首页 > 论文期刊知识库 > 建筑结构抗震设计论文

建筑结构抗震设计论文

发布时间:

建筑结构抗震设计论文

摘要:结合实际工程,笔者就建设工程全过程质量管理这一话题,谈了自己的一些看法和建议,在具体工程实际操作中,具有一定的指导价值,可供参考。/html/Constructs/20091126/html

工程结构的抗震能力是社会抗震防灾系统的第一道防线。建筑物的倒塌是造成地震灾害的主要原因。建筑物在地震中的破坏程度,大体决定了震害的严重程度。因为是论文所以我只截取了一段,全部可到九品论文网查看。 因此,建筑结构的抗震能力,特别是抗地震倒塌能力,是地震区抗震防灾能力的最重要组成部分。文中运用系统科学的思想,介绍了提高建筑结构整体抗震能力的设计思想,结合汶川地震中建筑震害的教训,重点针对建筑结构抗地震倒塌能力,讨论了建筑结构抗震设计中应注意的问题和改进建议。  研究结果表明:建筑结构系统的安全储备分为基本安全储备、整体安全储备与意外安全储备三个层次。结构的整体抗震能力和抗地震倒塌能力取决于整体安全储备和意外安全储备,意外安全储备不足是汶川地震建筑结构震害严重的主要原因。结构系统的意外安全储备主要来自其鲁棒性、整体稳定性和整体牢固性。目前对于结构系统的整体安全储备和意外安全储备的研究很不够,结构设计规范的相关规定和要求也有待进一步完善。

