的化学合成跟分子结构的文章比较难出现让人眼前一亮的结果。而生物和跟材料方面与跟化学的交叉部分更容易出一些有意义的结果,所以文章相对来说要容易发表一些。在文章的写作上,JACS喜欢在引言部分干净利索的介绍文章的内容,而不怎么喜欢长篇大论的写法,不知道是不是跟版面数量的限制有没有啥关系。还有一个就是文章的示意图最好弄的好看一点,看起来越有噱头越好。

不错,蛮好的

有机硅材料期刊

有机硅材料按其形态的不同,可分为:硅烷偶联剂(有机硅化学试剂)、硅油(硅脂、硅乳液、硅表面活性剂)、高温硫化硅橡胶、液体硅橡胶、硅树脂、复合物等。 硅烷偶联剂的应用一般有三种方法:一是作为骨架材料的表面处理剂;二是加入到粘接剂中,三是直接加入到高分子材料中。从充分发挥其效能和降低成本的角度出发,前两种方法较好。硅烷偶联剂的应用大致可归纳为三个方面:1、用于玻璃纤维的表面处理,能改善玻璃纤维和树脂的粘合性能,大大提高玻璃纤维增强复合材料的强度、电气、抗水、抗气候等性能,即使在湿态时,它对复合材料机械性能的提高,效果也十分显著。 在玻璃纤维中使用硅烷偶联剂已相当普遍,用于这一方面的硅烷偶联剂约占其消耗总量的50%,其中用得较多的品种是乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷等。2、用于无机填料填充塑料。可预先对填料进行表面处理,也可直接加入树脂中。能改善填料在树脂中的分散性及粘合力,改善工艺性能和提高填充塑料(包括橡胶)的机械、电学和耐气候等性能。3、用作密封剂、粘接剂和涂料的增粘剂,能提高它们的粘接强度、耐水、耐气候等性能。硅烷偶联剂往往可以解决某些材料长期以来无法粘接的难题。 硅油是一种不同聚合度链状结构的聚有机硅氧烷。最常用的硅油是甲基硅油。硅油一般是无色(或淡黄色),无味、无毒、不易挥发的液体。硅油不溶于水、甲醇、二醇和- 乙氧基乙醇,可与苯、二甲醚、甲基乙基酮、四氯化碳或煤油互溶,稍溶于丙酮、二恶烷、乙醇和了醇。它具有很小的蒸汽压、较高的闪点和燃点、较低的凝固点。随着链段数n的不同,分子量增大,粘度也增高, 固此硅油可有各种不同的粘度。硅油按化学结构来分有甲基硅油、乙基硅油、苯基硅油、甲基含氢硅油、甲基苯基硅油、甲基氯苯基硅油、甲基乙氧基硅油、甲基三氟丙基硅油、甲基乙烯基硅油、甲基羟基硅油、乙基含氢硅油、羟基含氢硅油、含氰硅油等;从用途来分,则有阻尼硅油、扩散泵硅油、液压油、绝缘油、热传递油、刹车油等。硅油具有卓越的耐热性、电绝缘性、耐候性、疏水性、生理惰性和较小的表面张力,此外还具有低的粘温系数、较高的抗压缩性)有的品种还具有耐辐射的性能。有机硅乳液 (是硅油的一种形式)主要有硅油织物柔软整理剂;硅油乳液型消泡剂:是有机硅消泡剂中使用面最广、用量最大的一种消泡剂。 1、室温硫化硅橡胶室温硫化硅橡胶(RTV)是六十年代问世的一种新型的有机硅弹性体, 这种橡胶的最显著特点是在室温下无须加热、如压即可就地固化,使用极其方便。因此,一问世就迅成为整个有机硅产品的一个重要组成部分。室温硫化硅橡胶已广泛用作粘合剂、密封剂、防护涂料、灌封和制模材料,在各行各业中都有它的用途。分类室温硫化硅橡胶按其包装方式可分为单组分和双组分室温硫化硅橡胶,按硫化机理又可分为缩合型和加成型。因此,室温硫化硅橡胶按成分、硫化机理和使用工艺不同可分为三大类型,即单组分室温硫化硅橡胶、双组分缩合型室温硫化硅橡胶和双组分加成型室温硫化硅橡胶。这三种系列的室温硫化硅橡胶各有其特点:单组分室温硫化硅橡胶的优点是使用方便,但深部固化速度较困难;双组分室温硫化硅橡胶的优点是固化时不放热,收缩率很小,不膨胀,无内应力,固化可在内部和表面同时进行,可以深部硫化;加成型室温硫化硅橡胶的硫化时间主要决定于温度,因此,利用温度的调节可以控制其硫化速度。