首页 > 论文期刊知识库 > 国际塑性力学杂志影响因子多少

国际塑性力学杂志影响因子多少

发布时间:

国际塑性力学杂志影响因子多少

这个怎么说呢,中国的期刊当中最高的影响因子也就5左右,就算是不错的了。像NATURE这种杂志,根本不用影响因子来衡量,只要发了这种杂志的文章就算是大牛了。至于第几作者,看你干什么用了,评职称什么的也要看各学校要求,有的算,有的不算。要是研究生毕业的话,第二作者肯定是不行的。一定得是第一作者才可以。

影响因子分数分别是:NEJM依旧一马当先(670 分),但领先优势已经被缩小。紧随其后的是The Lancet(102 分)和JAMA(273 分),而BMJ分数只有 604 分。值得注意的是,The Lancet 及 JAMA 的各种子刊表现也很亮眼。Lancet 旗下有 14 本子刊,而 JAMA 也有 12 本。这些专业子刊影响因子增长迅速,甚至占据各个专业榜单第一。 Oncotarget,去年踢出 SCI 后,2019年仍未重返;Medcine 跌破 2 分(870 分);老牌巨头 Plos one 仍未上升到 3 分(766 分);Scientific Reports 勉强保住 4 分(011 分);Nature communication 2019年影响因子是878 分,这也是所有「神刊」中分数最高的。扩展资料:一般来说学术期刊被引用得越多,影响因子通常越高,也就是说杂志被关注的越多impact factor 就越高,医学类好多杂志如《新英格兰杂志》、《柳叶刀》等因为看的人比较多,影响因子有些是很高的,尤其是综述类杂志。 但是,问题也不是绝对的。不能单单凭影响因子(IF)的高低来判断期刊的权威性,如美国科学院院报(PNAS)虽然每年的IF在0 左右,但是大家都知道其在学术界的影响力和权威性与等IF在0左右的杂志几乎旗鼓相当。参考资料来源:百度百科-影响因子

国内的期刊能到0及以上就算很高的了。影响因子:1、影响因子(Impact Factor,IF)是汤森路透(Thomson Reuters)出品的期刊引证报告(Journal Citation Reports,JCR)中的一项数据。 即某期刊前两年发表的论文在该报告年份(JCR year)中被引用总次数除以该期刊在这两年内发表的论文总数。这是一个国际上通行的期刊评价指标。2、影响因子现已成为国际上通用的期刊评价指标,它不仅是一种测度期刊有用性和显示度的指标,而且也是测度期刊的学术水平,乃至论文质量的重要指标。影响因子是一个相对统计量。计算方法:影响因子是以年为单位进行计算的。以1992年的某一期刊影响因子为例:IF(1992年) = A / B其中,A = 该期刊1990年至1991年所有文章在1992年中被引用的次数;B = 该期刊1990年至1991年所有文章数。

生物和医学类期刊影响因子算很高的,cell之类的可以到三四十。想物理、化学类到十几就算国际领先水平了。3-4也不算烂,但也不算好,一般学校里博士发3-4的文章就可以毕业了。

国际塑性力学杂志影响因子

那要看是哪个学科了,生物学医学类的影响因子普遍较高,有的十几甚至几十,根本不算什么,但是如果是力学、控制、计算机等这个影响因子非常高了,对于材料学这个影响因子是比较高。SCI期刊(别名《科学引文索引》,英文全称是Science Citation Index)是美国科学情报研究所出版的一个世界著名的期刊文献检索工具。它收录全世界出版的数、理、化、农、林、医、生命科学、天文、地理、环境、材料、工程技术等自然科学各学科的核心期刊3700多种。通过严格的选刊标准和评估程序来挑选刊源,SCI收录的文献能够全面覆盖全世界最重要和最有影响力的研究成果。为避免引起误会,确切的说,不应该叫做“SCI期刊”,因为它是一个科学引文检索模式 。入选率在2—3之间。

有,期刊看的人越多影响因子就越高,所以如果是冷门专业的期刊即使水平很高但看的人少影响因子也不会太高,但热门专业(比如生物)水平差一些的期刊由于看的人多影响因子可能会很高。