建筑结构抗震论文

1高层建筑动力特性和地震反应数值分析2从集集地震看建筑物震害与地震动参数的关系 3用ANSYS分析某高层建筑的非线性地震反应5《高层建筑混凝土结构技术规程》(JGJ322002)若干问题解说对《高层建筑混凝土结构技术规程》(JGJ322002)理解和应用中的若干问题进行了解说和讨论,主要包括房屋适用高度、风荷载和地震作用、结构平面和竖向规则性、构件抗震等级、剪力墙边缘构件、带转换层结构等56个问题,供有关教学、结构设计和施工图审查等专业人员参考。4建筑结构减隔震及结构控制技术的现状和发展 一、传统的抗震方法   地震是由于地面的运动,使地面上原来处于静止的建筑物受到动力作用而产生强迫振动,因而在结构中产生内力、变形和位移。经过简化后模型的动力学分析,即一次次的震害分析进行修正、补充,得到一些建筑物在地震作用下的反应机理及破坏形式,提出了一些建筑物抗争的计算方法及设计的基本原则。这些在实际应用中得到了很不错的效果。1、概念设计的一些原则1)总体屈服机制。例如强柱弱梁。2)刚度与延性均衡。砌体结构中为提高延性设构造柱与圈梁,形成一个较弱的框架。3)强度均匀。结构在平面和立面上的承载力均匀。4)多道抗震防线。5)强节点设计。6)避开场地卓越周期区。2、在此基础上作结构地震反应分析,其分析方法主要有:①地震荷载法;②振型分解法;③动力时程分析法。现在还发展了push-over法、能力谱等方法。抗震设防目标也从单一的、基于生命安全的性态标准发展到基于各种性态,强调“个性”设计的设计理念。3、传统抗震方法的缺点与不足  传统抗震结构主要利用主体结构构件屈服后的塑性变形能和滞回耗能来耗散地震能量,这使得这些区域的耗能性能变得特别重要,而一旦由于某些因素导致这些区域产生问题,将严重影响到结构的抗震性能,产生严重破坏,由于破坏部位位于主要结构构件,其修复是很难进行的。  由于传统抗震结构是以防止结构倒塌为目标,其抗震性能在很大程度上依赖于结构(构件)的延性,以往的许多研究也注重于提高结构(构件)的延性方面,却忽略了对结构损伤程度的控制。4、传统的抗震方法在提高结构性能方面有较多困难。  传统抗震结构的耗能能力主要依赖于主体结构的延性。既要求主体结构强度高,又要求延性好,很难实现。1)框架结构  许多研究者推荐强柱弱梁体系作为最合适的抗震框架体系。该体系可将地震输入能量分散在结构的许多部位耗散掉,甚至可以控制塑性铰出现的顺序与部位,延性对于使建筑物在罕遇地震中保存下来固然很重要,但这些预期的塑性铰区在中等程度的地震中也会产生,延性也同时应被看作是一种“破坏”。后期修复费用也很高。2)剪力墙结构  剪力墙结构体系具有抗侧刚度大,在水平地震作用下的侧移小,其总的水平地震作用也大等特点,常见的震害一般来说为墙面的斜向裂缝或是底部楼层的水平施工缝发生水平错动,当底部屈服后,剪力墙的抗侧作用就很小,且剪力墙的耗能也基本集中与底部塑性铰区域,上部墙体对抵御强震无显著作用。而且剪力墙要承担一定的竖向荷载,因此底部的破坏也十分难修复。3)框架-剪力墙结构  从抗震概念设计来说,框架-剪力墙结构具有了多道抗震防线。有框架和墙体组成的抗震结构中,框架的刚度小,承担的地震作用力小,而弹性极限变形值和延性却较小。整个结构在地震作用下,墙体很快超过自身的较小弹性极限变形,出现裂缝,水平承载力下降,此时框架尚未充分发挥自身的水平抗力;墙体开裂后,框架承担的地震力增大,同时由于结构刚度的变化,地震作用效应也发生了变化。但无论是剪力墙还是框架,都是主体结构的一部分,损伤坏后的修复工作都是比较困难的,而且花费也不小。二、减振、隔震和振动控制的现状   鉴于上述传统抗震方法的缺点与不足,并在全部了解地震引起结构震动的全过程。由震源产生地震动,通过传播途径传递到结构上,从而引起结构的震动反应。通过在不同阶段采取震动方法控制措施,就成为不同的积极抗震方法。大致包括以下四点:  ①震源→消震  消震是通过减弱震源震动强度达到减小结构震动的方法,由于地震源难以确定,且其规模宏大,目前还没有有效可行的措施将震源强度减弱到预定的水平。  ②传播途径→隔震  隔震是通过某种装置将地震与结构隔开,其作用是减弱和改变地震动时结构作用的强度和方式,以此达到减少结构震动的目的。隔震方法主要有基底隔震和悬挂隔震两种。  ③结构→被动减震  被动减震是通过采取一定的措施或附加子结构吸收和消耗地震传递给主结构的能量,达到减小结构震动的目的。被动减震方法有耗能减震,冲击减震和吸震减震。  ④反应→主动减震  主动减震是根据结构的地震反应,通过地震系统地执行机,主动给结构施加控制力,达到减小结构震动的目的。  结构隔震、减震方法的研究和应用开始于60年代,70年代以来发展速度很快。这种积极的结构抗震方法与传统的消极抗震方法相比,有以下优点:①能大大减小结构所收得的地震作用,从而可减低结构造价,提高结构抗争的可靠度。此外,隔震方法能够较准确地控制传到结构上的最大地震力,从而克服了设计结构构件时难以准确确定载荷的困难。②能大大减小结构在地震作用下的变形,保证非结构构件不受地震破坏,从而减少震后维修费用,对于典型的现代化建筑,非结构构件(如玻璃幕墙,饰面,公用设施等)的造价甚至占整个房屋总造价的80%以上。③隔震、减震装置即使震后产生较大的永久变形或损坏,其复位、更换、维修结构构件方便、经济。④用于高技术精密加工设备、核工业设备等的结构物,只能用隔震、减震的方法满足严格的抗震要求。(一)、隔震1、基地隔震1)夹层橡胶垫隔震装置  用于隔震装置的橡胶垫块,可用天然橡胶,也可用人工合成橡胶(氯丁胶)。为提高垫块的垂直承载力和竖向刚度,橡胶垫块一般由橡胶片与薄铜板叠合而成。2)铅芯橡胶支座  这样就使支座具有足够的初始刚度,在风荷来和制动力等常见载荷作用下保持具有足够的刚度,以满足正常使用要求,但强地震发生时,装置柔性滑动,体系进入消能状态。3)滚珠(或滚轴)隔震  有自复位能力的;有加铜拉杆风稳定装置;横向油压千斤顶位的。另外,还有加消能装置的,消能装置有软消能杆剪,铅挤压消能器,油阻尼器,光阻尼器等。4)悬挂基础隔震5)摇摆支座隔震  同原理还有踏步式隔震制作,用于细高的结构物,如烟囟、桥墩、柜体筒体建筑物等。6)滑动支座隔震  上部结构与基础之间设置相互滑动的滑板。风载、制动力或小震时,静摩擦力使结构固结于基础上;大震时;结构水平滑动,减小地震作用,并以其摩擦阻尼消耗地震能源。  为控制滑板间的摩擦力,使之满足隔震要求;在滑板间可以加设滑层。目前常用的滑层有:涂层滑层(聚氯乙烯)、粉粒滑层(铅粒、沙粒、滑石、石墨等)。2、悬挂隔震  悬挂隔震使将结构的全部或大部分质量悬挂起来,是地震动传递不到主体质量上,产生较小的惯性力,从而起到隔震作用。悬挂结构在桥梁、火电厂锅炉架等方面有大量应用。著名的43层香港汇丰银行新大楼采用的就是悬挂结构。  悬挂结构悬杆受力较大,须采用高强钢,而高强钢忍性差,在竖向地震作用时易拉断。为减小竖向地震作用,可在吊点设减震弹簧,并配合使用阻尼器。3、隔震应用的注意事项:1)隔震实际上会使原有结构的固有周期演唱,在下列情况下不宜采用隔震设计:  ①基础土层不稳定;  ②下部结构变性大,原有结构的固有周期比较长;  ③位于软弱场地,延长周期可能引起共振;  ④制作中出现负反力;2)隔震装置必须具有足够的初始刚度,这样能满足正常使用要求。当强震发生时,装置柔性消震,体系进入消能状态。3)隔震装置能使结构在基础面上柔性滑动,在地震来时这样必然会产生很大的位移。为减低结构的位移反应,隔震装置应提供较大的阻尼,具有较大的消能能力。4、隔震体系的优点:1)明显有效地减轻结构的地震反应。从振动台地震模拟试验结果及美国,日本建造的隔整结构在地震中的强震记录得知,隔振体系的结构加速度反应只相当于传统结构(基础固定)加速度反应的1/3——1/10。这种减震效果是一般传统抗震结构所望尘莫及的。从而能非常有效地保护结构物或内部设备在强地震冲击下免遭任何毁坏。2)确保安全。在地面剧烈震动时,上部结构仍能处于正常的弹性工作状态。这既适用于一般民用建筑结构,确保居民在强地震中的绝对安全,也适用于某些重要结构物和重要设备。3)减低房屋造价。从汕头,广州,西昌等地建造隔震房屋得知,多层隔震房屋比传统多层隔震房屋节省房屋土建造价:7度区节省3——6%,8度区节省8——14%,9度区节省15——20%。并且安全度大大提高。4)抗震措施简单明了。抗震涉及的对象从考虑整个结构物的复杂的不明确的抗震措施转变为只考虑隔震装置,简单明了。结构物本身与一般非地震区的做法无疑,设计施工大大简化。5)震后修复方便:地震后,只对隔震装置进行必要的检查更换。而无需考虑建筑结构物本身的修复,地震后可很快恢复正产生活或生产,这带来极明显的社会效益和经济效益。(二)被动减震1、耗能减震1)结构消能减震体系的特点:  结构消能减震体系是把结构的某些非承重构件(如支撑剪力墙等)设计成消能杆剪,或在结构物的某些部位(节点或连接)装设阻尼器,在风荷载轻微地震时,这些消能杆件或阻尼器仍处于刚弹性状态,结构物仍具有足够的侧向刚度以满足正常使用要求,在强地震发生时,随着结构受力和变形的增大,这些消能杆件和阻尼器,率先进入非弹性变形状态,产生较大阻尼,大连消耗输入结构的地震能量,从而使主体结构避免进入明显的非弹性状态并迅速衰减结构的地震反应,从而保护主体结构在强地震中免遭损失。与传统的结构抗震体系相比较,它有如下的优越性:  ①传统的结构抗震体系是把结构的主要承重构件(梁、柱、节点)作为消能构件,地震中受损坏的是这些承重构件,甚至导致房屋倒塌。而消能减震体系则是以非承重构件作为消能构件或另设阻尼器,他们的损坏过程是保护主体结构的过程,所以是安全可靠的。  ②震后易于修复或更换,是建筑结构物迅速恢复使用。  ③可利用结构的抗侧力构件(支撑、剪力墙等)作为消能杆件,无需专设。  ④有效地衰减结构的地震反应。  由于上述的优越性,消能减震体系被广泛用于高层建筑的抗震,高耸构筑物(塔、架等)的抗震或抗风,单层工业厂房排架纵向抗震,管线系统减震保护等。2)结构消能减震体系的设计和工程应用:消能减震体系按其消能装置的不同,可分为二类:  ①消能构件减震体系:  利用结构的非承重构件作为消能装置的结构减震体系。常用的消能构件有:  消能支撑:耗能交叉支撑,摩擦耗能支撑,耗能偏心支撑,耗能隔撑。一般支撑杆件大都用软钢制作,取材容易,屈服点适当,延性好,故有较高的消能减震性能。构件大都采用非弹性“弯曲”变形的消能减震性能,具有较高抵抗周疲劳破坏的能力。  消能剪力墙:竖缝消能剪力强、横缝消能剪力墙、周边缝消能剪力墙等。其混凝土的接缝面可以填充粘性材料能或用钢筋联接。强地震时,出现非弹性的缝面错动,产生阻尼,消耗地震能量。  ②阻尼器消能减震体系:在结构的某些部位(支撑杆件、剪力墙与边框联结处、梁柱节点处等)装设阻尼器(软钢阻尼器、挤压铅阻尼器、摩擦阻尼器、粘弹性阻尼器等)。在强地震时,结构物这些部位发生较大变形,从而使装设在该部位的阻尼器有效的发挥消能作用。2.冲击减震  冲击减震是依靠附加活动质量与结构之间的非完全弹性碰撞达到交换动量和耗散动能进而实现减小结构地震反应的技术。  实际应用时,一般在结构的某部位(常在顶部)悬挂摆锤。结构震动时,摆锤撞击结构使结构震动衰减。另外,摆锤还兼有吸振器的功能。3.吸振减震  吸震减震是通过附加子结构,使结构的震动发生位移,即使结构的振动能量在原结构与子结构之间重新分配,从而达到减小结构震动的目的。  目前,工程结构应用的吸震减震装置主要有:调谐质量阻尼器(简称TMD),调液(柱)阻尼器(简称TLD或TLCD)悬吊质量摆阻尼器(简称SMPD)和质量放大器。(三)主动控制减震主动控制减震体系是利用外部能源,在结构受地震激励震动过程中,瞬时改变结构动力特性和施加控制力,以衰减结构地震反应的自动控制体系。  主动控制体系中的控制器有三部分组成。  ①传感器。安装在结构上,测量结构所受外部激励或结构反应或两者,将测量的信息传递给控制器的处理器。  ②处理器。处理测得的信息,根据给定的控制算法,计算所需的控制力,并将控制信息传递给控制器中的致动器。  ③致动器。根据控制信息,有外部供给能源产生所需的控制力,从而减小结构振动反映。  根据控制器的工作方式,主动控制体系分三种类型:  ①开环控制。根据外部激励信息调整控制力。  ②闭环控制。根据结构反应信息调整控制力。  ③开笔环控制。根据外部激励和结构反应的综合信息调整控制力。  主动控制是振动控制的现代方法,他已广泛用于电子工程,机械工程,航空航天工程等领域,但在土木工程中应用该方法进行结构主动控制尚是一个新兴研究方向。  结构震动主动控制装置  ①主动拉索。主动拉索控制系统由连接在结构上的预应力钢拉索构成,在拉索上安装一套液压伺服机系统。  ②主动调频质量阻尼器。是在TMD的基础上增加主动控制力而构成的减震器。  ③气体脉冲发生器。这是一种通过喷管释放高压气体产生脉冲动力,以减弱结构振动反应的装置。(四)半主动控制和混合控制1、半主动控制  半主动控制兼有被动控制和主动控制的优点。它具备主动控制的效果又只需很小的电能通过调节和改变结构的性能减小地震反应,因此比较适合于改善工程结构的抗震设防。1)变阻尼半主动控制  对变阻尼半主动控制的研究一度非常活跃,其目的在于寻找比定阻尼系统更好的减震效果,但事实上人们早已知道,阻尼的减振效果是有条件的。但单自由度体系基座受到简谐运动激励时,阻尼愈大,结构和相对运动(位移、速度和加速度)不断减少;对绝对运动则不然,当干扰频率与自振频率的比值时,增大阻尼反而会使绝对位移、速度和加速度反应增大。在地震作用下也可能出现类似的情况。  这说明对中、短周期的结构,当设计地震动的主要周期较短时,不必要采用半主动变阻尼系统。但是对于长周期结构,采用半主动变阻尼控制方法与采用上限阻尼时相比可以明显地减小绝对加速度反应,对相对反应也无不利影响。看来只有当需要同时减小长周期结构的相对位移反应和绝对加速度反应时才有必要采用变阻尼半主动控制。  常见的变阻尼半主动控制有变孔径油阻尼器、电流变阻尼器、磁流变阻尼器、变摩擦可控阻尼器、调谐质量可控阻尼器。2) 变刚度半主动控制系统(AVS)  日本鹿岛公司在他们的大型振动台控制楼上采用了AVS系统以减小中震和大震中的反应。在此系统中,应用液压元件改变刚性支撑和大梁的连接条件,随时调节层间刚度,避免共振。  变刚度和变阻尼系统应属于变结构控制的范畴,其理论基础在自动控制领域中已有深入地研究。在变刚度半制动控制系统中结构的层间水平刚度可以在其最大值和最小值之间跳跃或随意调节。当强震地面运动的主要频率不在被控结构自振频率的可能的变化范围以内时,对系统将产生什么样的影响则是值得研究的问题。2、混合控制  将主动控制与被动控制结合起来应用或采用其它复合控制方式通常称为混合控制,其最常用的形式是用作动器拖动调谐质量阻尼器(HMS)。  主动控制、半主动控制和混合控制由于都需要实时观测结构反应并进行实时分析和反馈控制,系统极为复杂,在推广应用方面受制于经济和技术条件。相比之下以增加结构阻尼、避免共振的被动控制技术则更适合在众多的实际工程中应用。三、今后的发展趋势   传统的依赖结构延性的抗震措施是以一定的损伤为代价减小地震反应,应用见证效能技术则可以减小结构本身的损伤,对各类结构基本上能使用,其减震效果对地面运动特性依赖性较小,耗资也不是很大,因此是可以广泛使用的方法。值得注意的是增大阻尼在减小结构相对位移反应和变形的过程中有时会使结构的绝对速度和加速度增大,从而对内部设备和人员带来某些不利影响。  基础隔震对在短周期内地面运动影响下的中短周期结构而言,其减震效果比消能技术更好,但对地面运动输入特性比较敏感,不能完全消除共振的危险性。半主动控制和混合控制方法可以满足不同的设防要求,对地面运动和结构本身不确定性的地适应能力更强,可以提高结构在地震作用下的安全性,引入智能元件以后,效果会更好,因此是值得重视的新领域。此外尚应在不同学科和专业之间开展合作和交叉研究,开发使用的装置、机构和配套技术,尽快形成新的产业,以支持新技术的推广应用。结构振动控制的研究和应用需要讲传统的建造技术与高新技术相结合,使结构的安全保障系统成为智能结构的重要组成部分,为人类营造一个更加安全舒适的工作和生活环境。参考文献[1]周福霖,高层建筑结构减震控制优化设计新体系[2]周锡元,阎维明,杨润林,建筑结构的隔震、减振和振动控制,建筑结构学报,4[3]谢礼立,马玉宏,现代抗震设计理论的发展过程,国际地震动态,10[4]李宏男,霍林生,结构被动减震与隔震技术研究现状,工程力学增刊,2001[5]赵鸿铁等,耗能减震控制的研究、应用与发展,西安建筑科技大学学报,3[6]周云等,耗能减震技术研究与应用发展,世界地震工程,2[7]周云等,耗能减震技术研究及应用的新进展,地震工程与工程振动,6[8]王亚勇,工程抗震展望——寄语2000年,工程抗震,3[9]张文芳,建筑结构TMD振动控制及其新体系减震研究,太原理工大学学报,1[10]杨光,日本阪神地震灾害的一些调查统计数据,华南地震,3[11]罗奇峰等,中国近4年结构抗震进展介绍,地震学报,11[12]邹立华等,组合隔震结构的振动控制研究,振动与冲击,2 还有一些,有pdf格式的,还有文档的,粘不下,如果你觉得对你有用的话,给我你的邮箱,我发给你

