首页 > 论文期刊知识库 > 纤维素的综合利用论文题目怎么写

纤维素的综合利用论文题目怎么写

发布时间:

纤维素的综合利用论文题目怎么写

适合各种情况(年龄、性别、生理条件、劳动负荷、健康状态等)的食物、营养素供给量和配比。合理营养可维持人体的正常生理功能,促进健康和生长发育,提高机体的劳动能力、抵抗力和免疫力,有利于某些疾病的预防和治疗。缺乏合理营养将产生障碍以至发生营养缺乏病或营养过剩性疾病(肥胖症和动脉粥样硬化等)。根据现代营养学的研究,人体所需的各种营养素分为7类 ,即蛋白质 、脂肪 、糖类(碳水化合物)、无机盐(包括微量元素)、水、维生素和膳食纤维。对这些营养素不仅有量的需求,而且各营养素之间还应有合适的配比。  合理营养要求三大营养素供热占总热能的百分比为蛋白质10%~15%、脂肪20%~30%,糖类(碳水化合物)60%~70%。蛋白质是构成人体组织不可缺少的物质,也是构成各种酶、抗体及某些激素的主要成分。蛋白质可促进生长发育,维持毛细血管的正常渗透性,并供给热能,缺乏时可致生长发育迟缓、体重减轻、容易疲劳、循环血容量减少、贫血、对传染病抵抗力降低、创伤和骨折不易愈合、病后恢复迟缓,严重缺乏时可致营养不良性水肿。脂肪可供给热能,构成组织脂肪及储存脂肪,供给必需脂肪酸(亚油酸),脂肪还可促进脂溶性维生素的吸收。但脂肪摄入过多可致肥胖和动脉粥样硬化。动物性脂肪中含饱和脂肪酸较多(鱼类除外),植物油含多不饱和脂肪酸较多(棕榈油、椰子油除外),饱和脂肪酸可使血清胆固醇量增高,多不饱和脂肪酸可降低血胆固醇及甘油三酯,减少血小板的粘附性。所以膳食中饱和脂肪酸与多不饱和脂肪酸的比例(S/P)以1∶1为宜,这样既照顾到必需脂肪酸的供应,又可预防一些与脂肪营养有关的疾病(如冠心病、肥胖症等)的发生。碳水化合物是热能的食物来源,有节省蛋白质的作用,可保证正常量的血糖、肝糖原和肌糖原,以维持大脑活动、肝脏解毒和肌肉活动。碳水化合物摄入不足可导致热能不足,生长发育迟缓,易于疲劳,摄入过多可致肥胖。膳食纤维为人体健康所必需,为人体内物质代谢所必需,不能由人体合成,只能由食物供给。钙、磷、镁、钾、钠等无机盐是组成机体的必要成分,具有重要的生理功能。在人体组织中含量少于体重的01%的铁、碘、铜、锌、锰、钛、钼、硒、铬、氟、镍等为人体必需的微量元素,与酶、维生素、激素、核酸有密切关系。  若按每日3餐的热能分配,以早餐占25%~30%、午餐占35%~45%、晚餐占30%~35%较为合理,当然还可以根据各地的生活和作息时间而作适当的修改。  要达到合理营养,必须合理调配膳食,满足对各种营养素的要求。每个国家都根据各自的情况和生活习惯、食物的生产和供应情况,提出各种不同年龄、性别人群推荐的膳食供给量(RDA)。  营养素(nutrient)是指食物中可给人体提供能量、机体构成成分和组织修复以及生理调节功能的化学成分。凡是能维持人体健康以及提供生长、发育和劳动所需要的各种物质均称为营养素。人体所必需的营养素有蛋白质、脂肪、碳水化合物、矿物质、维生素、水等6类。  六大营养素分为蛋白质、碳水化合物、矿物质、维生素、水、脂肪。  1) 蛋白质  是维持生命不可缺少的物质。人体组织、器官由细胞构成,细胞结构的主要成分为蛋白质。机体的生长、组织的修复、各种酶和激素对体内生化反应的调节、抵御疾病的抗体的组成、维持渗透压、传递遗传信息,无一不是蛋白质在起作用。婴幼儿生长迅速,蛋白质需要量高于成人,平均每天每公斤体重需要2克以上。肉、蛋、奶、豆类含丰富优质蛋白质,是每日必须提供的。注意:  ①搭配的原则如动、植物食品的搭配;多品种食物的搭配。  ②不过量提供的原则。婴幼儿期蛋白质热量占总热量12%~14%为宜,过多会影响蛋白质正常功能的发挥,造成蛋白质消耗,影响体内氮平衡。  ③不过少提供的原则。蛋白质提供过少明显影响生长发育的速度,生化反应下降,抗病能力下降,甚至导致营养不良。结果不仅仅造成生长落后,还会因影响脑细胞发育,造成智力落后。  2 )脂肪  是储存和供给能量的主要营养素。每克脂肪所提供的热能为同等重量碳水化合物或蛋白质的2倍。