塑性变形的影响因数 金属在室温下的塑性变形,对金属的组织和性能影响很大,常会出现加工硬化、内应力和各向异性等现象。加工硬化  塑性变形引起位错增殖,位错密度增加,不同方向的位错发 塑性变形力学原理生交割,位错的运动受到阻碍,使金属产生加工硬化。加工硬化能提高金属的硬度、强度和变形抗力,同时降低塑性,使以后的冷态变形困难。内应力  塑性变形在金属体内的分布是不均匀的,所以外力去除后,各部分的弹性恢复也不会完全一样,这就使金属体内各部分之间产生相互平衡的内应力,即残余应力。残余应力降低零件的尺寸稳定性,增大应力腐蚀的倾向。各向异性  金属经冷态塑性变形后,晶粒内部出现滑移带或孪晶带。各晶粒还沿变形方向伸长和扭曲。当变形量很大(如70%或更大)而且是沿着一个方向时,晶粒内原子排列的位向趋向一致,同时金属内部存在的夹杂物也被沿变形方向拉长形成纤维组织,使金属产生各向异性。沿变形方向的强度、塑性和韧性都比横向的高。当金属在热态下变形,由于发生了再结晶,晶粒的取向会不同程度地偏离变形方向,但夹杂物拉长形成的纤维方向不变,金属仍有各向异性。再结晶和回复  经过冷变形的金属,如加热到一定温度并保持一定的时间,原子的激活能增加到足够的活动力时,便会出现新的晶核,并成长为新的晶粒,这种现象称为再结晶。经过再结晶处理后,冷变形引起的晶粒畸变以及由此引起的加工硬化、残余应力等都会完全消除。   再结晶温度   通常以经一小时保温完成再结晶的温度为金属的再结晶温度。各种金属的再结晶温度,按绝对温度(K)计大约相当于该金属熔点的40~50%。 低碳钢的再结晶温度约460℃。当变形程度较小时,在再结晶过程中,尤其是当温度偏高时,再结晶的晶粒特别粗大。因此如要晶粒细小,金属材料在再结晶处理前会有较大的变形量。   再结晶温度对金属材料的塑性加工非常重要。在再结晶温度以上进行的塑性加工和变形称为热加工和热变形;在再结晶温度以下进行的塑性加工和变形称为冷加工和冷变形。热变形时,金属材料在变形过程中不断地发生再结晶,不引起加工硬化,假如缓慢地冷却,也不出现内应力。   回复   冷变形后的金属,当加热到稍低于再结晶温度时,通过原子的扩散会减少晶体的缺陷,降低晶体的畸变能,从而减小内应力;但是不出现新的晶粒,金属仍保留加工硬化和各向异性,这就是金属的回复。这样的热处理称为去应力退火。变形量和塑性  塑性变形变形量的大小,常依变形方式的不同用不同的指标来表示。有的用坯料变形前后截面积的变化表示,有的用某一方向长度的变化表示,扭转时用转角的大小表示。镦粗和压缩的变形量在工程上常用压缩率表示。如坯料原始高H 0,镦粗后高H1(图2),则压下量△H=H 0-H 1,压缩率为 公式1金属在锻压过程中所能承受的变形量有一定的限值。金属能承受较大的变形量而不破裂的性能称为塑性。金属的塑性可由实验测定(见锻造性能试验)。金属塑性的好坏与化学成分、内部组织结构、变形温度和速度、变形方式等因素有关。纯金属和合金元素低的金属(如铝、紫铜、低碳钢等)塑性好,高合金和含杂质多的金属塑性差。一般金属在低温时塑性差,高温时塑性好。金属的塑性还与变形方式有关,例如在自由锻镦粗时,坯料的周围向外凸出,材料受拉应力,金属的塑性低,容易开裂。挤压时,坯料三向受压,金属的塑性高。在很小的变形下就开裂的金属称为脆性材料,如铸铁。脆性材料通常不宜锻压加工。   变形力  在锻压过程中,坯料内部一般处于三向应力状态。开始塑性变形的应力不是由某一方向的应力单独确定的。用1、2、3代表坯料内任意一点单元体上三个相互垂直方向的主应力(图3),实验表明,如要这个单元体发生塑性变形,则三个主应力所引起的弹性畸变能应达到一定值。它的数学表达式为    公式3式中Y为金属的变形抗力,由抗拉试验或抗压试验测定。上式表示金属坯料内任意一点开始塑性变形时三个方向主应力所应达到的条件,称为屈服准则。在锻压过程中,坯料内某些面上各点都会发生塑性变形,这时所加的外力称为变形力。   影响变形力P 的主要因素有4个,即    公式2式中Y为金属的静载变形抗力,它与化学成分、温度、变形过程等有关。低碳钢的变形抗力低,高合金钢的变形抗力高;低温时变形抗力高,高温时变形抗力低;    塑性变形室温下的退火金属在开始锻压时变形抗力低,经过变形产生加工硬化后变形抗力增高。A为锻件加力方向的横截面积。α1为应变速率系数。在慢速的液压机上锻压时,α1=1~5;在应变速率高的锻锤上锻压时,α1埍3。α2为多余功系数,它与变形方式有关,例如自由锻时坏料侧表面不受约束,α 2=1~5;模锻和挤压时,金属的流动受模膛约束,α2=5~6。另外,模膛表面的粗糙度和润滑状况也有影响,锻模表面光洁且有良好的润滑时α 2较小;模具表面粗糙且没有润滑时,α 2较大。