1、工程概况   在该工程的设计过程中,针对该工程平面凹口较深,平面较为狭长及高宽比较大等结构特点,在结构布置、分析计算和构造措施等方面做了一些有效的处理,使整体设计满足规范要求,且经济实用。以下谈谈本人在设计中的一点体会。   该工程地下一层、地上二十八层,总建筑面积:69m2 ,其中地上建筑面积:88m2,建筑物室外地坪至主体结构檐口的高度为:4m。地下室建筑面积:81m2,地下室层高50m:裙房三层。一层层高4m:二、三层层高为5m。主楼四至二十八层,每层层高0m。该楼层四层以上平面南侧凹口深6m,占凹口方向楼板长900m的2%,另还有两处凹口分别占凹口方向楼板长的8%和9%,高宽比为6。   2、地基及基础   1 地基土层结构及特征   据本次勘探揭露,拟建场勘察深度内岩土体可分为l0层:①层冲填土、②层耕填土、③层细砂、④层中砂、⑤层粗砂、⑥层砾砂、⑦层强风化泥质粉砂岩、⑧层中风化泥质粉砂岩。   2 地下水埋藏条件及砼腐蚀性评价   勘察场区内赋存有上层滞水和潜水。   据场地水质分析报告结果:拟建场地下潜水对混凝土结构、钢筋混凝土结构中钢筋无腐蚀性,对钢结构具弱腐蚀性。   3 地基方案与基础选型分析评价   根据以上场地地基岩土层条件和拟建建筑物点,经过充分的技术经济分析比较,决定采用直径分别为Ф800、Ф1000、Ф1200的钢筋混凝土钻孔灌注桩,混凝土强度等级为C30,以⑧层中风化泥质粉砂岩做桩端持力层。桩长为22~29m左右,Ф800的单桩承载力设计值为4200KN;Ф1000的单桩承载力设计值为6000KN;Ф1200的单桩承载力设计值为7900KN。因南昌地区中风化泥质粉砂岩中均有多层且无规律的软弱夹层,桩端进持力层取5d。根据最后静荷载试验结果来看,Ф1000的单桩竖向抗压极限承载力为13500KN,极限状态下桩顶累计沉降量为9mm,质量和经济效果均较好。本工程主楼带地下室、地下室层高5m,底板掺混凝土膨胀剂,桩基承台为梁式承台,因为上部结构为剪力墙,荷载分布较为均匀,因而梁板截面高度不需过大,承台梁高lO00mm,地下室底板除核心筒部分(1500mm)外,其余均为350mm,砼标号为C30;为抵抗混凝土收缩、徐变及加强基础的整体性,地下室底板采用双层双向满布配筋Ф14@120。地下室外围墙厚300mm,内部剪力墙厚250mm,地下室顶板作为上部结构的嵌固部位,板厚为200mm,并采用双层双向Ф 12@150满布配筋。   3、上部结构设计与计算   根据《建筑抗震设防类标准》(GB50223—2008)本工程为丙类建筑,结构的地震作用按设防烈度6度计算,采用全现浇钢筋混凝土剪力墙结构体系,剪力墙抗震等级为三级,框架抗震等级为三级。结构的阻尼比为05,水平地震影响系数最大值为04,基本风压为55KN/m2,地面粗糙度为B类,结构体型为4。地震力按X、Y两个方向计算,同时考虑扭转耦联,竖向力按模拟施工加荷方式1计算,风荷载按X、Y两个方向计算,恒、活荷载分开计算,周期折减系数为9,计算取21个振型。连梁刚度的折减系数为7,考虑抹灰粉刷层重量后,混凝土的重度为27KN/m2,地震力的分项系数为3,风荷载分项系数为4,恒荷载分项系数为2,活荷载分项系数为4。墙元细分中,壳元最大控制边长为0m。   该建筑平面有多处凹口,平面较为狭长,再加上楼梯问和电梯间开洞,采用SATWE进行分析。计算结构显示,结构在地震和风荷载作用下位移均在规范要求的范围内,但以扭转振动为主的第三振型周期T3 与侧向振动为主的第一振型周期T1之比为756;以扭转振动为主的第三振型周期T3和以侧向振动为主的第二振型周期T2 之比为865,并且第一振型和第二振型的扭转振动成分偏大,这表明结构扭转效应显著,对建筑结构不利。同时计算结果还表明,凹口周围、楼房东西两端及平面宽度变化处梁、墙等构件内力值较大。在设计时,考虑应将楼、电梯间处核心筒及5-12、5-14轴上剪力墙加强且连成整体,形成受力的主要部位,承担大部分的剪力和弯矩,实际电算时加强或削弱此部分刚度(主要为增加或减短墙长)对位移影响较大,较增加墙厚等方法有效的多。实际电算和分析相同,但由于建筑功能限制,5-G轴上,5-9轴和5-1l轴间;5-15轴和5-17轴间、还有5-l2轴和5-14轴间无法布置剪力墙,只有设置宽扁梁,加强刚度,实际效果较好,剪力墙成筒布置,在筒与筒之间将板厚加厚为120mm,实际电算时所有凹口处按未设连梁电算,在位移等满足要求规范要求,施工图则按所有凹口处增设250×400连梁处理,更加安全。在平面宽度变化处,剪力墙本工程剪力墙布置既满足了规范要求,经济效益又较好。为消除混凝土收缩、温差可能引起的裂缝,将屋面板配置了双层双向钢筋。   除平面不规则以外,该房屋的平均高宽比为6也较大,因而验算结构底部外围构件在侧向力最不利组合情况下的轴压比,并控制轴压比在6内;验算桩基在侧向力最不利组合下的抗压能力以及桩身是否会出现拉力,并通过调整桩的布置,使其符合要求。   在抗震构造措施方面,建筑物底部四层为剪力墙底部加强区;对墙体布置有变化处增设暗柱,加强其配筋。采取增大两端剪力墙的长度、调整其它部位剪力墙长度等措施,使用SATWE软件分析计算可知,凹口处及其周围剪力墙和连梁,以及建筑物两端转角、山墙处剪力墙和连梁基本上没有出现超筋现象,构件的截面和配筋设计符合规范要求。周期T1~T3 及其比值、结构位移值、基底剪重比、地震力倾覆弯矩等均在规范要求范围内,具体结果如下:   上述计算分析结果表明,T3 /T1远小于9,结构平面布置扭转影响较小;楼层最大层间位移角满足规范要求,且由Y向风荷载控制;底层剪重比接近于8%,结构刚度适合,受力体系经济合理,抗震性能良好。   4、结语   本工程在省抗震设计施工图检查中,经过省抗震专家评审,得到了专家的认可。专家肯定了我们对于本工程结构体系的选择、抗震设计参数的取值及对于平面不规则采取的构造加强措施。