机体细胞膜、神经组织、激素的构成均离不开它。脂肪还起保暖隔热;支持保护内脏、关节、各种组织;促进脂溶性维生素吸收的作用。婴儿每天每公斤体重需要4克脂肪,动物和植物来源的脂肪均为人体之必需,应搭配提供。每日脂肪供热应占总热卡的20%~25%。  3) 碳水化合物  是为生命活动提供能源的主要营养素,它广泛存在于米、面、薯类、豆类、各种杂粮中,是人类最重要、最经济的食物。这类食物每日提供的热卡应占总热卡的60%~65%。任何碳水化合物到体内经生化反应最终均分解为糖,因此亦称之为糖类。除供能外,它还促进其他营养素的代谢,与蛋白质、脂肪结合成糖蛋白、糖脂,组成抗体、酶、激素、细胞膜、神经组织、核糖核酸等具有重要功能的物质。这类食物的重要性不言而喻,但也需提醒家长不要过早过多的加米粉;过多给孩子食物中加糖,这会导致肥胖,给孩子日后的健康埋下祸根。  纤维素是不被消化的碳水化合物,但其作用不可忽视。纤维素分水溶性和非水溶性两类。非水溶性纤维素不被人体消化吸收,只停留在肠道内,可刺激消化液的产生和促进肠道蠕动,吸收水分利于排便,对肠道菌群的建立也起有利的作用;水溶性纤维素可以进入血液循环,降低血浆胆固醇水平,改善血糖生成反应,影响营养素的吸收速度和部位。水果、蔬菜、谷类、豆类均含较多纤维素,可供家长选择。  4) 维生素  对维持人体生长发育和生理功能起重要作用,可促进酶的活力或为辅酶之一。维生素可分两类,一类为脂溶类维生素包括VA、D、E、K,它们可在体内储存,不需每日提供,但过量会引起中毒;另一类为水溶性维生素包括维生素B族、维生素C等,这一类占大多数,它们不在体内储存,需每日从食物提供,由于代谢快不易中毒。维生素A、D、B、C、E、K、叶酸……各司其职,缺一不可,因此给孩子提供新鲜蔬菜、水果、肝、蛋黄,适当吃点粗粮,多晒晒太阳,就显得格外必要了。  5 )矿物质  是人体主要组成物质,碳、氢、氧、氮约占人体重总量的96%,钙、磷、钾、钠、氯、镁、硫占95%,其他则为微量元素共41种,常为人们提到的有铁、锌、铜、硒、碘等。每种元素均有其重要的、独特的、不可替代的作用,各元素间又有密切相关的联系,在儿童营养学研究中这部分占很大比例。矿物质虽不供能,但有重要的生理功能:①构成骨骼的主要成份;②维持神经、肌肉正常生理功能;③组成酶的成分;④维持渗透压,保持酸碱平衡。矿物质缺乏与疾病相关,比如说缺钙与佝偻病;缺铁与贫血;缺锌与生长发育落后;缺碘与生长迟缓、智力落后等等,均应引起足够的重视。  6 )水  是维持生命必需的物质,机体的物质代谢,生理活动均离不开水的参与。正常成人水分大约为70%,婴儿体重的80%左右是水,老年人身体55%是水分。每天每公斤体重需水约150毫升,母乳中绝大部分是水,母乳喂养喂水要适当调整。可以用150毫升乘上体重的公斤数得出需水量,再减去食入的奶量,就可得出应喂水的量。水来源于各种食物和饮水。  营养搭配即  营养配餐 就是按人们身体的需要,根据食品中各种营养物质的含量,设计一天、一周或一个月的食谱,使人体摄入的蛋白质、脂肪、碳水化合物、维生素和矿物质等几大营养素比例合理,即达到均衡膳食。简单讲,就是要求膳食结构多种多样,谷、肉、果、菜无所不备。  热能是生命活动的热源,缺少热能,人体中血糖下降,就会感觉疲乏无力,进而影响工作、学习的效率,但热能贮存过多,会使人体发胖,也会引起多种疾病。  蛋白质是人体最需要的营养物质之一,人体的一切器官、细胞都是由蛋白质所构成,人体蛋白质平均每80天就要更新一半。因此,摄入蛋白质不仅是儿童、青少年身体成长的需要,也是成年人的需要。  均衡膳食首先要满足人体对热量的需要,三大产热营养素在总热量中的百分比应当是:蛋白质10%~15%,脂肪20%~30%,碳水化合物55%~65%。  均衡膳食还包括各种维生素和矿物质的摄取量。只有营养结构合理,身体才能健康。要进行营养配餐,首先要了解各种食物的营养成分及其含量,然后根据人体对热能、蛋白质、矿物质、维生素的需要,选择搭配食物,进行合理烹调。其次,每天三餐总食量的分配,按3:4:3的比例较为合理,即早餐占30%,午餐占40%,晚餐占30%。