单组分室温硫化硅橡胶单组分室温硫化硅橡胶的硫化反应是靠与空气中的水分发生作用而硫化成弹性体。随着链剂的不同,单组分室温硫化硅橡胶可为脱酸型、脱肟型、脱醇型、脱胺型、脱酰胺型和脱酮型等许多品种。单组分室温硫化硅橡胶的硫化时间取决于硫化体系、温度、湿度和硅橡胶层的厚度,提高环境的温度和湿度,都能使硫化过程加快。在典型的环境条件下,一般15~30分钟后,硅橡胶的表面可以没有粘性, 厚度3厘米的胶层在一天之内可以固化。固化的深度和强度在三个星期左右会逐渐得到增强。单组分室温硫化硅橡胶具有优良的电性能和化学惰性,以及耐热、耐自然老化、耐火焰、耐湿、透气等性能。它们在-60~200℃范围内能长期保持弹性。它固化时不吸热、不放热,固化后收缩率小,对材料的粘接性好。因此,主要用作粘合剂和密封剂,其它应用还包括就地成型垫片、防护涂料和嵌缝材料等。许多单组分硅橡胶粘接剂的配方表现出对多种材料如大多数金属、玻璃、陶瓷和混凝上的自动粘接性能。当粘接困难时,可在基材上进底涂来提高粘接强度,底涂可以是具有反应活性的硅烷单体或树脂,当它们在基材上固化后,生成一层改性的适合于有机硅粘接的表面。单组分室温硫化硅橡胶虽然使用方便,但由于它的硫化是依懒大气中的水分,使硫化胶的厚度受到限制,只能用于需要6毫米以下厚度的场合。单组分室温硫化硅橡胶的硫化反应是从表面逐渐往深处进行的,胶层越厚,固化越慢。当深部也要快速固化时, 可采用分层浇灌逐步硫化法,每次可加一些胶料,等硫化后再加料,这样可以减少总的硫化时间。添加氧化镁可加速深层胶的硫化。双组分缩合型室温硫化硅橡胶双组分室温硫化硅橡胶硫化反应不是靠空气中的水分, 而是靠催化剂来进行引发。通常是将胶料与催化剂分别作为一个组分包装。只有当两种组分完全混合在一起时才开始发生固化。双组分缩合型室温硫化硅橡胶的硫化时间主要取决于催化剂的类型、用量以及温度。催化剂用量越多硫化越快, 同时搁置时间越短。在室温下,搁置时间一般为几小时,若要延长胶料的搁置时间,可用冷却的方法。双组分缩合型室温硫化硅椽胶在室温下要达到完全固化需要一天左右的时间,但在150℃的温度下只需要1小时。通过使用促进剂进行协合效应可显著提高其固化速度。双组分室温硫化硅橡胶可在一65~250℃温度范围内长期保持弹性,并具有优良的电气性能和化学稳定性, 能耐水、耐臭氧、耐气候老化,加之用法简单,工艺适用性强,因此,广泛用作灌封和制模材料。各种电子、电器元件用室温硫化硅橡胶涂覆、灌封后,可以起到防潮(防腐、防震等保护作用。可以提高性能和稳定参数。双组分室温硫化硅橡胶特别适宜于做深层灌封材料并具有较快的硫化时间,这一点是优于单组分室温硫化硅橡胶之处。双组分室温硫化硅橡胶硫化后具有优良的防粘性能,加上硫化时收缩率极小,因此,适合于用来制造软模具,用于铸造环氧树脂、聚酯树脂、聚苯乙烯、聚氨酯、乙烯基塑料、石蜡、低熔点合金等的模具。此外,利用双组分室温硫化硅橡胶的高仿真性能可以在文物上复制各种精美的花纹。双组分室温硫化硅橡胶在使用时应注意:首先把胶料和催化剂分别称量,然后按比例混合。混料过程应小心操作以使夹附气体量达到最小。胶料混匀后(颜色均匀),可通过静置或进行减压(真空度700毫米汞柱)除去气泡,待气泡全部排出后,在室温下或在规定温度下放置一定时间即硫化成硅橡胶。双组分加成型室温硫化硅橡胶双组分加成型室温硫化硅橡胶有弹性硅凝胶和硅橡胶之分,前者强度较低,后者强度较高。它们的硫化机理是基于有机硅生胶端基上的乙烯基(或丙烯基)和交链剂分子上的硅氢基发生加成反应(氢硅化反应)来完成的。在该反应中,不放出副产物。由于在交链过程中不放出低分子物,因此加成型室温硫化硅橡胶在硫化过程中不产生收缩。这一类硫化胶无毒、机械强度高、具有卓越的抗水解稳定性(即使在高压蒸汽下)、良好的低压缩形变、低燃烧性、可深度硫化、以及硫化速度可以用温度来控制等优点,因此是目前国内外大力发展的一类硅橡胶。