这周心情依旧很沉重。不断看到关于灾区灾情的报道,不断见到死亡人数的上升。 同时,谴责什邡、绵竹市领导的失职,谴责没良心的万科老总王石,谴责那些说风凉话的无知青年。 不过,也要看到希望所在。我们的人民子弟兵,我们的热心的志愿者,我们的医疗救援人员,都在尽自己最大的努力。当然,还有全部中华儿女,甚至是全世界人民。我们还有他们,都在关切,同情这一场空前的大灾难。 有些个人或团体应当特别拿出来赞扬和钦佩: 温总理。第一时间赶赴灾区,亲自指挥甚至亲自下手救援。他甚至在指挥时受伤了,但他竟然还拒绝包扎,继续指挥。他深入灾区第一线,深情与灾民,甚至与被困者交流。他,体恤人民的好总理!!! 空15军。也就是最开始4500个写好遗书去空投的那些勇敢无惧的英雄。世界上没有任何军队会训练山地空投,更不会训练在恶劣天气空投。但是,为了国家安全,为了灾区人民,他们义无返顾地创造了历史。探路好,救援好,转移核武器也罢,这种勇气已经是值得大抒特抒的了。 行乞老人徐超。一个衣衫褴褛的老头,靠行乞为生的老头,却在平凡中干着最平凡的事。他,捐出了自己一生的积蓄;更令人感动的是,他为了不给收集善款的人添麻烦,竟然还事先去银行将他积攒下来的一元元硬币换成了百元大钞。最平凡的人,感动着每一个中华儿女。 加多宝集团(王老吉)。1亿也许对于一个房地产商算不上什么,可是对于一个国营饮料商来说,这是1年辛辛苦苦得来的利润。可是,加多宝集团好不犹豫地把这一年的利润奉献给了灾区的重建工作。 天津荣程联合钢铁集团(张祥青)。这不是什么鼎鼎大名的大企业,可是它捐助额是全中国第一的。董事长张祥青,是唐山大地震的孤儿,他深知灾区人民的苦难。因此,他拿出了惊人的全集团资产的5%,作为32年前的受灾者,回馈了当时帮助他的社会。这,是真正的知恩图报。这,是真正的创业报国。 沙特国王。6000万美圆,比其他所有国家的捐助总和还要多。这份心意,中国人民必定会心存感激! 其实还有好多好多,特别是还有好多好多灾区的感人事迹,在这就无法一一列举了。爱,在大家的心中。 汶川,永远不会孤独。

抗震结构设计论文

作者:王社良 主编 ISBN:10位[7562926417] 13位[9787562926412]出版社:武汉理工大学出版社出版日期:2007-12-1定价:¥00 元 本书是结合我国最新的《建筑抗震设计规范》(GB50011—2001)编写的抗震结构设计教材。内容包括地震与地震动的基本知识,场地、地基和基础的抗震设计,结构地基反应分析与抗震验算,多、高层钢筋混凝土和钢结构房屋、砌体结构房屋、钢筋混凝土和钢结构单层厂房等的抗震设计,以及隔震与消能减震房屋的设计。书中附有计算例题、各章提要及小结、思考题和习题。本书可供大专院校土木工程专业学生及教师的教学使用,亦可供从事建筑结构抗震设计、科研和施工技术人员参考。 王社良,男,1957年生,汉族,陕西省西安市人,工学博士,西安建筑科技大学特聘教授,教学名师,师德标兵,博士生导师,土木工程学院副院长,主要从事混凝土结构基本理论、高层建筑结构抗震与控制、工程结构健康诊断与处理、智能材料结构系统在土木工程中的应用等方面的教学和研究工作,负责《抗震结构设计》校级、省级精品课程建设。先后主持和参加国家973科研项目1项、国家自然科学基金重点项目1项、国家自然科学基金面上项目5项及省部级科研项目20余项,获省部级科技进步二、三等奖3项,厅局级科技进步一等奖9项,出版专著和教材12部,在国内外学术刊物上发表科研论文130余篇,其中50余篇被SCI、EI和ISTP收录。通讯地址:西安建筑科技大学土木工程学院,邮编:710055 1 绪论本章提要1 地震与地震动1 地震及其成因2 地震波3 地震强度4 地震区划与地震影响5 常用术语2 地震活动性1 世界地震活动性2 我国地震活动性3 近期世界地震活动性3 地震震害1 概述2 工程地质条件对震害的影响4 结构的抗震设防1 抗震设防的目标2 建筑结构抗震设计方法3 抗震设计的基本要求本章小结思考题2 场地、地基和基础 本章提要1 场地1 场地土及场地覆盖层厚度2 场地类别2 天然地基与基础的抗震验算1 不进行天然地基及基础抗震验算的建筑2 天然地基在地震作用下的抗震承载力验算3 液化土与软土地基1 地基土的液化2 液化的判别3 可液化地基的抗震措施4 软土地基的抗震措施4 桩基的抗震设计1 可不进行桩基抗震验算的条件2 桩基的抗震设计本章小结思考题3 结构地震反应分析与抗震验算本章提要1 概述2 单自由度弹性体系的地震反应分析1 计算简图2 运动方程3 自由振动4 强迫振动3 单自由度弹性体系的水平地震作用及其反应谱1 水平地震作用的基本公式2 地震反应谱3 标准反应谱4 设计反应谱4 多自由度弹性体系地震反应分析的振型分解法1 计算简图2 运动方程3 自由振动4 振型分解法5 多自由度体系的水平地震作用1 振型分解反应谱法2 底部剪力法6 结构的地震扭转效应1 刚心与质心2 单层偏心结构的振动3 多层偏心结构的振动4 偏心结构的地震作用7 地基与结构的相互作用1 地基与结构的相互作用对结构地震反应的影响2 考虑地基结构相互作用的抗震设计8 竖向地震作用1 高耸结构和高层建筑2 屋盖结构3 其他结构9 结构地震反应的时程分析法1 概述2 恢复力特性曲线3 结构的计算模型4 地震波的选用5 地震反应的数值分析法10 建筑结构抗震验算1 结构抗震承载力验算2 结构的抗震变形验算本章小结思考题习题4 建筑抗震概念设计 本章提要1 场地选择1 避开抗震危险地段2 选择有利于抗震的场地2 建筑的平立面布置1 建筑平面布置2 建筑立面布置3 房屋的高度4 房屋的高宽比5 防震缝的合理设置3 结构选型与结构布置1 结构选型2 结构布置的一般原则4 多道抗震防线1 多道抗震防线的必要性2 第一道防线的构件选择3 利用赘余构件增多抗震防线5 刚度、承载力和延性的匹配刚度与承载力2 刚度与延性3 结构不同部位的延性要求4 改善构件延性的途径6 确保结构的整体性1 结构应具有连续性2 构件间的可靠连接7 非结构部件处理1 考虑填充墙的影响2 外墙板的连接本章小结思考题5 多层及高层钢筋混凝土房屋抗震设计 本章提要1 概述2 抗震设计的一般要求1 结构体系选择2 结构布置3 抗震等级3 框架内力与位移计算1 水平地震作用计算2 水平地震作用下框架内力的计算3 竖向荷载作用下框架内力计算4 内力组合5 框架结构位移验算4 钢筋混凝土框架结构构件设计1 框架梁截面设计2 框架柱截面设计3 框架节点抗震设计5 框架结构设计例题本章小结思考题6 多层砌体结构房屋的抗震设计本章提要1 概述2 结构方案与结构布置3 多层砌体房屋抗震计算1 计算简图2 地震作用3 楼层地震剪力在墙体中的分配4 墙体抗震承载力验算4 多层砌体结构房屋的抗震构造措施1 多层砖房构造措施2 多层砌块结构房屋的抗震构造措施3 多层砌体结构房屋抗震设计例题5 底部框架一抗震墙房屋的抗震设计要点1 结构方案与结构布置2 底部框架一抗震墙房屋的抗震设计要点3 底部框架一抗震墙房屋的抗震构造措施6 内框架房屋的抗震设计要点1 结构方案与结构布置2 内框架砖房的抗震设计要点3 内框架砖房的抗震构造措施本章小结思考题7 高层及多层钢结构房屋的抗震设计本章提要1 概述2 高层钢结构房屋抗震设计1 高层钢结构的体系与布置2 高层钢结构的抗震计算3 钢构件的抗震设计与构造措施4 钢结构节点的抗震设计与构件措施3 多层钢结构厂房抗震设计1 多层钢结构房屋的结构体系与布置2 多层钢结构厂房的抗震计算3 多层钢结构厂房的抗震构造措施本章小结思考题8 单层钢筋混凝土柱厂房的抗震设计 本章提要1 概述 1 横向地震作用下厂房主体结构的震害2 向地震作用下厂房主体结构的震害2 结构布置的一般原则1 体型与抗震缝2 屋盖体系3 窗架4 柱5 围护墙体3 单层厂房的横向抗震计算1 计算简图和重力荷载代表值的计算2 横向自振周期计算3 横向自振周期的调整4 排架地震作用的计算5 窗架的横向水平地震作用6 排架内力分析及组合7 截面抗震验算8 厂房横向抗震验算的其他问题4 单层厂房的纵向抗震计算1 修正刚度法2 拟能量法3 纵向柱列的刚度4 柱间支撑的抗震验算5 厂房纵向抗震计算的其他问题5 单层钢筋混凝土柱厂房构造措施1 无檩屋盖构件钓连接与支撑布置2 有檩屋盖构件的连接与支撑布置3 屋架4 桂5 柱间支撑6 连接节点7 围护墙体本章小结思考题习题9 隔震与耗能减震房屋设计本章提要1 概述2 隔震结构设计1 结构隔震的原理与隔震结构的特点2 隔震系统的组成与类型3 隔震结构的设计要求4 隔震结构的抗震计算5 隔震结构的构造措施3 耗能减震结构设计1 结构耗能减震原理与耗能减震结构特点2 耗能减震装置的类型与性能3 耗能减震结构的设计要求4 耗能减震结构体系的抗震计算分析5 耗能减震结构的连接与构造本章小结思考题10 工程结构防灾减灾 本章提要1 灾害概述1O.1 灾害的含义2 灾害的类型3 灾害的特征4 中国的灾害5 灾害的分级6 减灾系统工程7 防灾减灾对策与措施8 防灾减灾工程学发展简况2 地表变形灾害及防治1 地表变形2 地表变形的常见原因3 地表变形对建筑物的影响4 建筑物抗地表变形措施3 火灾1 火灾与燃烧2 燃烧种类及产物3 火灾分类及灭火原理4 建筑防火设计5 结构抗火设计4 爆炸灾害1 爆炸基础知识2 快速加载下材料性能3 建筑设计中的防爆设计4 结构设计中的防爆设计本章小结思考题附录1 中国地震烈度表附录2 我国主要城镇抗震设防烈度、设计基本地震加速度和设计地震分组附录3 建筑耐火等级、建筑构件耐火极限和燃烧性能参考文献