没有

国际塑性力学杂志影响因子查询

问你出刊的编辑,或者登录知网

一、影响因子(ImPactFactor)是1972年由E·加菲尔德提出的,现已成为国际上通用的期刊评价指标,它不仅是一种测度期刊有用性和显示度的指标,而且也是测度期刊的学术水平,乃至论文质量的重要指标影响因子是一个相对统计量。二、查找:1、目前外文期刊的影响因子用JCR检索。2、中文的用中国知网。三、主要查找办法:1、JCRJournalCitationReports(JCR)为查询影响因子的官方网站,隶属于汤森路透集团。该网站需要授权才可访问,需要用大学代理账号。2、SCI期刊数据库PubMed中文网旗下的SCI期刊数据库也可以查询期刊近十年的影响因子及变化曲线,期刊覆盖领域。3、MedSCIMedSCI也可查询期刊的影响因子,数据来自网友上传,不准确。

国际塑性力学杂志

杨南生,其父任仰光中学校长。杨南生1岁多随父母回国,因父亲求职无着,长期颠沛于北京和福建两地之间,直到1929年上小学后,才在北平(今北京)安定下来。七七事变前夕,父母又南迁福建,为不影响他的学业,留他在北平就读,寄居在舅父家中。父亲的华侨生涯和留日学经济后报国艰难的人生体验,给予他两点可贵的影响,一是爱国,二是学“实学”(指科学);加之受二舅父当时清华大学物理系知名教授萨本栋的熏陶,他中学时期就立志要学好科学,为祖国效力。他的数理化,尤其是物理成绩在学校一直拔尖。有一次物理考试,全班大多数人不及格,而他独得100分。他还在全北平市高中生数理化会考中得了第二名。七七事变后,北平日伪政府令学校开设日语课,杨南生极力抵制,不参加日语学习;还退出参加多年的校排球队,以表达民族恨。在汉口失守后,北平的汉奸政府组织“庆祝”游行,他拒绝参加。学校给他记大过惩处,他嗤之以鼻,不屑一顾。1939年,北平已完全被日军统治。他即将高中毕业,大舅父力劝他留北平升学,杨南生则决意去大后方。高中一毕业,他立即离开北平去上海,费尽周折取得一份英国护照,才得以通过日军封锁,从海路到越南,再辗转进入昆明,考入西南联合大学航空系就读。杨南生爱科学,尤迷航空,所以择航空为志愿。但是,当他了解到国民政府航空委员会的腐败内幕,进而对当时那种只修不造的航空业有了清醒的认识,意识到学成之后仍然报国无门,于是他痛苦地终止了对航空的迷恋,转入联大机械系学习。1943年暑期,他修完了机械系课程,受聘到昆明中央机器厂任工务员。1945年,回母校任材料力学助教,逐渐对这一学科产生了兴趣。抗日战争胜利后,他于1946年夏随清华大学迁回北平,为刚回国的钱伟长开设的现代应用力学问题新课程当助教,由此获益匪浅,坚定了他从事力学研究的志向。1947年,杨南生考取庚子赔款公费留学,赴英国曼彻斯特大学深造。出国前,他征询了钱伟长的意见,选定了塑性力学为研究方向。经过三年的刻苦学习,于1950年暑期,以《各向同性金属的塑性应力应变关系》的优秀论文,获取博士学位。在昆明求学和工作期间,他参加过一二一运动和“反饥饿”游行。1947年到英国后,积极参加了左派学生的反蒋活动,开始接触马列主义,了解中国共产党。1949年中华人民共和国成立后,他与支德喻等同学发起成立了“中国科协留英分会”(简称留英科协),旨在介绍新中国,促进留英学生学成回国参加建设。1950年,他在曼彻斯特大学理工学院“社会主义者协会”主办的活动中,作了“新中国概况”的报告;在留英中国学生会曼彻斯特分会为介绍中华人民共和国而主办的“中国艺术展览”活动中,作了报告,用幻灯片介绍了北京。1950年暑期,学业刚一结束,他便立即准备回国。经过斗争,他与妻子及同学数人,才得以持一份“无国籍人士”护照离英,几经周折,转经香港,于1950年10月回到祖国。 回国以后,他一心一意要参加实际建设工作,谢绝了几所院校的聘请,选择了重工业部汽车实验室的工作,并被任命为汽车材料试验科科长。