首页 > 论文期刊知识库 > 化纤与纺织技术杂志官网订阅

化纤与纺织技术杂志官网订阅

发布时间:

化纤与纺织技术杂志官网订阅

按照新国标,服装可分为A、B、C三个安全级别,明确只有A类产品可供婴幼儿穿着。不同级别也意味着对一些有害物指标的限量完全不同,A级最严,如对甲醛的要求,A级的标准是≤20mg/公斤,而B类则是≤75mg/公斤,C类为≤300mg/公斤。服装A、B、C三个安全技术级别的适用如下:2周岁以下的婴幼儿服装必须是A类技术要求直接接触皮肤的服装至少要是B类技术要求非直接接触皮肤的服装至少要是C类技术要求如果不符合技术要求建议不要购买扩展资料:1、国家质检总局、国家标准委批准发布了强制性国家标准GB31701-2015《婴幼儿及儿童纺织产品安全技术规范》。这是我国第一个专门针对婴幼儿及儿童纺织产品(童装)的强制性国家标准。据国家质检总局相关负责人介绍,该标准对童装的安全性能进行了全面规范,将有助于引导生产企业提高童装的安全与质量,保护婴幼儿及儿童健康安全。新标准于2016年6月1日正式实施。2、《婴幼儿及儿童纺织产品安全技术规范》规定了婴幼儿及儿童纺织产品的安全技术要求、试验方法、检验规则。国家标准委工业标准二部主任戴红介绍,鉴于婴幼儿和儿童群体的特殊性,该标准在原有纺织安全标准的基础上,进一步提高了婴幼儿及儿童纺织产品的各项安全要求,安全要求全面升级。在化学安全要求方面,标准增加了6种增塑剂和铅、镉2种重金属的限量要求。在机械安全方面,标准对童装头颈、肩部、腰部等不同部位绳带作出了详细规定,要求婴幼儿及7岁以下儿童服装头颈部不允许存在任何绳带。标准对纺织附件也作出了规定,要求附件应具有一定的抗拉强力,且不应存在锐利尖端和边缘。另外,该标准还增加了燃烧性能要求。3、作为一项重要的强制性国家标准,《婴幼儿及儿童纺织产品安全技术规范》的发布实施将对整个婴幼儿和儿童纺织服装市场产生重大影响。为了保证市场的平稳过渡,新标准设置了两年的实施过渡期,为2016年6月1日至2018年5月31日。在过渡期内,2016年6月1日前生产并符合相关标准要求的产品允许在市场上继续销售,检测机构按照企业所执行的标准进行检测。2018年6月1日起,市场上所有相关产品都必须符合本标准要求。“设置过渡期的原因是因为该标准大幅提高了对婴童纺织产品的要求,企业需要一定时间完成技术改造与升级。同时纺织产品为反季生产产品,生产、销售周期较长,消化库存需要一定的时间。”为促使标准有效实施,国家标准委组织了标准进企业、进商场、进校园等系列活动,选择婴幼儿及儿童纺织产品主产区和销售区举办系列宣贯活动,向当地生产、销售企业,以及检验检测机构开展标准培训。参考资料:百度百科——国家纺织产品基本安全技术规范GB 18401-2010

B类就是可以直接贴身穿的,大多是内衣,t恤一类。C类是不可以贴身穿的,多是外套。衣服的水洗标上都有标注。聚酯纤维就是涤纶,化纤的东西贴身穿起静电,大多不能直接接触皮肤

化工,就是化学工业化学工业是对原料进行化学加工以获得有用的产品的工业化学纤维(简称:化纤),是用天然高分子化合物或人工合成的高分子化合物为原料,经过制备纺丝原液、纺丝和后处理等工序制得的具有纺织性能的纤维。

这个这个。。。跟成分是木有关系的。 GB 18401-2010 国家纺织产品基本安全技术规范有明确规定,可以去下载一份看看。 分为三类一、A类 婴幼儿纺织产品(年龄在36个月及以下婴幼儿穿着或使用的纺织产品)二、B类 直接接触皮肤的纺织产品(在穿着或使用时,产品的大部分面积直接与人体皮肤接触的 纺织产品)三、C类 非直接接触皮肤的纺织产品(在穿着或使用时,产品不直接与人体皮肤接触,或仅有小 部分面积直接与人体皮肤接触的纺织产品)