1、工程概况   在该工程的设计过程中,针对该工程平面凹口较深,平面较为狭长及高宽比较大等结构特点,在结构布置、分析计算和构造措施等方面做了一些有效的处理,使整体设计满足规范要求,且经济实用。以下谈谈本人在设计中的一点体会。   该工程地下一层、地上二十八层,总建筑面积:69m2 ,其中地上建筑面积:88m2,建筑物室外地坪至主体结构檐口的高度为:4m。地下室建筑面积:81m2,地下室层高50m:裙房三层。一层层高4m:二、三层层高为5m。主楼四至二十八层,每层层高0m。该楼层四层以上平面南侧凹口深6m,占凹口方向楼板长900m的2%,另还有两处凹口分别占凹口方向楼板长的8%和9%,高宽比为6。   2、地基及基础   1 地基土层结构及特征   据本次勘探揭露,拟建场勘察深度内岩土体可分为l0层:①层冲填土、②层耕填土、③层细砂、④层中砂、⑤层粗砂、⑥层砾砂、⑦层强风化泥质粉砂岩、⑧层中风化泥质粉砂岩。   2 地下水埋藏条件及砼腐蚀性评价   勘察场区内赋存有上层滞水和潜水。   据场地水质分析报告结果:拟建场地下潜水对混凝土结构、钢筋混凝土结构中钢筋无腐蚀性,对钢结构具弱腐蚀性。   3 地基方案与基础选型分析评价   根据以上场地地基岩土层条件和拟建建筑物点,经过充分的技术经济分析比较,决定采用直径分别为Ф800、Ф1000、Ф1200的钢筋混凝土钻孔灌注桩,混凝土强度等级为C30,以⑧层中风化泥质粉砂岩做桩端持力层。桩长为22~29m左右,Ф800的单桩承载力设计值为4200KN;Ф1000的单桩承载力设计值为6000KN;Ф1200的单桩承载力设计值为7900KN。因南昌地区中风化泥质粉砂岩中均有多层且无规律的软弱夹层,桩端进持力层取5d。根据最后静荷载试验结果来看,Ф1000的单桩竖向抗压极限承载力为13500KN,极限状态下桩顶累计沉降量为9mm,质量和经济效果均较好。本工程主楼带地下室、地下室层高5m,底板掺混凝土膨胀剂,桩基承台为梁式承台,因为上部结构为剪力墙,荷载分布较为均匀,因而梁板截面高度不需过大,承台梁高lO00mm,地下室底板除核心筒部分(1500mm)外,其余均为350mm,砼标号为C30;为抵抗混凝土收缩、徐变及加强基础的整体性,地下室底板采用双层双向满布配筋Ф14@120。地下室外围墙厚300mm,内部剪力墙厚250mm,地下室顶板作为上部结构的嵌固部位,板厚为200mm,并采用双层双向Ф 12@150满布配筋。   3、上部结构设计与计算   根据《建筑抗震设防类标准》(GB50223—2008)本工程为丙类建筑,结构的地震作用按设防烈度6度计算,采用全现浇钢筋混凝土剪力墙结构体系,剪力墙抗震等级为三级,框架抗震等级为三级。结构的阻尼比为05,水平地震影响系数最大值为04,基本风压为55KN/m2,地面粗糙度为B类,结构体型为4。地震力按X、Y两个方向计算,同时考虑扭转耦联,竖向力按模拟施工加荷方式1计算,风荷载按X、Y两个方向计算,恒、活荷载分开计算,周期折减系数为9,计算取21个振型。连梁刚度的折减系数为7,考虑抹灰粉刷层重量后,混凝土的重度为27KN/m2,地震力的分项系数为3,风荷载分项系数为4,恒荷载分项系数为2,活荷载分项系数为4。墙元细分中,壳元最大控制边长为0m。   该建筑平面有多处凹口,平面较为狭长,再加上楼梯问和电梯间开洞,采用SATWE进行分析。计算结构显示,结构在地震和风荷载作用下位移均在规范要求的范围内,但以扭转振动为主的第三振型周期T3 与侧向振动为主的第一振型周期T1之比为756;以扭转振动为主的第三振型周期T3和以侧向振动为主的第二振型周期T2 之比为865,并且第一振型和第二振型的扭转振动成分偏大,这表明结构扭转效应显著,对建筑结构不利。同时计算结果还表明,凹口周围、楼房东西两端及平面宽度变化处梁、墙等构件内力值较大。在设计时,考虑应将楼、电梯间处核心筒及5-12、5-14轴上剪力墙加强且连成整体,形成受力的主要部位,承担大部分的剪力和弯矩,实际电算时加强或削弱此部分刚度(主要为增加或减短墙长)对位移影响较大,较增加墙厚等方法有效的多。实际电算和分析相同,但由于建筑功能限制,5-G轴上,5-9轴和5-1l轴间;5-15轴和5-17轴间、还有5-l2轴和5-14轴间无法布置剪力墙,只有设置宽扁梁,加强刚度,实际效果较好,剪力墙成筒布置,在筒与筒之间将板厚加厚为120mm,实际电算时所有凹口处按未设连梁电算,在位移等满足要求规范要求,施工图则按所有凹口处增设250×400连梁处理,更加安全。在平面宽度变化处,剪力墙本工程剪力墙布置既满足了规范要求,经济效益又较好。为消除混凝土收缩、温差可能引起的裂缝,将屋面板配置了双层双向钢筋。   除平面不规则以外,该房屋的平均高宽比为6也较大,因而验算结构底部外围构件在侧向力最不利组合情况下的轴压比,并控制轴压比在6内;验算桩基在侧向力最不利组合下的抗压能力以及桩身是否会出现拉力,并通过调整桩的布置,使其符合要求。   在抗震构造措施方面,建筑物底部四层为剪力墙底部加强区;对墙体布置有变化处增设暗柱,加强其配筋。采取增大两端剪力墙的长度、调整其它部位剪力墙长度等措施,使用SATWE软件分析计算可知,凹口处及其周围剪力墙和连梁,以及建筑物两端转角、山墙处剪力墙和连梁基本上没有出现超筋现象,构件的截面和配筋设计符合规范要求。周期T1~T3 及其比值、结构位移值、基底剪重比、地震力倾覆弯矩等均在规范要求范围内,具体结果如下:   上述计算分析结果表明,T3 /T1远小于9,结构平面布置扭转影响较小;楼层最大层间位移角满足规范要求,且由Y向风荷载控制;底层剪重比接近于8%,结构刚度适合,受力体系经济合理,抗震性能良好。   4、结语   本工程在省抗震设计施工图检查中,经过省抗震专家评审,得到了专家的认可。专家肯定了我们对于本工程结构体系的选择、抗震设计参数的取值及对于平面不规则采取的构造加强措施。