加成型室温硫化硅橡胶包装方式一般是分A、B两种组分进行包装:将催化剂作为一种组分;交链剂作另一种组分。高强度的加成型室温硫化硅橡胶由于线收缩率低、硫化时不放出低分子,因此是制模的优良材料。在机械工业上已广泛用来制模以铸造环氧树脂、聚酯树脂、聚氨酯、聚苯乙烯、乙烯基塑料、石蜡、低熔点合金、混凝上等。利用加成型窒温硫化2、高温硫化硅橡胶高温硫化硅橡胶是高分子量(分子量一般为40~80万)的聚有机硅氧烷(即生胶)加入补强填料和其它各种添加剂,采用有机过氧化物为硫化剂,经加压成型(模压、挤压、压延)或注射成型,并在高温下交链成橡皮。这种橡胶一般简称为硅橡胶。硅橡胶的补强填料是各种类型的白炭黑,它可使硫化胶的强度增加十倍。加入各种添加剂主要是降低胶的成本、改善胶料性能以及赋予硫化胶各种特殊性能如阻燃、导电等。3、硅凝胶这种胶硫化后成为柔软透明的有机硅凝胶,可在- 65~200℃温度范围内长期保持弹性,它具有优良的电气性能和化学稳定性能、耐水、耐臭氧、耐气候老化、憎水、防潮、防震、无腐蚀,且具有生理惰性、无毒、无味、易于灌注、能深部硫化、线收缩率低、操作简单等优点,有机硅凝胶在电子工业上广泛用作电子元器件的防潮、绝缘的涂覆及灌封材料,对电子元件及组合件起防尘、防潮、防震及绝缘保护作用。如采用透明凝胶灌封电子元器件,不但可起到防震防水保护作用,还可以看到元器件并可以用探针检测出元件的故障,进行更换,损坏了的硅凝胶可再次灌封修补。有机硅凝胶由于纯度高,使用方便,又有一定的弹性,因此是一种理想的晶体管及集成电路的内涂覆材料,可提高半导体器件的合格率及可靠性;有机硅凝胶也可用作光学仪器的弹性粘接剂。在医疗上有机硅凝胶可以用来作为植人体内的器官如人工乳房等,以及用来修补已损坏的器官等4、泡沫硅橡胶泡沫硅橡胶硫化前呈液态,适宜作灌封材料。泡沫硅橡胶由于具有较高的热稳定性,良好的绝热性、绝缘性、防潮性、抗震性,尤其是在高频下的抗震性好,因此是一种理想的轻质封装材料。美国道康宁公司研制成阻燃型室温硫化泡沫硅橡胶DC3-6548。这种泡沫硅橡胶主要用于电线电缆通过处(例如屋顶、墙壁、楼房等处孔洞)的防火密封,阻燃性能非常好,其极限氧指数达39 (绝大多数塑料的极限氧指数只有20),使用寿命长达50年。这种阻燃室温硫化泡沫硅橡胶已广泛用于核电站、电子计算机中心、海上采油装置等环境条件苛刻,或防火要求特别高的场所。 硅树脂是高度交联的网状结构的聚有机硅氧烷,通常是用甲基三氯硅烷、二甲基二氯硅烷、苯基三氯硅烷、二苯基二氯硅烷或甲基苯基二氯硅烷的各种混合物,在有机溶剂如甲苯存在下,在较低温度下加水分解,得到酸性水解物。水解的初始产物是环状的、线型的和交联聚合物的混合物,通常还含有相当多的羟基。水解物经水洗除去酸,中性的初缩聚体于空气中热氧化或在催化剂存在下进一步缩聚,最后形成高度交联的立体网络结构。硅树脂是一种热固性的塑料,它最突出的性能之一是优异的热氧化稳定性。250℃加热24小时后,硅树脂失重仅为2~8%。硅树脂另一突出的性能是优异的电绝缘性能,它在宽的温度和频率范围内均能保持其良好的绝缘性能。鉴于上述特性,有机硅树脂主要作为绝缘漆(包括清漆、瓷漆、色漆、浸渍漆等)浸渍 H级电机及变压器线圈, 以及用来浸渍玻璃布、玻布丝及石棉布后制成电机套管、电器绝缘绕组等。用有机硅绝缘漆粘结云母可制得大面积云母片绝缘材料,用作高压电机的主绝缘。此外,硅树脂还可用作耐热、耐候的防腐涂料,金属保护涂料,建筑工程防水防潮涂料,脱模剂,粘合剂以及二次加工成有机硅塑料,用于电子、电气和国防工业上,作为半导体封装材料和电子、电器零部件的绝缘材料等。硅树脂按其主要用途和交联方式大致可分为有机硅绝缘漆、有机硅涂料、有机硅塑料和有机硅粘合剂等几大类。