1953年10月又转到长春第一汽车制造厂,任中央实验室主任,为中国汽车工业的创建,为第一台“解放”牌汽车的制造,作出了贡献。在此期间,他被光荣地选为吉林省第一届人民代表大会代表,并于1956年9月被接纳为中国共产党党员。1956年9月,杨南生奉命调到刚成立的中国科学院力学研究所任副研究员,从事高温塑性力学研究,曾发表《三七黄铜的塑性应力应变关系》等论文。1958年秋,中国科学院遵照毛泽东主席“我们也要搞人造卫星”的指示,组建卫星研制机构,杨南生被委任为1001设计院负责人之一,负责运载火箭的设计。1958年11月,该院南迁上海组成中国科学院上海机电设计院,杨南生任副院长。几年中,他率领广大科技人员和生产工人,先后研制成T5探空火箭模样弹和T7M、T7、T7A探空火箭,与导弹研制部门并行地开创了我国的火箭事业。1964年8月,杨南生再次接受调动,到国防部第五研究院第四分院(今航空航天工业部第四研究院)任副院长,担任固体火箭发动机研制的技术领导工作,直至1983年3月,改任该院科技委员会主任,1984年任技术顾问。1991年5月,他兼任航空航天部科技委员会顾问。在这20余年中,他南北转战,埋头苦干,领导研制成功10余种用于武器的固体火箭发动机;以及“长征1号”运载火箭末级发动机、返回式卫星回收制动发动机、通讯卫星远地点发动机等多种航天固体火箭发动机;还开展了大量固体火箭推进技术预研课题和几种大型试验发动机的研制,为我国固体火箭事业的创建和发展作出了突出的贡献,也为研制第二代固体火箭打下了坚实的技术基础。他的成就、才学、强烈的事业心和艰苦奋斗的精神,以及他的平易近人、关心群众、同群众同甘共苦打成一片的作风和刚直不阿的品质,在四院广大群众干部中留下了深刻的印象,人们有口皆碑。他曾被选为第五、第六届全国人民代表大会代表;1978年荣获全国科学大会先进个人奖;1984年荣立航天工业部一等功;1985年被国际宇航科学院选聘为院士,成为国际知名的火箭专家。1978年,杨南生接受了西北工业大学的邀请,开设了塑性力学、弹塑性断裂力学等课程,先后被批准为硕士、博士研究生导师和博士后工作站导师,以弹塑性断裂力学研究为方向,培养了近20名硕士、博士生和博士后。他在国内外学术会议、学术杂志上发表了10多篇论文,成为西北工业大学弹塑性断裂力学学科的学术带头人;1984年正式被聘为兼职教授,1989年又授予他名誉教授称号。杨南生曾出任中国宇航学会第一届副理事长,中国力学学会第一、第二、第三届理事,陕西省科学技术协会第二届委员,陕西省航空学会第一届副理事长,陕西省宇航学会第一届理事长等职务。国产汽车材料的开发者1953年10月,杨南生满腔热情地投入了长春第一汽车制造厂中央实验室的创建工作。他给实验室和设计处的工程技术人员讲授金属材料机械性能、试验数据处理的数理统计等课程,并自编了10万余字的讲义。为了备好课,他常常通宵达旦地苦干。同时,为适应当时向苏联学习的需要,他还利用业余时间上夜校,突击学习俄文,并曾参加了《苏联大百科全书·汽车工业》卷的翻译工作。在工厂基本建设时期,他除了实验室的自身建设工作以外,还配合开展全厂基建用材选配工作。工厂投产后,他领导中央实验室全体人员投入生产第一台“解放”牌汽车的紧张工作,千百种材料都需由他们试验分析,决定取舍,或者确定代用材料;或者提出性能指标去试制。他们从材料方面保证了这第一台汽车的顺利诞生。第一台“解放”牌汽车的问世,标志着中国汽车工业的诞生。在这份光荣中,有着作为汽车材料开发者杨南生的贡献。中国火箭事业的开创者1956年9月,杨南生奉命调到中国科学院力学研究所工作。1958年中国科学院以力学研究所为主组建了1001设计院,负责卫星和运载火箭的设计,杨南生被委派为技术负责人。他带领仓促集合的30多位同志苦干了一个月,独立完成了一种可发射100公斤卫星的三级液体燃料运载火箭的设计图纸。这一火箭模型,在中国科学院1958年举办的“自然科学跃进成果展览会”上展出,毛泽东主席和其他党和国家领导人都先后参观过。