建筑结构抗震论文800字

1高层建筑动力特性和地震反应数值分析2从集集地震看建筑物震害与地震动参数的关系 3用ANSYS分析某高层建筑的非线性地震反应5《高层建筑混凝土结构技术规程》(JGJ322002)若干问题解说对《高层建筑混凝土结构技术规程》(JGJ322002)理解和应用中的若干问题进行了解说和讨论,主要包括房屋适用高度、风荷载和地震作用、结构平面和竖向规则性、构件抗震等级、剪力墙边缘构件、带转换层结构等56个问题,供有关教学、结构设计和施工图审查等专业人员参考。4建筑结构减隔震及结构控制技术的现状和发展 一、传统的抗震方法   地震是由于地面的运动,使地面上原来处于静止的建筑物受到动力作用而产生强迫振动,因而在结构中产生内力、变形和位移。经过简化后模型的动力学分析,即一次次的震害分析进行修正、补充,得到一些建筑物在地震作用下的反应机理及破坏形式,提出了一些建筑物抗争的计算方法及设计的基本原则。这些在实际应用中得到了很不错的效果。1、概念设计的一些原则1)总体屈服机制。例如强柱弱梁。2)刚度与延性均衡。砌体结构中为提高延性设构造柱与圈梁,形成一个较弱的框架。3)强度均匀。结构在平面和立面上的承载力均匀。4)多道抗震防线。5)强节点设计。6)避开场地卓越周期区。2、在此基础上作结构地震反应分析,其分析方法主要有:①地震荷载法;②振型分解法;③动力时程分析法。现在还发展了push-over法、能力谱等方法。抗震设防目标也从单一的、基于生命安全的性态标准发展到基于各种性态,强调“个性”设计的设计理念。3、传统抗震方法的缺点与不足  传统抗震结构主要利用主体结构构件屈服后的塑性变形能和滞回耗能来耗散地震能量,这使得这些区域的耗能性能变得特别重要,而一旦由于某些因素导致这些区域产生问题,将严重影响到结构的抗震性能,产生严重破坏,由于破坏部位位于主要结构构件,其修复是很难进行的。  由于传统抗震结构是以防止结构倒塌为目标,其抗震性能在很大程度上依赖于结构(构件)的延性,以往的许多研究也注重于提高结构(构件)的延性方面,却忽略了对结构损伤程度的控制。4、传统的抗震方法在提高结构性能方面有较多困难。  传统抗震结构的耗能能力主要依赖于主体结构的延性。既要求主体结构强度高,又要求延性好,很难实现。1)框架结构  许多研究者推荐强柱弱梁体系作为最合适的抗震框架体系。该体系可将地震输入能量分散在结构的许多部位耗散掉,甚至可以控制塑性铰出现的顺序与部位,延性对于使建筑物在罕遇地震中保存下来固然很重要,但这些预期的塑性铰区在中等程度的地震中也会产生,延性也同时应被看作是一种“破坏”。后期修复费用也很高。2)剪力墙结构  剪力墙结构体系具有抗侧刚度大,在水平地震作用下的侧移小,其总的水平地震作用也大等特点,常见的震害一般来说为墙面的斜向裂缝或是底部楼层的水平施工缝发生水平错动,当底部屈服后,剪力墙的抗侧作用就很小,且剪力墙的耗能也基本集中与底部塑性铰区域,上部墙体对抵御强震无显著作用。而且剪力墙要承担一定的竖向荷载,因此底部的破坏也十分难修复。3)框架-剪力墙结构  从抗震概念设计来说,框架-剪力墙结构具有了多道抗震防线。有框架和墙体组成的抗震结构中,框架的刚度小,承担的地震作用力小,而弹性极限变形值和延性却较小。整个结构在地震作用下,墙体很快超过自身的较小弹性极限变形,出现裂缝,水平承载力下降,此时框架尚未充分发挥自身的水平抗力;墙体开裂后,框架承担的地震力增大,同时由于结构刚度的变化,地震作用效应也发生了变化。但无论是剪力墙还是框架,都是主体结构的一部分,损伤坏后的修复工作都是比较困难的,而且花费也不小。二、减振、隔震和振动控制的现状   鉴于上述传统抗震方法的缺点与不足,并在全部了解地震引起结构震动的全过程。由震源产生地震动,通过传播途径传递到结构上,从而引起结构的震动反应。通过在不同阶段采取震动方法控制措施,就成为不同的积极抗震方法。大致包括以下四点:  ①震源→消震  消震是通过减弱震源震动强度达到减小结构震动的方法,由于地震源难以确定,且其规模宏大,目前还没有有效可行的措施将震源强度减弱到预定的水平。  ②传播途径→隔震  隔震是通过某种装置将地震与结构隔开,其作用是减弱和改变地震动时结构作用的强度和方式,以此达到减少结构震动的目的。隔震方法主要有基底隔震和悬挂隔震两种。  ③结构→被动减震  被动减震是通过采取一定的措施或附加子结构吸收和消耗地震传递给主结构的能量,达到减小结构震动的目的。被动减震方法有耗能减震,冲击减震和吸震减震。  ④反应→主动减震  主动减震是根据结构的地震反应,通过地震系统地执行机,主动给结构施加控制力,达到减小结构震动的目的。  结构隔震、减震方法的研究和应用开始于60年代,70年代以来发展速度很快。这种积极的结构抗震方法与传统的消极抗震方法相比,有以下优点:①能大大减小结构所收得的地震作用,从而可减低结构造价,提高结构抗争的可靠度。此外,隔震方法能够较准确地控制传到结构上的最大地震力,从而克服了设计结构构件时难以准确确定载荷的困难。②能大大减小结构在地震作用下的变形,保证非结构构件不受地震破坏,从而减少震后维修费用,对于典型的现代化建筑,非结构构件(如玻璃幕墙,饰面,公用设施等)的造价甚至占整个房屋总造价的80%以上。③隔震、减震装置即使震后产生较大的永久变形或损坏,其复位、更换、维修结构构件方便、经济。④用于高技术精密加工设备、核工业设备等的结构物,只能用隔震、减震的方法满足严格的抗震要求。(一)、隔震1、基地隔震1)夹层橡胶垫隔震装置  用于隔震装置的橡胶垫块,可用天然橡胶,也可用人工合成橡胶(氯丁胶)。为提高垫块的垂直承载力和竖向刚度,橡胶垫块一般由橡胶片与薄铜板叠合而成。2)铅芯橡胶支座  这样就使支座具有足够的初始刚度,在风荷来和制动力等常见载荷作用下保持具有足够的刚度,以满足正常使用要求,但强地震发生时,装置柔性滑动,体系进入消能状态。3)滚珠(或滚轴)隔震  有自复位能力的;有加铜拉杆风稳定装置;横向油压千斤顶位的。另外,还有加消能装置的,消能装置有软消能杆剪,铅挤压消能器,油阻尼器,光阻尼器等。4)悬挂基础隔震5)摇摆支座隔震  同原理还有踏步式隔震制作,用于细高的结构物,如烟囟、桥墩、柜体筒体建筑物等。6)滑动支座隔震  上部结构与基础之间设置相互滑动的滑板。风载、制动力或小震时,静摩擦力使结构固结于基础上;大震时;结构水平滑动,减小地震作用,并以其摩擦阻尼消耗地震能源。  为控制滑板间的摩擦力,使之满足隔震要求;在滑板间可以加设滑层。目前常用的滑层有:涂层滑层(聚氯乙烯)、粉粒滑层(铅粒、沙粒、滑石、石墨等)。2、悬挂隔震  悬挂隔震使将结构的全部或大部分质量悬挂起来,是地震动传递不到主体质量上,产生较小的惯性力,从而起到隔震作用。悬挂结构在桥梁、火电厂锅炉架等方面有大量应用。著名的43层香港汇丰银行新大楼采用的就是悬挂结构。  悬挂结构悬杆受力较大,须采用高强钢,而高强钢忍性差,在竖向地震作用时易拉断。为减小竖向地震作用,可在吊点设减震弹簧,并配合使用阻尼器。3、隔震应用的注意事项:1)隔震实际上会使原有结构的固有周期演唱,在下列情况下不宜采用隔震设计:  ①基础土层不稳定;  ②下部结构变性大,原有结构的固有周期比较长;  ③位于软弱场地,延长周期可能引起共振;  ④制作中出现负反力;2)隔震装置必须具有足够的初始刚度,这样能满足正常使用要求。当强震发生时,装置柔性消震,体系进入消能状态。3)隔震装置能使结构在基础面上柔性滑动,在地震来时这样必然会产生很大的位移。为减低结构的位移反应,隔震装置应提供较大的阻尼,具有较大的消能能力。4、隔震体系的优点:1)明显有效地减轻结构的地震反应。从振动台地震模拟试验结果及美国,日本建造的隔整结构在地震中的强震记录得知,隔振体系的结构加速度反应只相当于传统结构(基础固定)加速度反应的1/3——1/10。这种减震效果是一般传统抗震结构所望尘莫及的。从而能非常有效地保护结构物或内部设备在强地震冲击下免遭任何毁坏。2)确保安全。在地面剧烈震动时,上部结构仍能处于正常的弹性工作状态。这既适用于一般民用建筑结构,确保居民在强地震中的绝对安全,也适用于某些重要结构物和重要设备。3)减低房屋造价。从汕头,广州,西昌等地建造隔震房屋得知,多层隔震房屋比传统多层隔震房屋节省房屋土建造价:7度区节省3——6%,8度区节省8——14%,9度区节省15——20%。并且安全度大大提高。4)抗震措施简单明了。抗震涉及的对象从考虑整个结构物的复杂的不明确的抗震措施转变为只考虑隔震装置,简单明了。结构物本身与一般非地震区的做法无疑,设计施工大大简化。5)震后修复方便:地震后,只对隔震装置进行必要的检查更换。而无需考虑建筑结构物本身的修复,地震后可很快恢复正产生活或生产,这带来极明显的社会效益和经济效益。(二)被动减震1、耗能减震1)结构消能减震体系的特点:  结构消能减震体系是把结构的某些非承重构件(如支撑剪力墙等)设计成消能杆剪,或在结构物的某些部位(节点或连接)装设阻尼器,在风荷载轻微地震时,这些消能杆件或阻尼器仍处于刚弹性状态,结构物仍具有足够的侧向刚度以满足正常使用要求,在强地震发生时,随着结构受力和变形的增大,这些消能杆件和阻尼器,率先进入非弹性变形状态,产生较大阻尼,大连消耗输入结构的地震能量,从而使主体结构避免进入明显的非弹性状态并迅速衰减结构的地震反应,从而保护主体结构在强地震中免遭损失。与传统的结构抗震体系相比较,它有如下的优越性:  ①传统的结构抗震体系是把结构的主要承重构件(梁、柱、节点)作为消能构件,地震中受损坏的是这些承重构件,甚至导致房屋倒塌。而消能减震体系则是以非承重构件作为消能构件或另设阻尼器,他们的损坏过程是保护主体结构的过程,所以是安全可靠的。  ②震后易于修复或更换,是建筑结构物迅速恢复使用。  ③可利用结构的抗侧力构件(支撑、剪力墙等)作为消能杆件,无需专设。  ④有效地衰减结构的地震反应。  由于上述的优越性,消能减震体系被广泛用于高层建筑的抗震,高耸构筑物(塔、架等)的抗震或抗风,单层工业厂房排架纵向抗震,管线系统减震保护等。2)结构消能减震体系的设计和工程应用:消能减震体系按其消能装置的不同,可分为二类:  ①消能构件减震体系:  利用结构的非承重构件作为消能装置的结构减震体系。常用的消能构件有:  消能支撑:耗能交叉支撑,摩擦耗能支撑,耗能偏心支撑,耗能隔撑。一般支撑杆件大都用软钢制作,取材容易,屈服点适当,延性好,故有较高的消能减震性能。构件大都采用非弹性“弯曲”变形的消能减震性能,具有较高抵抗周疲劳破坏的能力。  消能剪力墙:竖缝消能剪力强、横缝消能剪力墙、周边缝消能剪力墙等。其混凝土的接缝面可以填充粘性材料能或用钢筋联接。强地震时,出现非弹性的缝面错动,产生阻尼,消耗地震能量。  ②阻尼器消能减震体系:在结构的某些部位(支撑杆件、剪力墙与边框联结处、梁柱节点处等)装设阻尼器(软钢阻尼器、挤压铅阻尼器、摩擦阻尼器、粘弹性阻尼器等)。在强地震时,结构物这些部位发生较大变形,从而使装设在该部位的阻尼器有效的发挥消能作用。2.冲击减震  冲击减震是依靠附加活动质量与结构之间的非完全弹性碰撞达到交换动量和耗散动能进而实现减小结构地震反应的技术。  实际应用时,一般在结构的某部位(常在顶部)悬挂摆锤。结构震动时,摆锤撞击结构使结构震动衰减。另外,摆锤还兼有吸振器的功能。3.吸振减震  吸震减震是通过附加子结构,使结构的震动发生位移,即使结构的振动能量在原结构与子结构之间重新分配,从而达到减小结构震动的目的。  目前,工程结构应用的吸震减震装置主要有:调谐质量阻尼器(简称TMD),调液(柱)阻尼器(简称TLD或TLCD)悬吊质量摆阻尼器(简称SMPD)和质量放大器。(三)主动控制减震主动控制减震体系是利用外部能源,在结构受地震激励震动过程中,瞬时改变结构动力特性和施加控制力,以衰减结构地震反应的自动控制体系。  主动控制体系中的控制器有三部分组成。  ①传感器。安装在结构上,测量结构所受外部激励或结构反应或两者,将测量的信息传递给控制器的处理器。  ②处理器。处理测得的信息,根据给定的控制算法,计算所需的控制力,并将控制信息传递给控制器中的致动器。  ③致动器。根据控制信息,有外部供给能源产生所需的控制力,从而减小结构振动反映。  根据控制器的工作方式,主动控制体系分三种类型:  ①开环控制。根据外部激励信息调整控制力。  ②闭环控制。根据结构反应信息调整控制力。  ③开笔环控制。根据外部激励和结构反应的综合信息调整控制力。  主动控制是振动控制的现代方法,他已广泛用于电子工程,机械工程,航空航天工程等领域,但在土木工程中应用该方法进行结构主动控制尚是一个新兴研究方向。  结构震动主动控制装置  ①主动拉索。主动拉索控制系统由连接在结构上的预应力钢拉索构成,在拉索上安装一套液压伺服机系统。  ②主动调频质量阻尼器。是在TMD的基础上增加主动控制力而构成的减震器。  ③气体脉冲发生器。这是一种通过喷管释放高压气体产生脉冲动力,以减弱结构振动反应的装置。(四)半主动控制和混合控制1、半主动控制  半主动控制兼有被动控制和主动控制的优点。它具备主动控制的效果又只需很小的电能通过调节和改变结构的性能减小地震反应,因此比较适合于改善工程结构的抗震设防。1)变阻尼半主动控制  对变阻尼半主动控制的研究一度非常活跃,其目的在于寻找比定阻尼系统更好的减震效果,但事实上人们早已知道,阻尼的减振效果是有条件的。但单自由度体系基座受到简谐运动激励时,阻尼愈大,结构和相对运动(位移、速度和加速度)不断减少;对绝对运动则不然,当干扰频率与自振频率的比值时,增大阻尼反而会使绝对位移、速度和加速度反应增大。在地震作用下也可能出现类似的情况。  这说明对中、短周期的结构,当设计地震动的主要周期较短时,不必要采用半主动变阻尼系统。但是对于长周期结构,采用半主动变阻尼控制方法与采用上限阻尼时相比可以明显地减小绝对加速度反应,对相对反应也无不利影响。看来只有当需要同时减小长周期结构的相对位移反应和绝对加速度反应时才有必要采用变阻尼半主动控制。  常见的变阻尼半主动控制有变孔径油阻尼器、电流变阻尼器、磁流变阻尼器、变摩擦可控阻尼器、调谐质量可控阻尼器。2) 变刚度半主动控制系统(AVS)  日本鹿岛公司在他们的大型振动台控制楼上采用了AVS系统以减小中震和大震中的反应。在此系统中,应用液压元件改变刚性支撑和大梁的连接条件,随时调节层间刚度,避免共振。  变刚度和变阻尼系统应属于变结构控制的范畴,其理论基础在自动控制领域中已有深入地研究。在变刚度半制动控制系统中结构的层间水平刚度可以在其最大值和最小值之间跳跃或随意调节。当强震地面运动的主要频率不在被控结构自振频率的可能的变化范围以内时,对系统将产生什么样的影响则是值得研究的问题。2、混合控制  将主动控制与被动控制结合起来应用或采用其它复合控制方式通常称为混合控制,其最常用的形式是用作动器拖动调谐质量阻尼器(HMS)。  主动控制、半主动控制和混合控制由于都需要实时观测结构反应并进行实时分析和反馈控制,系统极为复杂,在推广应用方面受制于经济和技术条件。相比之下以增加结构阻尼、避免共振的被动控制技术则更适合在众多的实际工程中应用。三、今后的发展趋势   传统的依赖结构延性的抗震措施是以一定的损伤为代价减小地震反应,应用见证效能技术则可以减小结构本身的损伤,对各类结构基本上能使用,其减震效果对地面运动特性依赖性较小,耗资也不是很大,因此是可以广泛使用的方法。值得注意的是增大阻尼在减小结构相对位移反应和变形的过程中有时会使结构的绝对速度和加速度增大,从而对内部设备和人员带来某些不利影响。  基础隔震对在短周期内地面运动影响下的中短周期结构而言,其减震效果比消能技术更好,但对地面运动输入特性比较敏感,不能完全消除共振的危险性。半主动控制和混合控制方法可以满足不同的设防要求,对地面运动和结构本身不确定性的地适应能力更强,可以提高结构在地震作用下的安全性,引入智能元件以后,效果会更好,因此是值得重视的新领域。此外尚应在不同学科和专业之间开展合作和交叉研究,开发使用的装置、机构和配套技术,尽快形成新的产业,以支持新技术的推广应用。结构振动控制的研究和应用需要讲传统的建造技术与高新技术相结合,使结构的安全保障系统成为智能结构的重要组成部分,为人类营造一个更加安全舒适的工作和生活环境。参考文献[1]周福霖,高层建筑结构减震控制优化设计新体系[2]周锡元,阎维明,杨润林,建筑结构的隔震、减振和振动控制,建筑结构学报,4[3]谢礼立,马玉宏,现代抗震设计理论的发展过程,国际地震动态,10[4]李宏男,霍林生,结构被动减震与隔震技术研究现状,工程力学增刊,2001[5]赵鸿铁等,耗能减震控制的研究、应用与发展,西安建筑科技大学学报,3[6]周云等,耗能减震技术研究与应用发展,世界地震工程,2[7]周云等,耗能减震技术研究及应用的新进展,地震工程与工程振动,6[8]王亚勇,工程抗震展望——寄语2000年,工程抗震,3[9]张文芳,建筑结构TMD振动控制及其新体系减震研究,太原理工大学学报,1[10]杨光,日本阪神地震灾害的一些调查统计数据,华南地震,3[11]罗奇峰等,中国近4年结构抗震进展介绍,地震学报,11[12]邹立华等,组合隔震结构的振动控制研究,振动与冲击,2 还有一些,有pdf格式的,还有文档的,粘不下,如果你觉得对你有用的话,给我你的邮箱,我发给你