化纤与纺织技术杂志官网订阅电话

加弹车间:噪声危害纺丝车间:比较热而已,操作不当容易烫伤聚酯车间:原料上对人体有低毒伤害

不是的  化工  开放分类: 化学、化工  化工 chemical industry  化学工业(chemical industry)、化学工程(chemical engineering)、化学工艺(chemical techno-logy)都简称为化工。 在现代汉语中,化学工业、化学工程和化学工艺都简称为化工,它们出现于不同历史时期,各有不同涵义,却又关系密切,互相渗透。在人们头脑里,“化工”这个词,习惯上已成为一个总的知识门类和事业的代名词,它在国民经济和工程技术上所具有的重要意义,引起了人们广泛的兴趣,吸引着成千上万的人,为之献出毕生精力。下面简要地从人类社会生活的各个方面,来说明化工绚丽多彩的内容及其重要贡献。  分 支 的 划 分  化工作为一个知识门类来说,在各个不同的历史时期,在各种不同目的的要求下,有多种分解或综合的分类方法。可按照原料来源、产品性质分类,也可按照过程规律、历史联系分类。每种划分方法都难于严格适应。本卷力求减少不必要的交叉,采取综合分类的方法,设计了从原料出发的燃料化工分支;从产品出发的无机化工、基本有机化工、高分子化工、精细化工等分支;还有从共同的过程规律出发的化学工程分支,以及从历史发展和横向联系出发的综论分支。燃料化工的原料是石油、天然气、煤和油页岩等可燃矿物,所以它又划分为石油炼制工业、石油化工、天然气化工、煤化工和页岩油工业。其中,石油炼制工业是创造产值较高的工业部门,是国家的重要经济命脉。天然气常与石油共生,也常把天然气化工归属于石油化工。在现阶段,石油炼制和石油化工是燃料化工的主体。燃料化工生产的产品包括燃料和化工原料,后者主要是有机化工原料(除合成气也用于生产无机化工产品,如合成氨等外)。所以,石油化工也是基本有机化工的主要组成部分。由石油化工可以生产塑料、 合成橡胶、 合成纤维等三大合成材料,这是高分子化工的主要产品。因此,燃料化工、基本有机化工和高分子化工三者是有机地联系在一起的。至于无机化工所采用的原料既有可燃矿物,也有无机矿物。其产品主要有化肥,硫酸、硝酸、磷酸等酸类,纯碱、烧碱等碱类,还有无机盐,工业气体和无机非金属材料等。无机非金属材料中的硅酸盐材料,有时被划入传统的建筑材料领域。精细化工生产小批量、具有专门功能、主要用于消费的化学品。由于市场需求的发展,有些产品已变成大批量产品,但按习惯,往往仍视作精细化工产品。主要有染料、农药、医药、火炸药、信息记录材料、涂料、颜料、胶粘剂、催化剂、各种助剂和化学试剂等。医药和火炸药的生产又往往被分别划为独立的工业部门。如果从原料考虑,则精细化工是既有无机的,又有有机的,还有聚合物,是一个着眼于使用功能的综合部门。在微电子技术、生物技术和新型材料蓬勃发展的新技术革命中,精细化工给化学工业增添了新的活力。  化学工程又分为化工热力学、传递过程、单元操作、化学反应工程和化工系统工程。前两者是化学工程的理论基础,单元操作是化学工程最早形成的概念,它把化工生产的物理过程分解为若干单元,如流体输送、蒸馏、萃取、换热、干燥等。现在这些单元操作不仅在化工生产中起着重要作用,也广泛用于冶金、轻工、食品、核工业等与化工有共同特点的工业领域。单元操作仍在继续发展和完善,如近年来发展的颗粒学,作为粉体工程的一种理论,已应用于催化剂粒度设计、高温气体除尘、粮食干燥和输送。化学反应工程着眼于工业规模的化学反应过程的传递和动力学等规律,以解决反应器的设计和放大的问题。至于化工系统工程,则是运用系统工程的理论和方法,来解决化工过程优化问题的边缘学科。  化工所包含的核心内容基本上都可以归纳在上述六个分支之中,并且综论也是由这六个分支组成的。但是,这种分类方法并不是完全合理的,如催化剂工业被列入精细化工。虽然理论上讲,催化剂具有加快反应速率的专门功能,是不参与反应的少量物质,但在大型化生产的今天,催化剂的产量和装填量也是相当大的,中国1985年石油炼制催化剂的用量达20kt。而且催化剂的使用范围遍及燃料、无机、有机、高分子和精细化工等所有领域。这样的归属问题尚有很多。  此外,环境保护既是化工各部门不断解决的共性问题,也是化工能作出贡献的领域。18世纪兴起的近代化学工业,迄今已有200多年的历史,创造了无数的化工产品,同时也排放了废气、废液、废渣,污染了环境。因此,人们要求化学工业在转化原料为产品时,力求物尽其用,成为无排放工程。国民经济中其他部门的发展也或多或少造成公害。长此以往,超越大自然环境自净能力的排放,必将使人类的生活环境日益恶化。因此,有识之士对世界上大气、水、土壤、生物所受到的污染和破坏,发出了危险警告。为了解决污染,保护环境,使自然界的生态平衡走向新的和谐一致,化工将成为一支主力军。  抚今追昔,展望未来,化工将不囿于传统的范围,为改造世界作出难以估量的贡献。  化工对国家发展非常重要,其中乙烯是衡量工业发展的标准。  化学纤维  开放分类: 化学、纺织、高分子、纤维、面料  化学纤维  chemical fibre  用天然的或人工合成的高分子物质为原料、经过化学或物理方法加工而制得的纤维的统称。因所用高分子化合物来源不同,可分为以天然高分子物质为原料的人造纤维和以合成高分子物质为原料的合成纤维。化学纤维的制备,通常是先把天然的或合成的高分子物质或无机物制成纺丝熔体或溶液,然后经过过滤、计量,由喷丝头(板)挤出成为液态细流,接着凝固而成纤维。此时的纤维称为初生纤维,它的力学性能很差,必须经过一系列后加工工序才能符合纺织加工和使用要求。后加工主要针对纤维进行拉伸和热定形,以提高纤维的力学性能和尺寸稳定性。拉伸是使初生纤维中大分子或结构单元沿着纤维轴取向;热定形主要是使纤维中内应力松弛。湿纺纤维的后加工还包括水洗、上油、干燥等工序。纺制长丝时,经上述工序即可卷绕成筒;纺制短纤维时还须增加卷曲、切断和打包等工序。用来生产纺织品的原料中,以棉、麻、丝、毛(羊毛)的历史最悠久。但是天然资源毕竟有限,棉花的产量约有50千克/公顷,养蚕吐丝也要种桑树,增产羊毛则要发展畜牧业。因此,化学家开始研究,利用价格更便宜、来源更丰富的原料来纺纱织布,它们便是化学纤维。  化学纤维是用天然高分子化合物或人工合成的高分子化合物为原料,经过制备纺丝原液、纺丝和后处理等工序制得的具有纺织性能的纤维。  化学纤维又分为两大类:①人造纤维,以天然高分子化合物(如纤维素)为原料制成的化学纤维,如粘胶纤维、醋酯纤维。②合成纤维,以人工合成的高分子化合物为原料制成的化学纤维,如聚酯纤维、聚酰胺纤维、聚丙烯腈纤维。化学纤维具有强度高、耐磨、密度小、弹性好、不发霉、不怕虫蛀、易洗快干等优点,但其缺点是染色性较差、静电大、耐光和耐候性差、吸水性差。  人造纤维主要有粘胶纤维、硝酸酯纤维、醋酯纤维、铜铵纤维和人造蛋白纤维等,其中粘胶纤维又分普通粘胶纤维和有突出性能的新型粘胶纤维(如高湿模量纤维、超强粘胶纤维和永久卷曲粘胶纤维等)。  