但是,在当时的国力条件下,这样的设计是难以变成现实的。1958年11月,中国科学院与上海市商定,将杨南生为首的1001设计院技术人员迁往上海,组成上海机电设计院,以便利用上海的工业和技术基础,由小到大地发展我国的空间技术。杨南生被任命为该院副院长,担负技术指挥的重担。1959年1月,中国科学院调整了空间技术发展规划,决定首先把重点放在探空火箭研制上。上海机电设计院的任务遂转入探空火箭研制。在杨南生的主持下,先设计了一种有控制的T5火箭,但因条件限制,仅试制出模样弹,随后就下马了。在总结了T5火箭的经验教训后,1959年四季度开始研制无控制的T7火箭,并且为了培养队伍、掌握技术,决定先研制模样火箭T7M。工作展开后,很快取得了可喜的进展。1960年2月,他们自行研制的T7M这一试验型探空火箭首次发射成功。它使用液体主发动机、固体助推器,起飞重量190公斤,飞行高度8—10公里。同年9月,又成功地发射了我国第一枚实用型探空火箭T7。它是在T7M的基础上研制的,也是由液体主发动机和固体助推器串联成的两级无控火箭,起飞重量1138公斤,飞行高度约60公里。由T7火箭改进设计后的T7A火箭不久也研制成功。它作为我国液体探空火箭的基本型,成为我国人造卫星上天以前进行高空探测的重要工具。以T7A为基础改装的气象火箭于1963年12月发射成功,其起飞重量1145公斤,飞行高度在60—115公里范围内变动,携带探测仪器重量最大可达40公斤。1964年7月,用T7A改装的生物试验火箭又发射成功,其飞行高度达70公里,并回收成功,迈出了我国宇宙生物试验研究的第一步在上海机电设计院期间,为了培养人才,杨南生利用研制工作空隙,对技术人员讲授塑性力学课,前后达1年之久。他还为此编写了10多万字的讲义。在传播塑性力学知识的基础上,他带领几位助手,运用塑性力学理论,对于工作时内外壁温差很大的探空火箭液体燃料主发动机燃烧室壁,进行了应力分析研究,解决了液体发动机燃烧室设计的技术难题。这一研究成果以《再生冷却式燃烧室内壁应力分析》为题,发表在国防部五院内部刊物《研究与学习》1964年第10期上,引起了同行的注意。1964年8月,杨南生离开上海,到当时地处大西南的国防部五院第四分院主持固体火箭发动机的研制工作。当时,固体火箭发动机还处在探索技术、奠定基础阶段,中心任务是通过研制直径300毫米的小型发动机,摸清技术规律,突破基础技术关键,获得研制全过程的经验。他率领科技人员先后解决了药柱裂纹、不稳定燃烧等关键技术问题,使发动机研制工作进展顺利。1965年夏,用这一发动机组装的火箭进行飞行试验获得圆满成功,证明了其结构可靠、性能稳定。以后该发动机经过改进,被用作一种战术导弹的助推器。1965年,该院建制改为第七机械工业部第四研究院,从大西南搬迁到塞外,展开了大中型固体火箭发动机的研制。在研制过程中,又发生了药柱加大后发生裂纹的技术难题,杨南生带领有关技术人员,运用粘弹力学理论,结合试验数据,提出一种经验的计算方法,把固体复合推进剂药柱看作粘弹体,进行了它的受力分析计算,确定推进剂力学性能不良是药柱发生裂纹的根源,从而由提高推进剂力学性能着手,很快攻克了这一技术难关。于是,不但缩短了研制发动机由小到大的发展过程,而且提高了科技人员对理论指导实践的重要性的认识。有了这样的思想基础,杨南生在研制实践中更加有意识地推动理论的应用。在药柱应力分析和发动机壳体应力分析中应用有限元法就是一例。随后,在杨南生的主持下,相继开展了多种大中小型实用固体火箭发动机的研制,其中重要的有发射我国第一颗人造卫星的长征1号运载火箭末级发动机、返回式卫星回收制动发动机、水下发射固体火箭的两级发动机。长征1号末级发动机1967年展开研制。杨南生奔波在科研生产第一线,和大家“爬摸滚打”在一起,先后解决了药柱脱粘、燃烧中氧化铝沉积等关键技术问题,多次试车获得成功。