1、工程概况   在该工程的设计过程中,针对该工程平面凹口较深,平面较为狭长及高宽比较大等结构特点,在结构布置、分析计算和构造措施等方面做了一些有效的处理,使整体设计满足规范要求,且经济实用。以下谈谈本人在设计中的一点体会。   该工程地下一层、地上二十八层,总建筑面积:69m2 ,其中地上建筑面积:88m2,建筑物室外地坪至主体结构檐口的高度为:4m。地下室建筑面积:81m2,地下室层高50m:裙房三层。一层层高4m:二、三层层高为5m。主楼四至二十八层,每层层高0m。该楼层四层以上平面南侧凹口深6m,占凹口方向楼板长900m的2%,另还有两处凹口分别占凹口方向楼板长的8%和9%,高宽比为6。   2、地基及基础   1 地基土层结构及特征   据本次勘探揭露,拟建场勘察深度内岩土体可分为l0层:①层冲填土、②层耕填土、③层细砂、④层中砂、⑤层粗砂、⑥层砾砂、⑦层强风化泥质粉砂岩、⑧层中风化泥质粉砂岩。   2 地下水埋藏条件及砼腐蚀性评价   勘察场区内赋存有上层滞水和潜水。   据场地水质分析报告结果:拟建场地下潜水对混凝土结构、钢筋混凝土结构中钢筋无腐蚀性,对钢结构具弱腐蚀性。   3 地基方案与基础选型分析评价   根据以上场地地基岩土层条件和拟建建筑物点,经过充分的技术经济分析比较,决定采用直径分别为Ф800、Ф1000、Ф1200的钢筋混凝土钻孔灌注桩,混凝土强度等级为C30,以⑧层中风化泥质粉砂岩做桩端持力层。桩长为22~29m左右,Ф800的单桩承载力设计值为4200KN;Ф1000的单桩承载力设计值为6000KN;Ф1200的单桩承载力设计值为7900KN。因南昌地区中风化泥质粉砂岩中均有多层且无规律的软弱夹层,桩端进持力层取5d。根据最后静荷载试验结果来看,Ф1000的单桩竖向抗压极限承载力为13500KN,极限状态下桩顶累计沉降量为9mm,质量和经济效果均较好。本工程主楼带地下室、地下室层高5m,底板掺混凝土膨胀剂,桩基承台为梁式承台,因为上部结构为剪力墙,荷载分布较为均匀,因而梁板截面高度不需过大,承台梁高lO00mm,地下室底板除核心筒部分(1500mm)外,其余均为350mm,砼标号为C30;为抵抗混凝土收缩、徐变及加强基础的整体性,地下室底板采用双层双向满布配筋Ф14@120。地下室外围墙厚300mm,内部剪力墙厚250mm,地下室顶板作为上部结构的嵌固部位,板厚为200mm,并采用双层双向Ф 12@150满布配筋。   3、上部结构设计与计算   根据《建筑抗震设防类标准》(GB50223—2008)本工程为丙类建筑,结构的地震作用按设防烈度6度计算,采用全现浇钢筋混凝土剪力墙结构体系,剪力墙抗震等级为三级,框架抗震等级为三级。结构的阻尼比为05,水平地震影响系数最大值为04,基本风压为55KN/m2,地面粗糙度为B类,结构体型为4。地震力按X、Y两个方向计算,同时考虑扭转耦联,竖向力按模拟施工加荷方式1计算,风荷载按X、Y两个方向计算,恒、活荷载分开计算,周期折减系数为9,计算取21个振型。连梁刚度的折减系数为7,考虑抹灰粉刷层重量后,混凝土的重度为27KN/m2,地震力的分项系数为3,风荷载分项系数为4,恒荷载分项系数为2,活荷载分项系数为4。墙元细分中,壳元最大控制边长为0m。   该建筑平面有多处凹口,平面较为狭长,再加上楼梯问和电梯间开洞,采用SATWE进行分析。计算结构显示,结构在地震和风荷载作用下位移均在规范要求的范围内,但以扭转振动为主的第三振型周期T3 与侧向振动为主的第一振型周期T1之比为756;以扭转振动为主的第三振型周期T3和以侧向振动为主的第二振型周期T2 之比为865,并且第一振型和第二振型的扭转振动成分偏大,这表明结构扭转效应显著,对建筑结构不利。同时计算结果还表明,凹口周围、楼房东西两端及平面宽度变化处梁、墙等构件内力值较大。在设计时,考虑应将楼、电梯间处核心筒及5-12、5-14轴上剪力墙加强且连成整体,形成受力的主要部位,承担大部分的剪力和弯矩,实际电算时加强或削弱此部分刚度(主要为增加或减短墙长)对位移影响较大,较增加墙厚等方法有效的多。实际电算和分析相同,但由于建筑功能限制,5-G轴上,5-9轴和5-1l轴间;5-15轴和5-17轴间、还有5-l2轴和5-14轴间无法布置剪力墙,只有设置宽扁梁,加强刚度,实际效果较好,剪力墙成筒布置,在筒与筒之间将板厚加厚为120mm,实际电算时所有凹口处按未设连梁电算,在位移等满足要求规范要求,施工图则按所有凹口处增设250×400连梁处理,更加安全。在平面宽度变化处,剪力墙本工程剪力墙布置既满足了规范要求,经济效益又较好。为消除混凝土收缩、温差可能引起的裂缝,将屋面板配置了双层双向钢筋。   除平面不规则以外,该房屋的平均高宽比为6也较大,因而验算结构底部外围构件在侧向力最不利组合情况下的轴压比,并控制轴压比在6内;验算桩基在侧向力最不利组合下的抗压能力以及桩身是否会出现拉力,并通过调整桩的布置,使其符合要求。   在抗震构造措施方面,建筑物底部四层为剪力墙底部加强区;对墙体布置有变化处增设暗柱,加强其配筋。采取增大两端剪力墙的长度、调整其它部位剪力墙长度等措施,使用SATWE软件分析计算可知,凹口处及其周围剪力墙和连梁,以及建筑物两端转角、山墙处剪力墙和连梁基本上没有出现超筋现象,构件的截面和配筋设计符合规范要求。周期T1~T3 及其比值、结构位移值、基底剪重比、地震力倾覆弯矩等均在规范要求范围内,具体结果如下:   上述计算分析结果表明,T3 /T1远小于9,结构平面布置扭转影响较小;楼层最大层间位移角满足规范要求,且由Y向风荷载控制;底层剪重比接近于8%,结构刚度适合,受力体系经济合理,抗震性能良好。   4、结语   本工程在省抗震设计施工图检查中,经过省抗震专家评审,得到了专家的认可。专家肯定了我们对于本工程结构体系的选择、抗震设计参数的取值及对于平面不规则采取的构造加强措施。