合成纤维主要有聚酰胺6纤维(中国称锦纶或尼龙6),聚丙烯腈纤维(中国称腈纶),聚酯纤维(中国称涤纶),聚丙烯纤维(中国称丙纶),聚乙烯醇缩甲醛纤维(中国称维纶)以及特种纤维(包括用四氟乙烯聚合制成的耐腐蚀纤维,耐200℃以上温度的耐高温纤维,强度大于10克/旦、模量大于200克/旦的高强度、高模量纤维,以及难燃纤维、弹性体纤维、功能纤维等)。20世纪50年代开展合成纤维的改性研究,主要是用物理或化学方法改善合成纤维的吸湿、染色、抗静电、抗燃、抗污、抗起球等性质,同时还增加了化学纤维的品种。  化学纤维是指以天然或人工高分子物质为原料制成的纤维。  一、化学纤维可根据原料来源的不同,分为再生纤维和合成纤维等。  (一)再生纤维  再生纤维的生产是受了蚕吐丝的启发,用纤维素和蛋白质等天然高分子化合物为原料,经化学加工制成高分子浓溶液,再经纺丝和后处理而制得的纺织纤维。  ■1.再生纤维素纤维 用天然纤维素为原料的再生纤维,由于它的化学组成和天然纤维素相同而物理结构已经改变,所以称再生纤维素纤维。  粘胶纤维是以天然棉短绒、木材为原料制成的,它具有以下几个突出的优点。  (1)手感柔软光泽好,粘胶纤维像棉纤维一样柔软,丝纤维一样光滑。  (2)吸湿性、透气性良好,粘胶纤维的基本化学成份与棉纤维相同,因此,它的一些性能和棉纤维接近,不同的是它的吸湿性与透气性比棉纤维好,可以说它是所有化学纤维中吸湿性与透气性最好的一种。  (3)染色性能好,由于粘胶纤维吸湿性较强,所以粘胶纤维比棉纤维更容易上色,色彩纯正、艳丽,色谱也最齐全。  粘胶纤维最大的缺点是湿牢度差,弹性也较差,织物易折皱且不易恢复;耐酸、耐碱性也不如棉纤维。  ■2.富强纤维 俗称虎木棉、强力人造棉。它是变性的粘胶纤维。  富强纤维同普通粘胶纤维(即人造棉、人造毛、人造丝)比较起来,有以下几个主要特点:  (1)强度大,也就是说富强纤维织物比粘胶纤维织物结实耐穿。  (2)缩水率小,富强纤维的缩水率比粘胶纤维小1倍。  (3)弹性好,用富强纤维制做的衣服比较板整,耐折皱性比粘胶纤维好。  (4)耐碱性好,由于富强纤维的耐碱性比粘胶纤维好,因此富强纤维织物在洗涤中对肥皂等洗涤剂的选择就不像粘胶纤维那样严格。  (二)合成纤维  合成纤维是由合成的高分子化合物制成的,常用的合成纤维有涤纶、  锦纶、腈纶、氯纶、维纶、氨纶等。  ■1.涤纶 涤纶的学名叫聚对苯二甲酸乙二酯,简称聚酯纤维。涤纶是我国的商品名称,国外有称“大可纶”,“特利纶”,“帝特纶”等。  涤纶由于原料易得、性能优异、用途广泛、发展非常迅速,现在的产量已居化学纤维的首位。  涤纶最大的特点是它的弹性比任何纤维都强;强度和耐磨性较好,由它纺织的面料不但牢度比其它纤维高出3~4倍,而且挺括、不易变形,有“免烫”的美称;涤纶的耐热性也是较强的;具有较好的化学稳定性,在正常温度下,都不会与弱酸、弱碱、氧化剂发生作用。  缺点是吸湿性极差,由它纺织的面料穿在身上发闷、不透气。另外,由于纤维表面光滑,纤维之间的抱合力差,经常摩擦之处易起毛、结球。  ■2.锦纶 锦纶是我国的商品名称,它的学名叫聚酰胺纤维;有锦纶-66,锦纶-1010,锦纶-6等不同品种。锦纶在国外的商品名又称“尼龙”,“耐纶”,“卡普纶”,“阿米纶”等。锦纶是世界上最早的合成纤维品种,由于性能优良,原料资源丰富,因此一直是合成纤维产量最高的品种。直到1970年以后,由于聚酯纤维的迅速发展,才退居合成纤维的第二位。  锦纶的最大特点是强度高、耐磨性好,它的强度及耐磨性居所有纤维之首。  锦纶的缺点与涤纶一样,吸湿性和通透性都较差。在干燥环境下,锦纶易产生静电,短纤维织物也易起毛、起球。锦纶的耐热、耐光性都不够好,熨烫承受温度应控制在140℃以下。此外,锦纶的保形性差,用其做成的衣服不如涤纶挺括,易变形。但它可以随身附体,是制做各种体形衫的好材料。  ■3.腈纶 腈纶是国内的商品名称,其学名为聚丙烯腈纤维。国外又称“奥纶”,“考特尔”,“德拉纶”等。  腈纶的外观呈白色、卷曲、蓬松、手感柔软,酷似羊毛,多用来和羊毛混纺或作为羊毛的代用品,故又被称为“合成羊毛”。  腈纶的吸湿性不够好,但润湿性却比羊毛、丝纤维好。它的耐磨性是合成纤维中较差的,腈纶纤维的熨烫承受温度在130℃以下。  ■4.维纶 维纶的学名为聚乙烯醇缩甲醛纤维。国外又称“维尼纶”,“维纳尔”等。  维纶洁白如雪,柔软似棉,因而常被用作天然棉花的代用品,人称“合成棉花”。维纶的吸湿性能是合成纤维中吸湿性能最好的。另外,维纶的耐磨性、耐光性、耐腐蚀性都较好。  ■5.氯纶 氯纶的学名为聚氯乙烯纤维。国外有“天美龙”,“罗维尔”之称。  氯纶的优点较多,耐化学腐蚀性强;导热性能比羊毛还差,因此,保温性强;电绝缘性较高,难燃。另外,它还有一个突出的优点,即用它织成的内衣裤可治疗风湿性关节炎或其它伤痛,而对皮肤无刺激性或损伤。  氯纶的缺点也比较突出,即耐热性极差。  ■6.氨纶 氨纶的学名为聚氨酯弹性纤维,国外又称“莱克拉”,“斯潘齐尔”等。它是一种具有特别的弹性性能的化学纤维,目前已工业化生产,并成为发展最快的一种弹性纤维。  氨纶弹性优异。而强度比乳胶丝高2~3倍,线密度也更细,并且更耐化学降解。氨纶的耐酸碱性、耐汗、耐海水性、耐干洗性、耐磨性均较好。  氨纶纤维一般不单独使用,而是少量地掺入织物中,如与其它纤维合股或制成包芯纱,用于织制弹力织物。  二、按几何形状分为长丝、短纤维、异形纤维、复合纤维和变形丝。  (1)长丝:化学纤维加工中不切断的纤维。长丝又分为单丝和复丝。  单丝:只有一根丝,透明、均匀、薄。  复丝:几根单丝并合成丝条。  (2)短纤维:化学纤维在纺丝后加工中可以切断成各种长度规格的纤维。  (3)异形纤维:改变喷丝头形状而制得的不同截面或空心的纤维。  ①、改变纤维弹性,抱合性与覆盖能力,增加表面积,对光线的反射性增强。  ②、特殊光泽。如五叶形、三角形。  ③、质轻、保暖、吸湿性好。如中空。  ④、减少静电。  ⑤、改善起毛、起球性能,提高纤维摩擦系数,改善手感。  (4)复合纤维:将两种或两种以上的聚合体,以熔体或溶液的方式分别输入同一喷丝头,从同一纺丝孔中喷出而形成的纤维。又称为双组分或多组分纤维。复合纤维一般都具有三度空间的立体卷曲,体积高度蓬松,弹性好,抱合好,覆盖能力好。特点是:  ①、结构不均匀。  ②、组分不均匀。  ③、膨胀不均匀。  (5)变形丝:经过变形加工的化纤纱或化纤丝。  ①、高弹涤纶丝:利用合纤的热塑性加工,50~300%的伸长率。  ②、低弹涤纶丝:伸长率控制在35%以下。  ③、腈纶膨体纱;利用腈纶的热弹性。热拉伸——高收缩,收缩可达45~53%,与低收缩纤维混合纺纱,经蒸汽处理。  三、按照用途分为普通纤维和特种纤维。  (1)普通纤维:再生纤维与合成纤维。  (2)特种纤维:耐高温纤维、高强力纤维、高模量纤维、耐辐射纤维。  (化学纤维就是化纤)懂了八*^^*