可以从这个角度来写,制作饮料时我们需植物的果实,植物细胞细胞壁的成分是纤维素和果胶,能分解纤维素的微生物就能分解果肉细胞的纤维素,从而提高果汁的产量

纤维素的综合利用论文题目

已经上传到附件中,PDF格式的。如需TXT版本,可以追问我。你也可以用格式转换软件转成word,或者用PDF编辑器复制其中的文本内容。  如果有用请采纳。

无语,学不到就说不会,差

纤维素的综合利用论文怎么写

1 邱雁临纤维素酶的研究和应用前景[J]粮食与饲料科技,2001,30~31 2 刘耘,鄢满秀纤维素酒精发酵的研究进展[J]广州食品工业发酵,1999,15(2):51~54,63 3 戴四发,金光明,王立克,等纤维素酶研究现状及其在畜牧业中的应用[J]安徽技术师范学院学报,2001,45(3):32~38 4 阎伯旭,齐飞,张颖舒,等纤维素酶分子结构和功能研究进展[J]生物化学与生物物理进展,1999,26(3):233~237 5 张鸿雁,陈锡时微生物纤维素酶分子生物学研究进展[J]生物技术,2003,13(3):41~42 6 杨礼富,微生物学通报,2003, 30 (4):9 987 史雅娟,吕永龙,环境科学进展1999, 7 ( 6)3} 378 宋桂经,纤维素科学与技术,广西人学学报:自然科学版) 29(1):73- 769 曲杳波,高培基开展生物质转化为洒精研究实现液态燃料可持续供应}c}发酵工程学科的进展一第一次全国发酵工程学术讨论会北京:中国轻工业出版社,2002, 34一