建筑抗震设计论文

工程结构的抗震能力是社会抗震防灾系统的第一道防线。建筑物的倒塌是造成地震灾害的主要原因。建筑物在地震中的破坏程度,大体决定了震害的严重程度。因为是论文所以我只截取了一段,全部可到九品论文网查看。 因此,建筑结构的抗震能力,特别是抗地震倒塌能力,是地震区抗震防灾能力的最重要组成部分。文中运用系统科学的思想,介绍了提高建筑结构整体抗震能力的设计思想,结合汶川地震中建筑震害的教训,重点针对建筑结构抗地震倒塌能力,讨论了建筑结构抗震设计中应注意的问题和改进建议。  研究结果表明:建筑结构系统的安全储备分为基本安全储备、整体安全储备与意外安全储备三个层次。结构的整体抗震能力和抗地震倒塌能力取决于整体安全储备和意外安全储备,意外安全储备不足是汶川地震建筑结构震害严重的主要原因。结构系统的意外安全储备主要来自其鲁棒性、整体稳定性和整体牢固性。目前对于结构系统的整体安全储备和意外安全储备的研究很不够,结构设计规范的相关规定和要求也有待进一步完善。

帮助作者考虑文章全篇逻辑构成的写作设计图。其优点在于,使作者易于掌握论文结构的全局,层次清楚,重点明确,简明扼要,一目了然。[2]  第二,有利于论文前后呼应。有一个提纲,可以帮助我们树立全局观念,从整体出发,在检验每一个部分所占的地位、所起的作用,相互间是否有逻辑联系,每部分所占的篇幅与其在全局中的地位和作用是否相称,各个部分之间的比例是否恰当和谐,每一字、每一句、每一段、每一部分是否都为全局所需要,是否都丝丝入扣、相互配合,成为整体的有机组成部分,都能为论题服务。经过这样的考虑和编写,论文的结构才能统一而完整,很好地为表达论文的内容服务。  第三,有利于及时调整,避免大返工。在毕业论文的研究和写作过程中,作者的思维活动是非常活跃的,一些不起眼的材料,从表面看来不相关的材料,经过熟悉和深思,常常会产生新的联想或新的观点,如果不认真编写提纲,动起笔来就会被这种现象所干扰,不得不停下笔来重新思考,甚至推翻已写的从头来过;这样,不仅增加了工作量,也会极大地影响写作情绪。毕业论文提纲犹如工程的蓝图,只要动笔前把提纲考虑得周到严谨,多花点时间和力气,搞得扎实一些,就能形成一个层次清楚、逻辑严密的论文框架,从而避免许多不必要的返工。另外,初写论文的学生,如果把自己的思路先写成提纲,再去请教他人,人家一看能懂,较易提出一些修改补充的意见,便于自己得到有效的指导。

  • 索引序列
  • 建筑结构抗震设计论文
  • 建筑结构抗震论文
  • 抗震结构设计论文
  • 建筑结构抗震论文800字
  • 建筑抗震设计论文
  • 返回顶部