已发送到你的邮箱。

有机材料期刊有哪些

国内的《有机化学》,上海有机所的,不收审稿费。挺快的听说。

TH机械、仪表工业类核心期刊表1机械工程学报2中国机械工程3磨擦学学报4机械科学与技术5机械设计6仪器仪表学报7计算机集成制造系统-CIMS8润滑与密封9机械传动10机床与液压11工程机械12机械设计与研究13起重运输机械14轴承15流体机械16光学精密工程17制造业自动化18机械设计与制造19水泵技术20液压与气动21制造技术与机床22仪表技术与传感器23压力容器TB一般工业技术类核心期刊表1复合材料学报2无机材料学报3材料研究学报4功能材料5材料导报6材料科学与工程7摩擦学学报8材料工程9工程设计(改名为:工程设计学报)10真空科学与技术学报11振动工程学报12应用声学13计算力学学报14玻璃钢/复合材料15材料科学与工艺16振动与冲击17真空18噪声与振动控制19低温工程20计量学报21功能材料与器件学报22声学技术23制冷学报24低温与超导25包装工程26工程图学学报

《美国化学会志》。化学中的JACS跟物理中的PRL可谓是南慕容,北乔峰。都是各自领域的顶级期刊。《美国化学会志》(Journal of the American Chemical Society,简称JACS)由美国化学协会创办于1897年,至今已经有110多年历史,跟只有它一半年纪的PRL相比,资格老了很多。和跟PRL只有letter文章相比,JACS的文章类型就丰富多了,既有article,也有communication,还有新书综述等等。就跟乔峰精通降龙十八掌,而慕容世家却以武功博学而著称,更号称可以“以彼之道,还施彼身”。JACS在2011年一共发表了3176篇文章,被引用次数达到408307,在所有期刊中位列第四,影响因子为907,由此可见它在化学领域中的地位,也是美国化学协会的旗舰刊物,在业界有极高的声誉。JACS的创刊宗旨是想通过发表化学领域最好的论文,来追踪化学领域的最新前沿,包括重要问题的应用性方法论,新的合成方法,新理论和重要结构和反应的新进展。JACS要求文章有比较强的原创性,这种原创性不一定要是那种非常重大的创新,但是一定要有新意并且可以解决某类问题,否则的话也需要文章的工作量很大。在审稿方面,communication都是比较快的,平均审稿周期是10周,一共是2个审稿人。全文文章的审稿周期要长一些,为3个审稿人。在文章质量方面,整体水平肯定是非常高的,但是貌似也存在一些小人情关系,一些大牛的文章即使没有那么重要也会被接受。但是人情这个事情,不管在哪个期刊,隐隐约约都是会有一些的。最近的JACS上发表的生物类的文章渐渐多起来了,可能也是因为单纯的化学合成跟分子结构的文章比较难出现让人眼前一亮的结果。而生物和跟材料方面与跟化学的交叉部分更容易出一些有意义的结果,所以文章相对来说要容易发表一些。在文章的写作上,JACS喜欢在引言部分干净利索的介绍文章的内容,而不怎么喜欢长篇大论的写法,不知道是不是跟版面数量的限制有没有啥关系。还有一个就是文章的示意图最好弄的好看一点,看起来越有噱头越好。