内容摘要:纤维艺术在中国随着现代主义文艺思潮的影响和传播,艺术家们对纤维材料的积极探索,与世界各国纤维艺术的不断交流及高校纤维教育的开展,将会焕发出勃勃的生机。  关 键 词:纤维艺术 中国 发展  纤维艺术是现代艺术的一种形式,它泛指一切以纤维材料进行创作的艺术作品,包括各种编织、印染、绗缝、软雕等等。目前,中国的纤维艺术随着现代主义文艺思潮的影响与传播,艺术家们对纤维材料的积极探索,与世界各国纤维艺术的不断交流,及高校纤维教育的开展,中国的纤维艺术焕发出勃勃的生机。  一、纤维艺术的取材  古往今来人们穿的、用的都是纺织纤维制成的,日久天长在人们思想中形成了纤维艺术品的材料都是纺织纤维的意象。其实不然,当代纤维艺术的取材远不止可纺织的纤维。  “纺织纤维”一般的要求  可纺性方面的要求,如纤维的长度、粗细、强度等;舒适方面的要求,如弹性、吸湿、透气、抗静电等。  “纺织纤维”的分类  ①天然纤维。常规的天然纤维有棉、麻、丝、毛,随着科学技术的发展,新的天然纤维又出现了,比如菠萝叶纤维与现在普遍使用的竹纤维。  ②化学纤维。化学纤维是随着化工行业的发展兴起的,目前已经成为纺织纤维的主体。其包括再生纤维与合成纤维两大类。再生纤维,也叫做人造纤维,是利用天然材料经制浆喷丝而成,有再生纤维素与再生蛋白质之分。合成纤维是以石油为原料,经化学聚合而成,主要纤维材料有涤纶、锦纶、腈纶、维纶、丙纶、氯纶等。它们可以根据需要切割成不同长度或直接使用长丝。其统一的燃烧特点是熔融成滴。  现代纤维艺术取材的开放性  从古到今,任何艺术创作和视觉形象都离不开材料,在每一个具体的艺术领域中,艺术家总是努力地挖掘和探索一切可能的新型材料。随着现代主义文艺思潮的影响和传播,中国的艺术家们突破了传统材料的观念束缚,广泛探索,大胆开拓和试验,使得纤维艺术取材更为广泛和多元化。  二、纤维艺术在中国的发展历史  中国早在先秦时期,利用动植物纤维制作服饰及装饰品已经很常见。如用兽毛织成、上面绣着五彩花纹的衣裳。春秋时期,吴、越、郑、卫等国的织造、染色水平都已经达到一定高度。到战国时期,丝织物在织法上,不仅能织细密的平纹,而且能织复杂的斜纹,还能提花和绣花。中国还是全世界最早使用蚕丝做纺织材料的国家。两汉时期又出现了工艺更加复杂的缂丝。由于缂丝工艺多为皇亲贵族的奢侈品,所以只追求工艺的精美绝伦而很少考虑人工成本。宋代母子经缂法的运用使缂丝艺术品纹丝的均匀性胜过当时的工笔绘画作品。当时用缂丝技法临摹书画原作已经达到惟妙惟肖的境地,其工艺之精湛令人叹为观止。虽然缂丝采用的编织材料和欧洲壁毯不同,但通经断纬的编织技法却是相通的。清代缂丝的中心转移到了苏州一带,这时使用的彩色纬线已有六千多种颜色。  新中国成立后,纤维艺术的成就主要表现在地毯行业,地毯作为中国传统工艺美术的一个主流品种之一,一向以编织120道壁毯作为约定俗成的技术和质量标准。运用传统的栽绒工艺,遵循现实主义的创作原则,追求写实的画面效果,在艺术作品中还原生活的真实原貌。