不同的厂是不一样的,那要看什么厂。

化纤与纺织技术杂志官网订阅价格

C2P是英文Cluster to Platform 的缩写,中文名称为“C2P智能工业化互联网生态集群系统”简称C2P,是指企业智能工业化互联网思维商业创新模式,企业通过运用大数据、云计算、物联网、互联网、移动互联网及工业互联网等先进技术,建立起高度灵活的、个性化、数字化生产销售模式。通过智能自动化生产以及全网营销的快速反应,为客户提供更优质的服务,从而促进企业的快速发展。 系统以打造众多智能化企业(Business)通过平台合作交流,组成智能的互联网产业集群(Cluster);当众多智能的互联网产业集群聚集,形成智能工业化互联网生态集群平台系统( Platform)。 C2P智能工业化互联网生态集群系统是最符合传统企业转型智能化互联网企业的创新电子商务模式,它将成为未来电商发展的主流模式。 通常我们所涉及的电商模式都比较单一,如B2B(也有写成BTB)是指企业对企业之间的营销关系,它将企业内部网,通过B2B网站与客户紧密结合起来,通过网络的快速反应,为客户提供更好的服务,从而促进企业的业务发展。 C2B,C2M几乎是一种电子商务模式,C2B即顾客对企业(customer to business)。C2M是英文(CustomertoManufactory)顾客对工厂的缩写,而其中文简称为“客对厂”真正的C2M 应该先有消费者需求产生而后有企业生产,即先有消费者提出需求,后有生产企业按订单需求组织生产加工。O2O即Online To Offline(在线离线/线上到线下),是指将线下的商务机会与互联网结合,让互联网成为线下交易的前台,O2O的概念非常广泛,只要产业链中既可涉及到线上,又可涉及到线下,就可通称为O2O。但C2P模式为企业及消费者提供了一种新型的销售及需求环境。C2P模式整合了B2B、C2B、C2M及O2O等电商模式的所有优势功能。 在C2P平台上,企业与企业间可以进行批发合作(B2B),也可以客对厂即先有消费者提出需求,后有生产企业按订单需求组织生产加工。当个人消费者及企业无法找到符合自己需求的产品时,还可以参与产品设计、生产和定价等彰显消费者个性化需求的私人订制,选择生产企业进行定制化生产(C2B、C2M)。企业也可以将线下的商务机会与互联网结合,让互联网成为线下交易的前台(O2O)C2P平台通过这种多元化生态电商模式将平台上的企业及客户紧密的结合起来,打造出一个完美个供需生态链,为客户提供更全面、更优质的服务,让需求群体更方便的找到满足自己需求的产品,让厂商群体更容易获取自己所需的订单。