化学学报,科学通报等

有机材料期刊官网

引言:提起“纳米”这个词,可能很多人都听说过,但什么是纳米,什么是纳米材料,可能很多人并不一定清楚,本文主要对纳米及纳米材料的研究现状和发展前景做了简介,相信随着科学技术的发展,会有越来越多的纳米材料走进人们的生活,为人类造福。 纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就象毫米、微米一样,纳米是一个尺度概念,并没有物理内涵。当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。 研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。 1研究形状和趋势 纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。 纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米cu材料,硬度比粗晶cu提高5倍;晶粒为7urn的pd,屈服应力比粗晶pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望, 根据纳米材料发展趋势以及它在对世纪高技术发展所占有的重要地位,世界发达国家的政府都在部署本来10~15年有关纳米科技研究规划。美国国家基金委员会(nsf)1998年把纳米功能材料的合成加工和应用作为重要基础研究项目向全国科技界招标;美国darpa(国家先进技术研究部)的几个计划里也把纳米科技作为重要研究对象;日本近年来制定了各种计划用于纳米科技的研究,例如 ogala计划、erato计划和量子功能器件的基本原理和器件利用的研究计划,1997年,纳米科技投资28亿美元;德国科研技术部帮助联邦政府制定了1995年到2010年15年发展纳米科技的计划;英国政府出巨资资助纳米科技的研究;1997年西欧投资2亿美元。据1999年7月8日《自然》最新报道,纳米材料应用潜力引起美国白宫的注意;美国总统克林顿亲自过问纳米材料和纳米技术的研究,决定加大投资,今后3年经费资助从5亿美元增 加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。 2国际动态和发展战略 1999年7月8日《自然》(400卷)发布重要消息 题为“美国政府计划加大投资支持纳米技术的兴 起”。在这篇文章里,报道了美国政府在3年内对纳米技术研究经费投入加倍,从5亿美元增加到5亿美元。克林顿总统明年2月将向国会提交支持纳米技术研究的议案请国会批准。为了加速美国纳米材料和技术的研究,白宫采取了临时紧急措施,把原97亿美元的资助强度提高到5亿美元。《美国商业周刊》8月19日报道,美国政府决定把纳米技术研究列人21世纪前10年前11个关键领域之一,《美国商业周刊》在掌握21世纪可能取得重要突破的3个领域中就包括了纳米技术领域(其它两个为生命科学和生物技术,从外星球获得能源)。美国白宫之所以在20世纪即将结束的关键时刻突然对纳米材料和技术如此重视,其原因有两个方面:一是德科学技术部1996年对2010年纳米技术的市场做了预测,估计能达到14400亿美元,美国试图在这样一个诱人的市场中占有相当大的份额。美国基础研究的负责人威廉姆斯说:纳米技术本来的应用远远超过计算机工业。美国白宫战略规划办公室还认为纳米材料是纳米技术最为重要的组成部分。在《自然》的报道中还特别提到美国已在纳米结构组装体系和高比表面纳米颗粒制备与合成方面领导世界的潮流,在纳米功能涂层设计改性及纳米材料在生物技术中的应用与欧共体并列世界第一,纳米尺寸度的元器件和纳米固体也要与日本分庭抗礼。1999年7月,美国加尼福尼亚大学洛杉矾分校与惠普公司合作研制成功100urn芯片,美国明尼苏达大学和普林斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。 最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。 3国内研究进展 我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介入,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。 目前,我国有60多个研究小组,有600多人从事纳米材料的基础和应用研究,其中,承担国家重大基础研究项目的和纳米材料研究工作开展比较早的单位有:中国科学院上海硅酸盐研究所、南京大学。中国科学院固体物理研究所、金属研究所、物理研究所、中国科技大学、中国科学院化学研究所、清华大学,还有吉林大学、东北大学、西安交通大学、天津大学、青岛化工学院、华东师范大学,华东理工大学、浙江大学、中科院大连化学物理研究所、长春应用化学 研究所、长春物理研究所、感光化学研究所等也相继开展了纳米材料的基础研究和应用研究。我国纳米材料基础研究在过去10年取得了令人瞩目的重要研究成果。已采用了多种物理、化学方法制备金属与合金(晶态、非晶态及纳米微晶)氧化物、氮化物、碳化物等化合物纳米粉体,建立了相应的设备,做到纳米微粒的尺寸可控,并制成了纳米薄膜和块材。