中国的地毯作品《万里长城》作为国礼赠送给联合国总部,一时传为佳话。  20世纪80年代,中国进入了改革开放的快车道,纤维艺术也迎来了明媚的春天“……一批青年艺术家揭竿而起,切入纤维艺术语言的探索,塑造了一些纤维感较强的艺术形象。”  当代中国工艺美术家学习欧洲高比林的编织技法,在极其简陋的工作环境中,开始进行独立的纤维艺术创作。一批采用高比林编织技法表达中国传统审美意趣的纤维艺术作品,如《山高水长》《秋水长天》等获得了艺术界的高度评价。  三、展望中国的纤维艺术的发展前景  纤维艺术的手工编织的特性使得这门传统的手工艺独具民族文化的特性。只有当一门技艺与文化相结合,才能在艺术的道路上永葆青春,常开不败。  国际纤维艺术的交流  2000年“从洛桑到北京”纤维艺术双年展,聚集了中国、美国、日本、格鲁吉亚等16个国家二百多位纤维艺术家,这些艺术家的作品在中国最具现代意识的大都市上海集中展示,为世界范围内各种传统与现代的纤维艺术提供了展示空间和研讨殿堂。这本身就是一件促进中国纤维艺术发展,展现中国纤维艺术文化的大事件。  2002年第二届“从洛桑到北京”国际纤维艺术双年展在中国12所高校纤维艺术家共同努力下,在北京拉开了帷幕。这标志着中国纤维艺术进入到了一个崭新的发展阶段,它引领着世界纤维艺术的潮流,建立了国际学术交流的平台。中国成为世界纤维艺术的热点地区,纤维艺术也因为有了中国大舞台而焕发了蓬勃生机。  中国纤维艺术教育的开展  林乐成教授,清华大学美术学院纤维艺术高等教育的开创者,于1985年首先开设了编织壁挂设计制作课,这应是中国教育史上在大学开设编织壁挂教学的第一课。2000年,他又率先正式招收了纤维艺术研究方向的硕士研究生,这也应是中国教育史上第一个纤维艺术研究方向的硕士学位教育。他的社会实践和教育探索可谓硕果累累。2000年,清华大学美术学院工艺美术系纤维艺术工作室正式成立。几年来,纤维艺术工作室学生创作实践作品纷纷获奖。林乐成教授出版的《纤维艺术》一书,是他多年教育研究的结晶,是我国的纤维艺术教育领域具有学术价值和应用价值的第一本纤维艺术专著。  如今,纤维艺术已经在中国的高校开花结果,一批热爱纤维艺术的教育工作者正乐此不疲地耕耘在讲坛和工作室里。我国的纤维艺术教育,已经初具体系和规模。与此同时,理论文化的建设和研究,也逐步由感性到理性,由表层到纵深地发展着。  中国的纤维艺术有着悠久的历史,在改革开放的今天更加快速地发展着。纤维艺术不断与国际交流,吸取着欧美纤维艺术观念的开放性思潮,保留发扬着我国古老而独有的情怀和含蓄深远的意趣,也基本实现了传统手工艺与现代科技的完美结合。我们有理由相信,我国的纤维艺术在中国的经济日新月异和政治环境十分稳定下,在不断与世界的交流学习中,在国内纤维艺术教育的普及和国人审美情趣的不断提高中,一定会开拓出美好的明天。  参考文献:  [1]林乐成,王凯纤维艺术上海画报出版社,  [2]朱尽晖现代纤维艺术设计陕西人民美术出版社,