1970年4月24日,中国第一颗人造卫星发射成功,该院交付的末级发动机胜利完成了使命,为我国的首次航天活动作出了贡献。1971年8月,开始研制返回式卫星回收制动发动机,1974年底完成。这种发动机需在高空超低温条件下围绕地球运行数天后才点火启动,以推动回收舱准确地降落到预定落区,因此,对其可靠性、总重和总冲精度都有很高的要求。杨南生主持确定的方案是,采用球形燃烧室、能量较高的推进剂、装填密度较大的新药型装药、潜入式喷管、尾部环形点火器。研制中攻克了点火器设计、真空可靠点火、头部外壁温度控制、总重与总冲精度保证等技术难关,胜利地按计划交付了发动机。自1975年首次使用以来,该发动机多次提交返回式卫星使用,全部获得成功,由此证明其性能稳定,可靠性高。1967年,国防科委下达水下发射固体推进剂火箭研制任务。杨南生主持两级发动机的研制。这两级发动机均采用超高强度钢壳体、新型复合推进剂、新型耐烧蚀金属喷管喉衬、带保险机构的新型点火系统、摆动喷管推力向量控制机构(一级)和液体二次喷射推力向量控制系统(二级),二级发动机还采用了反向喷管推力终止装置。由于一些单项技术尚未过关,不少原材料要由其他工业部门同步研制,现有的研制设施不能完全满足大型发动机研制需要,尤其是“文化大革命”的干扰,使得初期的研制工作步履维艰。杨南生对此忧心如焚,日夜操劳,数年中未曾休过一次假。1970年4月,第一发模样两级发动机终于双双全程试车成功,证明了所定技术方案是可行的。后来相继解决了药柱脱粘等一些重大技术问题,只是摆动喷管因未进行过单项预研而迟迟未能很好解决密封和控制力矩这对矛盾问题,影响了研制进度。直到1980年底,才开始向总体部门交付产品,水下发射固体火箭两级发动机获得成功。1975年初,杨南生转入地处秦岭山麓的三线基地。主持开展了大批预先研究课题,例如:复合材料壳体、柔性全轴摆动喷管、新型材料大喉衬、新药型设计等等。1978年,他承担了通讯卫星远地点发动机研制任务。由于用途的特殊性,对这种发动机提出的性能和精度要求比以往高得多,特别是它需在36000公里的高空环境里运行较长时间后,能可靠地点火工作。因此,杨南生主持制定了采用多项新技术的方案。其中包括有:高强轻质的玻璃钢壳体,高能量、易点燃的复合推进剂,装填系数高的先进药型,以及适应真空点火的点火系统和适应真空工作的高空喷管。开展研制后,陆续解决了玻璃钢缠绕工艺、装药脱粘、总冲与比冲精度控制、地面试车推力测试精度等技术难题,于1983年9月完成研制,开始交付产品。1984年4月8日,我国第一颗试验通讯卫星发射成功,在太空运行了数天的远地点发动机按地面发出的指令点火工作,成功地把卫星送入精确的准同步轨道,为我国又一次大型航天活动作出了贡献。这一远地点发动机,在以后年月的多次通讯卫星发射中,都胜利地完成了使命,无一失败,这在世界航天史上是少有的记录。在远地点发动机研制过程中,曾遇到玻璃钢壳体发动机试车中发生所谓“神秘冲击”的拦路虎,即在发动机点火瞬间出现过大的冲击载荷导致试车失败。具有深厚力学理论基础的杨南生,运用动力学理论对这一现象进行分析研究,作出了合理的解释,并据此提出了采用尾部大面积人工脱粘层的解决措施,从而顺利地踢开了这一拦路虎,避免了重复试验,促进了研制进展。在一次新型大喉衬出现裂纹问题的处理上,也显示了他处处注意运用理论指导工程实践的思想。这是一种制造周期长达几个月的大喉衬,出现裂纹便弃之不用,无疑会造成时间与人力物力的损失;但喉衬又是发动机上工作环境最恶劣的关键零件,贸然使用又可能导致试车失败,那将造成更大的损失。杨南生了解了裂纹的确切位置,进行了受力分析,断定裂纹处于喉衬工作中的压应力区,并运用热应力和断裂力学理论,判定这个裂纹在试车中只会受抑制,而不会再扩展,果断地决定使用这个带有缺陷的喉衬。试车结果如他所料,获得圆满成功。杨南生不愧为我国一代火箭专家和火箭事业的卓越创业者。(作者:廉茂林 高笃学)