在纳米材料的表征、团聚体的起因和消除、表面吸附和脱附、纳米复合微粒和粉体的制取等各个方面都有所创新,取得了重大的进展,成功地研制出致密度高、形状复杂、性能优越的纳米陶瓷;在世界上首次发现纳米氧化铝晶粒在拉伸疲劳中应力集中区出现超塑性形变;在颗粒膜的巨磁电阻效应、磁光效应和自旋波共振等方面做出了创新性的成果;在国际上首次发现纳米类钙钛矿化合物微粒的磁嫡变超过金属gd;设计和制备了纳米复合氧化物新体系,它们的中红外波段吸收率可达 92%,在红外保暖纤维得到了应用;发展了非晶完全晶化制备纳米合金的新方法;发现全致密纳米合金中的反常hall-petch效应。 近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。一是大面积定向碳管阵列合成:利用化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,孔径基本一致,约20urn,长度约100pm,纳米管阵列面积达到 3mm 3mm。其定向排列程度高,碳纳米管之间间距为100pm。这种大面积定向纳米碳管阵列,在平板显示的场发射阴极等方面有着重要应用前景。这方面的文章发表在1996年的美国《科学》杂志上。二是超长纳米碳管制备:首次大批量地制备出长度为2~3mm的超长定向碳纳米管列阵。这种超长碳纳米管比现有碳纳米管的长度提高1~2个数量级。该项成果已发表于1998年8月出版的英国《自然》杂志上。英国《金融时报》以“碳纳米管进入长的阶段”为题介绍了有关长纳米管的工作。三是氮化嫁纳米棒制备:首次利用碳纳米管作模板成功地制备出直径为3~40urn、长度达微米量级的发蓝光氮化像一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一。四是硅衬底上碳纳米管阵列研制成功,推进碳纳米管在场发射平面和纳米器件方面的应用。五是制备成功一维纳米丝和纳米电缆,该成果研究论文在瑞典召开的1998年第四届国际纳米会议宣读后,许多外国科学家给予高度评价。六是用苯热法制备纳米氮化像微晶;发现了非水溶剂热合成技术,首次在300℃左右制成粒度达30urn的氮化锌微晶。还用苯合成制备氮化铬(crn)、磷化钴(cop)和硫化锑(sbs)纳米微晶,论文发表在1997年的《科学》杂志上。七是用催化热解法制成纳米金刚石;在高压釜中用中温(70℃)催化热解法使四氯化碳和钠反应制备出金刚石纳米粉,论文发表在1998年的《科学》杂志上。美国《化学与工程新闻》杂志还发表题为“稻草变黄金---从四氯化碳(cc14)制成金刚石”一文,予以高度评价。 我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,中科院上海硅酸盐研究所、南京大学、中科院固体物理所、中科院金属所、物理所、中国科技大学、清华大学和中科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才做出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的中坚力量。 在过去10年,我国已建立了多种物理和化学方法制备纳米材料,研制了气体蒸发、磁控溅射、激光诱导cvd、等离子加热气相合成等10多台制备纳米材料的装置,发展了化学共沉淀、溶胶一凝胶、微乳液水热、非水溶剂合成和超临界液相合成制备包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料的方法,研制了性能优良的多种纳米复合材料。近年来,根据国际纳米材料研究的发展趋势,建立和发展了制备纳米结构(如纳米有序阵列体系、介孔组装体系、mcm-41等)组装体系的多种方法,特别是自组装与分子自组装、模板合成、碳热还原、液滴外延生长、介孔内延生长等也积累了丰富的经验,已成功地制备出多种准一维纳米材料和纳米组装体系。这些方法为进一步研究纳米结构和准一纳米材料的物性,推进它们在纳米结构器件的应用奠定了良好的基础。纳米材料和纳米结构的评价手段基本齐全,达到了国际90年代末的先进水平。 综上所述,“八五”期间我国在纳米材料研究上获得了一批创新性的成果,形成了一支高水平的科研队伍,基础研究在国际上占有一席之地,应用开发研究也出现了新局面,为我国纳米材料研究的继续发展奠定了基础。10年来,我国科技工作者在国内外学术刊物上共发表纳米材料和纳米结构的论文2400多篇,在国际上排名第五位,其中纳米碳管和纳米团簇在1998年度欧洲文献情报交流会上德国马普学会固体所一篇研究报告中报道中国科技工作者发表论文已超过德国,在国际排名第三位,在国际历次召开的有关纳米材料和纳米结构的国际会议上,我国纳米材料科技工作者共做邀请报告24次。到目前为止,纳米材料研究获得国家自然科学三等奖1项,国家发明奖2项;院部级自然科学一、二等奖3项,发明一等奖3项,科技进步特等奖1项;申请专利 79项,其中发明专利占50%,已正式授权的发明专利6项,已实现成果转化的发明专利6项。 最近几年,我国纳米科技工作者在国际上发表了一些有影响的学术论文,引起了国际同行的关注和称赞。在《自然》和《科学》杂志上发表有关纳米材料和纳米结构制备方面的论文6篇,影响因子在6以上的学术论文(phys.rev.lett,j.ain.chem.soc .)近20篇,影响因子在3以上的31篇,被sci和ei收录的文章占整个发表论文的 59%。 1998年 6月在瑞典斯特哥尔摩召开的国际第四届纳米材料会议上,对中国纳米材料研究给予了很高评价,指出这几年来中国在纳米材料制备方面取得了激动人心的成果,在大会总结中选择了8个纳米材料研究式作取得了比较好的国家在闭幕式上进行介绍,中国是在美国、日本、德国、瑞典之后进行了大会发言。 4 纳米产业发展趋势 (1)信息产业中的纳米技术:信息产业不仅在国外,在我国也占有举足轻重的地位。