化学纤维织物作为近代发展起来的新型面料,其种类较多,现已广泛应用于衣物、窗帘、家居饰品等众多领域,化纤面料的好坏是由织成它的化学纤维本身的特性来决定的。下面我们就来了解一下化纤面料好吗,化纤面料的价格。  什么是化纤面料  化纤面料是由化学纤维加工成的纯纺、混纺或交织物,是由纯化纤织成的织物。与天然纤维间的混纺、交织物,不属于化纤织物。其种类很多,主要有虎木棉、强力人造棉、涤纶、锦纶、腈纶、氯纶、维纶、氨纶等。  化纤面料好吗  在我国,肯定大多数人都认为化纤面料没有天然纤维面料好,但是在国外,大多数的消费者却认为化纤面料更具有舒适性、功能性和高感性。而现实是化纤面料利用现代高科技,从仿真到超真,不断展现其新的优势,广泛应用于服饰、家居饰品、生活用品等领域。  1、涤纶的外观和手感已与天然纤维一样,甚至其舒适性、易打理性和染色鲜度都已超过天然纤维。因此,某些上等化纤面料的价格已超过天然纤维。  2、化纤面料的功能更优越,在化纤面料中添加抗菌剂,可以增加其抗菌功能。添加矿物微粉,使其具有低辐射功能或远红外辐射功能。此外很多化纤面料还具有耐紫外线辐射、耐磨、耐高温等功能。  3、化纤面料更具个性化,可以通过现代纺织加工技术,将不同化纤的性能取长补短,生产出各式各样综合性能超过天然纤维的纺织品。如生产出难燃纤维、耐高温纤维、弹性体纤维等等。  化纤面料的特点  1、结实耐用,因为化纤面料为高分子织物,所以面料的密度大,相对牢度也比较大,也就是人们常说的非常结实。  2、易打理,抗皱免烫,化纤面料即使被揉为一团后,打开来褶皱也是很少的,或者没有褶皱。  3、生产成本低,可以进行工业化大规模生产,而且原料价格也是相对天然纤维的原料价格更低。  4、仿真性,模仿天然纤维,已具有比较好的吸湿性和舒适性,甚至舒适度超过某些天然纤维。  5、更具有个性,现代纺织加工技术,让化纤面料具有难燃性、耐高温、耐辐射、耐磨性、高弹性、抗菌性等独特个性。  化纤面料的分类  化学纤维可根据原料来源的不同,分为再生纤维和合成纤维等。  1、再生纤维又可分为再生纤维素纤维和富强纤维,俗称虎木棉、强力人造棉。  2、合成纤维常见的种类有涤纶、锦纶、腈纶、氯纶、维纶、氨纶等。  化纤面料的价格  化纤面料因为其科技含量不同、特性不同、档次不同、功能不同、种类不同,其价格差别都是比较大的。这里列举一般的化纤面料价格,涤纶面料的价格在4元每米到74元每米之间都有,氨纶面料的价格在8元每米到60元每米之间,腈纶面料的价格在12元每米到85元每米。  看了以上的介绍后,您是否对化纤面料有了更深层次的了解了呢?您对化纤面料好吗,化纤面料的价格想必已经心中有数了吧。如今化纤面料已经对于我们的生活无处不在,留心身边的织物,看它里面含有哪种化纤面料。

优点是色彩鲜艳、质地柔软、悬垂挺括、滑爽舒适。它们的缺点则是耐磨性、耐热性、吸湿性、透气性较差,遇热容易变形,容易产生静电。

化纤与纺织技术杂志官网订购

B类就是可以直接贴身穿的,大多是内衣,t恤一类。C类是不可以贴身穿的,多是外套。衣服的水洗标上都有标注。聚酯纤维就是涤纶,化纤的东西贴身穿起静电,大多不能直接接触皮肤

这个这个。。。跟成分是木有关系的。 GB 18401-2010 国家纺织产品基本安全技术规范有明确规定,可以去下载一份看看。 分为三类一、A类 婴幼儿纺织产品(年龄在36个月及以下婴幼儿穿着或使用的纺织产品)二、B类 直接接触皮肤的纺织产品(在穿着或使用时,产品的大部分面积直接与人体皮肤接触的 纺织产品)三、C类 非直接接触皮肤的纺织产品(在穿着或使用时,产品不直接与人体皮肤接触,或仅有小 部分面积直接与人体皮肤接触的纺织产品)