这个期刊以前叫'Ingenieur-Archiv‘(工程师文摘),德国布莱梅大学主办的一个应用力学杂志,影响因子一般,但是期刊很正规,编辑和审稿人都很严谨务实,是一个不错的力学杂志。

SCI中中偏上的期刊,要有一定的理论分析。当然没有塑性力学。固体力学。损伤力学 等牛。

美国工程方面的SCI,近年来影响因子逐渐上升,审稿周期约3个月

国际塑性力学杂志电子版

SCI中中偏上的期刊,要有一定的理论分析。当然没有塑性力学。固体力学。损伤力学 等牛。

美国工程方面的SCI,近年来影响因子逐渐上升,审稿周期约3个月

这个期刊以前叫'Ingenieur-Archiv‘(工程师文摘),德国布莱梅大学主办的一个应用力学杂志,影响因子一般,但是期刊很正规,编辑和审稿人都很严谨务实,是一个不错的力学杂志。

这些都是检索系统,一个收录很多论文的数据库。 SCI主要偏重理论性研究。 SSCI是社会科学期刊数据库。 EI偏工程应用。 CSCD和核心期刊都是中国的数据库。 ISTP是会议论文数据库,以上都是期刊论文。

  • 索引序列
  • 国际塑性力学杂志影响因子多少
  • 国际塑性力学杂志影响因子
  • 国际塑性力学杂志影响因子查询
  • 国际塑性力学杂志
  • 国际塑性力学杂志电子版
  • 返回顶部