2000年,中国的信息产业创造了gdp5800亿人民币。纳米技术在信息产业中应用主要表现在3个方面:①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。因为不管通讯、集成还是显示器件,都要原器件,美国已经着手研制,现在有了单电子器件、隧穿电子器件、自旋电子器件,这种器件已经在实验室研制成功,而且可能在2001年进入市场。②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些原器件转为商品进入市场也还要10年时间,所以,中国要超前15年到20年对这些方面进行研究。③网络通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振器、微电容、微电极等方面,我国的研究水平不落后,在安徽省就有。④压敏电阻、非线性电阻等,可添加氧化锌纳米材料改性。 (2)环境产业中的纳米技术:纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。要净化环境,必须用纳米技术。我们现在已经制备成功了一种对甲醛、氮氧化物、一氧化碳能够降解的设备,可使空气中的大于10ppm的有害气体降低到1ppm,该设备已进入实用化生产阶段;利用多孔小球组合光催化纳米材料,已成功用于污水中有机物的降解,对苯酚等其它传统技术难以降解的有机污染物,有很好的降解效果。近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。 (3)能源环保中的纳米技术:合理利用传统能源和开发新能源是我国当前和今后的一项重要任务。在合理利用传统能源方面,现在主要是净化剂、助燃剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。在开发新能源方面国外进展较快,就是把非可燃气体变成可燃气体。现在国际上主要研发能量转化材料,我国也在做,它包括将太阳能转化成电能、热能转化为电能、化学能转化为电能等。 (4)纳米生物医药:这是我国进入wto以后一个最有潜力的领域。目前,国际医药行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医药就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法。在提取精华后,用一种很少的骨架,比如人体可吸收的糖、淀粉,使其高效缓释和靶向药物。对传统药物的改进,采用纳米技术可以提高一个档次。 (5)纳米新材料:虽然纳米新材料不是最终产品,但是很重要。据美国测算,到21世纪30年代,汽车上40%钢铁和金属材料要被轻质高强材料所代替,这样可以节省汽油40%,减少co2,排放40%,就这一项,每年就可给美国创造社会效益1000亿美元。此外,还有各种功能材料,玻璃透明度好但份量重,用纳米改进它,使它变轻,使这种材料不仅有力学性能,而且还具有其他功能,还有光的变色、贮光,反射各种紫外线、红外线,光的吸收、贮藏等功能。 (6)纳米技术对传统产业改造:对于中国来说,当前是纳米技术切入传统产业、将纳米技术和各个领域技术相结合的最好机遇。首先是家电、轻工、电子行业。合肥美菱集团从1996开始研制纳米冰箱,可折叠的pvc磁性冰箱门封不发霉,用的是抗菌涂料,里面的果盘都采用纳米材料,发展轻工、电子和家用电器可以带动涂料、材料、电子原器件等行业发展;其次是纺织。人造纤维是化纤和纺织行业发展的趋势,中国纺织要在进入wto后能占据有利地位,现在就必须全方位应用纳米技术、纳米材料。去年关于保温被、保温衣的电视宣传,提到应用了纳米技术,特殊功能的有防静电的、阻燃的等等,把纳米的导电材料组装到里面,可以在11万伏的高压下,把人体屏蔽,在这一方面,纺织行业应用纳米技术形势看好;第三是电力工业。利用纳米技术改造20万伏和11万伏的变压输电瓷瓶,可以全方位提高11万伏的瓷瓶耐电冲击的性能,而且釉不结霜,其它综合性能都很好;第四是建材工业中的油漆和涂料,包括各种陶瓷的釉料、油墨,纳米技术的介入,可以使产品性能升级。 1999年8月20日《美国商业周刊》在展望21世纪可能有突破性进展的领域时,对生命科学和生物技术、纳米科学和纳米技术及从外星球上索取能源进行了预测和评价,并指出这是人类跨入21世纪面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为下一世纪先进的国家。挑战严峻,机遇难得,我们必须加倍重视纳米科技的研究,注意纳米技术与其它领域的交叉,加速知识创新和技术创新,为21世纪中国经济的腾飞奠定雄厚的基础。 编者按:激动人心的纳米时代已经到来,人们的生活即刻将发生巨大的变化,然而,我们也要清醒地看到,市场上真正成熟的纳米材料并不是很多。中科院院士白春礼院士认为,“真正意义的纳米时代还没有到来,我们正在充满信心地迎接纳米时代的到来。” 白春礼说,“人类进入纳米科技时代的重要标志是纳米器件的研制水平和应用程度。”纳米科技发展到今天,距离纳米时代的到来还有多远呢,白春礼说,“纳米研究目前还有许多基础研究在进行中,在纳米尺度上还有大量原理性问题尚待研究,纳米科技现在的发展水平大概相当于计算机技术在20世纪50年代的发展水平,人类最终进入纳米时代还需要30到50年的时间,50年后纳米科技有可能像今天计算机技术一样普及。” 对于纳米科技,科学的态度是积极参与,脚踏实地地推动这一前沿科技的健康发展,既不需要商业炒作,也不需要科学炒作。