引言:提起“纳米”这个词,可能很多人都听说过,但什么是纳米,什么是纳米材料,可能很多人并不一定清楚,本文主要对纳米及纳米材料的研究现状和发展前景做了简介,相信随着科学技术的发展,会有越来越多的纳米材料走进人们的生活,为人类造福。纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就象毫米、微米一样,纳米是一个尺度概念,并没有物理内涵。当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。 研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。 1研究形状和趋势 纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。 纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米cu材料,硬度比粗晶cu提高5倍;晶粒为7urn的pd,屈服应力比粗晶pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望, 根据纳米材料发展趋势以及它在对世纪高技术发展所占有的重要地位,世界发达国家的政府都在部署本来10~15年有关纳米科技研究规划。美国国家基金委员会(nsf)1998年把纳米功能材料的合成加工和应用作为重要基础研究项目向全国科技界招标;美国darpa(国家先进技术研究部)的几个计划里也把纳米科技作为重要研究对象;日本近年来制定了各种计划用于纳米科技的研究,例如 ogala计划、erato计划和量子功能器件的基本原理和器件利用的研究计划,1997年,纳米科技投资28亿美元;德国科研技术部帮助联邦政府制定了1995年到2010年15年发展纳米科技的计划;英国政府出巨资资助纳米科技的研究;1997年西欧投资2亿美元。据1999年7月8日《自然》最新报道,纳米材料应用潜力引起美国白宫的注意;美国总统克林顿亲自过问纳米材料和纳米技术的研究,决定加大投资,今后3年经费资助从5亿美元增 加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。 2国际动态和发展战略 1999年7月8日《自然》(400卷)发布重要消息 题为“美国政府计划加大投资支持纳米技术的兴 起”。在这篇文章里,报道了美国政府在3年内对纳米技术研究经费投入加倍,从5亿美元增加到5亿美元。克林顿总统明年2月将向国会提交支持纳米技术研究的议案请国会批准。为了加速美国纳米材料和技术的研究,白宫采取了临时紧急措施,把原97亿美元的资助强度提高到5亿美元。《美国商业周刊》8月19日报道,美国政府决定把纳米技术研究列人21世纪前10年前11个关键领域之一,《美国商业周刊》在掌握21世纪可能取得重要突破的3个领域中就包括了纳米技术领域(其它两个为生命科学和生物技术,从外星球获得能源)。美国白宫之所以在20世纪即将结束的关键时刻突然对纳米材料和技术如此重视,其原因有两个方面:一是德科学技术部1996年对2010年纳米技术的市场做了预测,估计能达到14400亿美元,美国试图在这样一个诱人的市场中占有相当大的份额。美国基础研究的负责人威廉姆斯说:纳米技术本来的应用远远超过计算机工业。美国白宫战略规划办公室还认为纳米材料是纳米技术最为重要的组成部分。在《自然》的报道中还特别提到美国已在纳米结构组装体系和高比表面纳米颗粒制备与合成方面领导世界的潮流,在纳米功能涂层设计改性及纳米材料在生物技术中的应用与欧共体并列世界第一,纳米尺寸度的元器件和纳米固体也要与日本分庭抗礼。1999年7月,美国加尼福尼亚大学洛杉矾分校与惠普公司合作研制成功100urn芯片,美国明尼苏达大学和普林斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。 最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。 3国内研究进展 我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介入,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。 目前,我国有60多个研究小组,有600多人从事纳米材料的基础和应用研究,其中,承担国家重大基础研究项目的和纳米材料研究工作开展比较早的单位有:中国科学院上海硅酸盐研究所、南京大学。中国科学院固体物理研究所、金属研究所、物理研究所、中国科技大学、中国科学院化学研究所、清华大学,还有吉林大学、东北大学、西安交通大学、天津大学、青岛化工学院、华东师范大学,华东理工大学、浙江大学、中科院大连化学物理研究所、长春应用化学 研究所、长春物理研究所、感光化学研究所等也相继开展了纳米材料的基础研究和应用研究。我国纳米材料基础研究在过去10年取得了令人瞩目的重要研究成果。已采用了多种物理、化学方法制备金属与合金(晶态、非晶态及纳米微晶)氧化物、氮化物、碳化物等化合物纳米粉体,建立了相应的设备,做到纳米微粒的尺寸可控,并制成了纳米薄膜和块材。在纳米材料的表征、团聚体的起因和消除、表面吸附和脱附、纳米复合微粒和粉体的制取等各个方面都有所创新,取得了重大的进展,成功地研制出致密度高、形状复杂、性能优越的纳米陶瓷;在世界上首次发现纳米氧化铝晶粒在拉伸疲劳中应力集中区出现超塑性形变;在颗粒膜的巨磁电阻效应、磁光效应和自旋波共振等方面做出了创新性的成果;在国际上首次发现纳米类钙钛矿化合物微粒的磁嫡变超过金属gd;设计和制备了纳米复合氧化物新体系,它们的中红外波段吸收率可达 92%,在红外保暖纤维得到了应用;发展了非晶完全晶化制备纳米合金的新方法;发现全致密纳米合金中的反常hall-petch效应。 近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。一是大面积定向碳管阵列合成:利用化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,孔径基本一致,约20urn,长度约100pm,纳米管阵列面积达到 3mm 3mm。其定向排列程度高,碳纳米管之间间距为100pm。这种大面积定向纳米碳管阵列,在平板显示的场发射阴极等方面有着重要应用前景。这方面的文章发表在1996年的美国《科学》杂志上。二是超长纳米碳管制备:首次大批量地制备出长度为2~3mm的超长定向碳纳米管列阵。这种超长碳纳米管比现有碳纳米管的长度提高1~2个数量级。该项成果已发表于1998年8月出版的英国《自然》杂志上。英国《金融时报》以“碳纳米管进入长的阶段”为题介绍了有关长纳米管的工作。三是氮化嫁纳米棒制备:首次利用碳纳米管作模板成功地制备出直径为3~40urn、长度达微米量级的发蓝光氮化像一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一。四是硅衬底上碳纳米管阵列研制成功,推进碳纳米管在场发射平面和纳米器件方面的应用。五是制备成功一维纳米丝和纳米电缆,该成果研究论文在瑞典召开的1998年第四届国际纳米会议宣读后,许多外国科学家给予高度评价。六是用苯热法制备纳米氮化像微晶;发现了非水溶剂热合成技术,首次在300℃左右制成粒度达30urn的氮化锌微晶。还用苯合成制备氮化铬(crn)、磷化钴(cop)和硫化锑(sbs)纳米微晶,论文发表在1997年的《科学》杂志上。七是用催化热解法制成纳米金刚石;在高压釜中用中温(70℃)催化热解法使四氯化碳和钠反应制备出金刚石纳米粉,论文发表在1998年的《科学》杂志上。美国《化学与工程新闻》杂志还发表题为“稻草变黄金---从四氯化碳(cc14)制成金刚石”一文,予以高度评价。 我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,中科院上海硅酸盐研究所、南京大学、中科院固体物理所、中科院金属所、物理所、中国科技大学、清华大学和中科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才做出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的中坚力量。 