有机材料:又称有机高分子材料,一般是由C,H,O等元素组成的相对分子质量一般达到10W以上的(当然还有其他元素啦,像S之类的)一般来说,具有溶解性(分为溶解和溶胀两种)、热塑性(高温变成粘粘的那种)和热固性(貌似是说低温又恢复固体状态)、强度特性(比由碳或钢等材料制成的一般强度是其一倍左右)、电绝缘性(就素绝缘啦)一般的有机材料有橡胶,纤维素,蛋白质,淀粉,高聚合物等不过坏处也有,就素难在自然条件下分解无机材料:就素就素像Fe,C,等元素单独或混合其他物质制成的材料啦,总体上米有有机材料那么好(除特殊用途外),但很容易回收和再利用

国内的《有机化学》,上海有机所的,不收审稿费。挺快的听说。

有机材料期刊排名

1、复合材料学报。2、无机材料学报。3、功能材料。4、材料导报。5、材料研究学报。

AIChE Journal (American Institute of Chemical Engineers)CES (chemical engineering science)IECR (Industrial & Engineering Chemistry Research)

  • 索引序列
  • 有机材料期刊
  • 有机硅材料期刊
  • 有机材料期刊有哪些
  • 有机材料期刊官网
  • 有机材料期刊排名
  • 返回顶部