在过去10年,我国已建立了多种物理和化学方法制备纳米材料,研制了气体蒸发、磁控溅射、激光诱导cvd、等离子加热气相合成等10多台制备纳米材料的装置,发展了化学共沉淀、溶胶一凝胶、微乳液水热、非水溶剂合成和超临界液相合成制备包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料的方法,研制了性能优良的多种纳米复合材料。近年来,根据国际纳米材料研究的发展趋势,建立和发展了制备纳米结构(如纳米有序阵列体系、介孔组装体系、mcm-41等)组装体系的多种方法,特别是自组装与分子自组装、模板合成、碳热还原、液滴外延生长、介孔内延生长等也积累了丰富的经验,已成功地制备出多种准一维纳米材料和纳米组装体系。这些方法为进一步研究纳米结构和准一纳米材料的物性,推进它们在纳米结构器件的应用奠定了良好的基础。纳米材料和纳米结构的评价手段基本齐全,达到了国际90年代末的先进水平。 综上所述,“八五”期间我国在纳米材料研究上获得了一批创新性的成果,形成了一支高水平的科研队伍,基础研究在国际上占有一席之地,应用开发研究也出现了新局面,为我国纳米材料研究的继续发展奠定了基础。10年来,我国科技工作者在国内外学术刊物上共发表纳米材料和纳米结构的论文2400多篇,在国际上排名第五位,其中纳米碳管和纳米团簇在1998年度欧洲文献情报交流会上德国马普学会固体所一篇研究报告中报道中国科技工作者发表论文已超过德国,在国际排名第三位,在国际历次召开的有关纳米材料和纳米结构的国际会议上,我国纳米材料科技工作者共做邀请报告24次。到目前为止,纳米材料研究获得国家自然科学三等奖1项,国家发明奖2项;院部级自然科学一、二等奖3项,发明一等奖3项,科技进步特等奖1项;申请专利 79项,其中发明专利占50%,已正式授权的发明专利6项,已实现成果转化的发明专利6项。 最近几年,我国纳米科技工作者在国际上发表了一些有影响的学术论文,引起了国际同行的关注和称赞。在《自然》和《科学》杂志上发表有关纳米材料和纳米结构制备方面的论文6篇,影响因子在6以上的学术论文(phys.rev.lett,j.ain.chem.soc .)近20篇,影响因子在3以上的31篇,被sci和ei收录的文章占整个发表论文的 59%。 1998年 6月在瑞典斯特哥尔摩召开的国际第四届纳米材料会议上,对中国纳米材料研究给予了很高评价,指出这几年来中国在纳米材料制备方面取得了激动人心的成果,在大会总结中选择了8个纳米材料研究式作取得了比较好的国家在闭幕式上进行介绍,中国是在美国、日本、德国、瑞典之后进行了大会发言。4 纳米产业发展趋势(1)信息产业中的纳米技术:信息产业不仅在国外,在我国也占有举足轻重的地位。2000年,中国的信息产业创造了gdp5800亿人民币。纳米技术在信息产业中应用主要表现在3个方面:①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。因为不管通讯、集成还是显示器件,都要原器件,美国已经着手研制,现在有了单电子器件、隧穿电子器件、自旋电子器件,这种器件已经在实验室研制成功,而且可能在2001年进入市场。②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些原器件转为商品进入市场也还要10年时间,所以,中国要超前15年到20年对这些方面进行研究。③网络通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振器、微电容、微电极等方面,我国的研究水平不落后,在安徽省就有。④压敏电阻、非线性电阻等,可添加氧化锌纳米材料改性。(2)环境产业中的纳米技术:纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。要净化环境,必须用纳米技术。我们现在已经制备成功了一种对甲醛、氮氧化物、一氧化碳能够降解的设备,可使空气中的大于10ppm的有害气体降低到1ppm,该设备已进入实用化生产阶段;利用多孔小球组合光催化纳米材料,已成功用于污水中有机物的降解,对苯酚等其它传统技术难以降解的有机污染物,有很好的降解效果。近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。(3)能源环保中的纳米技术:合理利用传统能源和开发新能源是我国当前和今后的一项重要任务。在合理利用传统能源方面,现在主要是净化剂、助燃剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。在开发新能源方面国外进展较快,就是把非可燃气体变成可燃气体。现在国际上主要研发能量转化材料,我国也在做,它包括将太阳能转化成电能、热能转化为电能、化学能转化为电能等。(4)纳米生物医药:这是我国进入wto以后一个最有潜力的领域。目前,国际医药行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医药就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法。在提取精华后,用一种很少的骨架,比如人体可吸收的糖、淀粉,使其高效缓释和靶向药物。对传统药物的改进,采用纳米技术可以提高一个档次。(5)纳米新材料:虽然纳米新材料不是最终产品,但是很重要。据美国测算,到21世纪30年代,汽车上40%钢铁和金属材料要被轻质高强材料所代替,这样可以节省汽油40%,减少co2,排放40%,就这一项,每年就可给美国创造社会效益1000亿美元。此外,还有各种功能材料,玻璃透明度好但份量重,用纳米改进它,使它变轻,使这种材料不仅有力学性能,而且还具有其他功能,还有光的变色、贮光,反射各种紫外线、红外线,光的吸收、贮藏等功能。(6)纳米技术对传统产业改造:对于中国来说,当前是纳米技术切入传统产业、将纳米技术和各个领域技术相结合的最好机遇。首先是家电、轻工、电子行业。合肥美菱集团从1996开始研制纳米冰箱,可折叠的pvc磁性冰箱门封不发霉,用的是抗菌涂料,里面的果盘都采用纳米材料,发展轻工、电子和家用电器可以带动涂料、材料、电子原器件等行业发展;其次是纺织。人造纤维是化纤和纺织行业发展的趋势,中国纺织要在进入wto后能占据有利地位,现在就必须全方位应用纳米技术、纳米材料。去年关于保温被、保温衣的电视宣传,提到应用了纳米技术,特殊功能的有防静电的、阻燃的等等,把纳米的导电材料组装到里面,可以在11万伏的高压下,把人体屏蔽,在这一方面,纺织行业应用纳米技术形势看好;第三是电力工业。利用纳米技术改造20万伏和11万伏的变压输电瓷瓶,可以全方位提高11万伏的瓷瓶耐电冲击的性能,而且釉不结霜,其它综合性能都很好;第四是建材工业中的油漆和涂料,包括各种陶瓷的釉料、油墨,纳米技术的介入,可以使产品性能升级。1999年8月20日《美国商业周刊》在展望21世纪可能有突破性进展的领域时,对生命科学和生物技术、纳米科学和纳米技术及从外星球上索取能源进行了预测和评价,并指出这是人类跨入21世纪面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为下一世纪先进的国家。挑战严峻,机遇难得,我们必须加倍重视纳米科技的研究,注意纳米技术与其它领域的交叉,加速知识创新和技术创新,为21世纪中国经济的腾飞奠定雄厚的基础。编者按:激动人心的纳米时代已经到来,人们的生活即刻将发生巨大的变化,然而,我们也要清醒地看到,市场上真正成熟的纳米材料并不是很多。中科院院士白春礼院士认为,“真正意义的纳米时代还没有到来,我们正在充满信心地迎接纳米时代的到来。”白春礼说,“人类进入纳米科技时代的重要标志是纳米器件的研制水平和应用程度。”纳米科技发展到今天,距离纳米时代的到来还有多远呢,白春礼说,“纳米研究目前还有许多基础研究在进行中,在纳米尺度上还有大量原理性问题尚待研究,纳米科技现在的发展水平大概相当于计算机技术在20世纪50年代的发展水平,人类最终进入纳米时代还需要30到50年的时间,50年后纳米科技有可能像今天计算机技术一样普及。”对于纳米科技,科学的态度是积极参与,脚踏实地地推动这一前沿科技的健康发展,既不需要商业炒作,也不需要科学炒作。参考资料:

什么是纳米材料 广义地说,所谓纳米材料,是指微观结构至少在一维方向上受纳米尺度(1nm——100nm)调制的各种固体超细材料,它包括零维的原子团蔟(几十个原子的聚集体)和纳米微粒;一维调制的纳米多层膜;二维调制的纳米微粒膜(涂层);以及三维调制的纳米相材料。简单地说,是指用晶粒尺寸为纳米级的微小颗粒制成的各种材料,其纳米颗粒的大小不应超过100纳米,而通常情况下不应超过10纳米。目前,国际上将处于1—100nm纳米尺度范围内的超微颗粒及其致密的聚集体,以及由纳米微晶所构成的材料,统称为纳米材料,包括金属、非金属、有机、无机和生物等多种粉末材料。 纳米材料按其结构可以分为四类:具有原子蔟和原子束结构的称为零维纳米材料;具有纤维结构的称为一维纳米材料;具有层状结构的称为二维纳米材料;晶粒尺寸至少一个方向在几个纳米范围内的称为三维纳米材料。还有就是以上各种形式的复合材料。 按化学组份,可分为纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料。 按材料物性,可分为纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。 按应用,可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。

化纤与纺织技术杂志官网订购网

B类就是可以直接贴身穿的,大多是内衣,t恤一类。C类是不可以贴身穿的,多是外套。衣服的水洗标上都有标注。聚酯纤维就是涤纶,化纤的东西贴身穿起静电,大多不能直接接触皮肤

B类就是可以直接贴身穿的,大多是内衣,t恤一类。C类是不可以贴身穿的,多是外套。衣服的水洗标上都有标注。聚酯纤维就是涤纶,化纤的东西贴身穿起静电,大多不能直接接触皮肤。按照新国标,服装可分为A、B、C三个安全级别,明确只有A类产品可供婴幼儿穿着。不同级别也意味着对一些有害物指标的限量完全不同,A级最严,如对甲醛的要求,A级的标准是≤20mg/公斤,而B类则是≤75mg/公斤,C类为≤300mg/公斤。扩展资料:B类:直接接触皮肤的纺织产品    内衣、衬衣、裙子、裤子、袜子、床单、被套、毛巾、泳衣、帽子 。   C类:非直接接触皮肤的纺织产品    外衣、裙子、裤子、窗帘、床罩、墙布。1、国家质检总局、国家标准委批准发布了强制性国家标准GB31701-2015《婴幼儿及儿童纺织产品安全技术规范》。这是我国第一个专门针对婴幼儿及儿童纺织产品(童装)的强制性国家标准。据国家质检总局相关负责人介绍,该标准对童装的安全性能进行了全面规范,将有助于引导生产企业提高童装的安全与质量,保护婴幼儿及儿童健康安全。新标准于2016年6月1日正式实施。2、样品开封后,立即进行该项目的检测。检测应在洁净的无异常气味的环境中进行。操作者洗净双手后戴手套,仔细嗅闻试样所带有的气味,如检测出有霉味、高沸程石油味、鱼腥味、芳香烃气味中的一种或几种,则判为"有异味",并记录异味类别。否则判为"无异味"。应有2人独立评判,并以2人一致的结果为样品检测结果。如2人检测结果不一致,则增加1人检测,最终以2人一致的结果为样品检测结果。3、对违反本技术规范的行为,依据《中华人民共和国标准化法》、《中华人民共和国产品质量法》等有关法律、法规的规定处罚。4、实施监督1)依据《中华人民共和国标准化法》及《中华人民共和国标准化法实施条例》的有关规定,从事纺织产品科研、生产、经营的单位和个人,必须严格执行本技术规范。不符合本技术规范的产品。禁止生产、销售和进口。2)依据《中华人民共和国标准化法》及《中华人民共和国标准化法实施条例》的有关规定,国家机关、企事业单位及全体公民均有权检举、申诉、投诉违反本技术规范的行为。3)依据《中华人民共和国产品质量法》的有关规定,国家对纺织产品质量实施以抽查为主要方式的监督检查制度。4)本技术规范如涉及产品认证等工作按国家有关法律、法规的规定执行。参考资料:百度百科--国家纺织产品基本安全技术规范B类和C类

2011韩版时尚女装各种面料介绍-女衣柜  斜纹棉——是织物组织的一种,其它的还有平纹,缎纹。斜纹的比平纹柔软,光泽也好于平纹,单牢固度稍差。  精梳棉——是一种纤维,是去除棉纤维中短纤维而留下的长的纤维,做纱线用的,织出来的东西,手感好,光滑,薄,而且质量比其它的要高。  棉类混纺——是指棉和其它混合,比如棉涤,棉的占一定比例,涤的占一定比例。混纺的手感及特性要看成分的,成分不同手感就不同。  莫代尔 (Modal)——是一种高湿模量粘胶纤维的纤维素再生纤维,该纤维的原料采用云杉、榉木制成的木浆粕,通过专门的纺丝工艺加工成纤维。该产品原料全部为天然材料,对人体无害,并能够自然分解,对环境无害。 莫代尔纤维制成木质浆液后经过专门的纺丝工艺制作而成,是一种纤维素纤维,所以与棉一样同属纤维素纤维,是纯正的天然纤维。目前该纤维的生产企业有奥地利兰精公司,唐山三友集团兴达化纤有限公司2010年9月在国内首家研制成功  莫代尔产品因为它本身具有的很好的柔软性和优良的吸湿性但其织物挺括性差的特点,现在大多用在内衣的生产。莫代尔的针织物主要用于制作内衣。但是莫代尔具有银白的光泽、优良的可染性及染色后色泽鲜艳的特点,足以使之成为外衣所用之才  罗马呢料——早期以红或紫红色为主,包括各类羊毛、羊绒织成的织物等。它通常适用以制作礼服、西装、大衣等正规、高档的服装。  优点是防皱耐磨,手感柔软,高雅挺括,富有弹性,保暖性强。它的缺点主要是洗涤较为困难,不大适用于制作夏装。  cvc拉架棉——CVC就是棉与化纤的混纺面料;拉架在编织时需使用特殊工艺,加入其他纤维使棉的弹性和抗拉强度增加。是春夏季服装经常出现的面料,这些制作出来的服装质量比较好。一般都用做制作时装。

纳米技术在生活中的应用体现在衣食住行。1、衣在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。2、食利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。纳米食品色香味俱全,还有益健康。3、住纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。4、行纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率、工作寿命和可靠性。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。纳米材料具有许多独特功能,而且用量少,但却赋予材料意想不到的高性能,附加值甚高。纳米复合高分子材料、纳米抗菌、保鲜、除臭材料等等,由于纳米材料的尺寸小,比血液中的红血球小一千多倍,比细菌小几十倍,气体通过其扩散的速度比常规材料快几千倍。纳米颗粒与生物细胞膜的化物作用很强,极易进入细胞内。

  • 索引序列
  • 化纤与纺织技术杂志官网订阅
  • 化纤与纺织技术杂志官网订阅电话
  • 化纤与纺织技术杂志官网订阅价格
  • 化纤与纺织技术杂志官网订购
  • 化纤与纺织技术杂志官网订购网
  • 返回顶部