纤维素的综合利用论文选题怎么写

无语,学不到就说不会,差

竹纤维的结构性能及其纺织品的生产工艺分析 摘要3-4Abstract4-7序言7-19 开发竹纤维产品的意义7-8 国内外的有关研究8-19第一章 竹纤维概况19-36 竹纤维自然生长与环保特性19 竹纤维的种类19-20 竹纤维的制造过程20-22 1 原生竹纤维20 2 竹浆纤维20-22 竹纤维的结构22-30 1 竹纤维的大分子结构22-26 2 超分子结构26-28 3 宏观形态结构28 4 微细结构28-30 竹纤维的化学成分30 竹纤维的基本性质30-36 1 具有较好的吸湿性、透气性30 2 天然抗菌性30-31 3 除臭作用31 4 防紫外线作用31-32 5 较好的染色均匀性32-33 6 不耐酸碱性33 7 较强的耐热性33 8 可生物降解性33 9 物理机械性能33-36第二章 竹纤维纺织品的开发与应用36-39 纯竹纤维产品36 交织、混纺产品36-38 1 竹纤维与真丝混纺36-37 2 棉、竹纤维混纺37 3 氨纶、竹纤维包芯纱产品37 4 竹纤维与多种纤维的混纺产品37-38 功能性产品38-39 1 远红外竹浆纤维38 2 负氧离子竹纤维38 3 芳香竹纤维38-39第三章 竹浆纤维纺纱工艺研究39-66 竹浆纤维纯纺特细特纱、细特纱的成纱工艺技术研究40-56 1 原料预处理40-41 2 纺纱工艺流程设计41 3 各工序纺纱定量的设定41 4 各工序工艺设计及技术措施41-56 竹浆纤维的混纺性能研究56-62 1 原料选择58 2 纺纱工艺流程58 3 各工序的工艺配置及技术措施58-62 竹/棉混纺氨纶包芯纱的纺制62-64 1 原料性能62-63 2 生产工艺分析63 3 纱疵控制63 4 成纱质量63-64 本章结论64-66第四章 竹浆纤维的织造工艺和产品开发66-72 服装面料的设计与开发66-69 1 色调与花型的设计66 2 纱支的选择66-67 3 密度和紧度的确定67 4 织物组织的设计67 5 织造主要工艺参数设计67-69 家纺产品面料的设计69-72 1 色调与花形的设计69 2 纱线的选择69 3 密度和紧度的确定69 4 织物组织的设计69 5 织造主要工艺参数设计69-72第五章 竹原纤维的纺纱工艺分析72-76 原料预处理72 车间温湿度72-73 工艺流程73 各工序主要工艺参数73-76 1 开清工序73 2 梳理工序73-74 3 并条工序74 4 粗纱工序74 5 细纱工序74-75 6 络筒工序

纤维素的综合利用论文怎么写啊

内容摘要:纤维艺术在中国随着现代主义文艺思潮的影响和传播,艺术家们对纤维材料的积极探索,与世界各国纤维艺术的不断交流及高校纤维教育的开展,将会焕发出勃勃的生机。  关 键 词:纤维艺术 中国 发展  纤维艺术是现代艺术的一种形式,它泛指一切以纤维材料进行创作的艺术作品,包括各种编织、印染、绗缝、软雕等等。目前,中国的纤维艺术随着现代主义文艺思潮的影响与传播,艺术家们对纤维材料的积极探索,与世界各国纤维艺术的不断交流,及高校纤维教育的开展,中国的纤维艺术焕发出勃勃的生机。  一、纤维艺术的取材  古往今来人们穿的、用的都是纺织纤维制成的,日久天长在人们思想中形成了纤维艺术品的材料都是纺织纤维的意象。其实不然,当代纤维艺术的取材远不止可纺织的纤维。  “纺织纤维”一般的要求  可纺性方面的要求,如纤维的长度、粗细、强度等;舒适方面的要求,如弹性、吸湿、透气、抗静电等。  “纺织纤维”的分类  ①天然纤维。常规的天然纤维有棉、麻、丝、毛,随着科学技术的发展,新的天然纤维又出现了,比如菠萝叶纤维与现在普遍使用的竹纤维。  ②化学纤维。化学纤维是随着化工行业的发展兴起的,目前已经成为纺织纤维的主体。其包括再生纤维与合成纤维两大类。再生纤维,也叫做人造纤维,是利用天然材料经制浆喷丝而成,有再生纤维素与再生蛋白质之分。合成纤维是以石油为原料,经化学聚合而成,主要纤维材料有涤纶、锦纶、腈纶、维纶、丙纶、氯纶等。它们可以根据需要切割成不同长度或直接使用长丝。其统一的燃烧特点是熔融成滴。  现代纤维艺术取材的开放性  从古到今,任何艺术创作和视觉形象都离不开材料,在每一个具体的艺术领域中,艺术家总是努力地挖掘和探索一切可能的新型材料。随着现代主义文艺思潮的影响和传播,中国的艺术家们突破了传统材料的观念束缚,广泛探索,大胆开拓和试验,使得纤维艺术取材更为广泛和多元化。  二、纤维艺术在中国的发展历史  中国早在先秦时期,利用动植物纤维制作服饰及装饰品已经很常见。如用兽毛织成、上面绣着五彩花纹的衣裳。春秋时期,吴、越、郑、卫等国的织造、染色水平都已经达到一定高度。到战国时期,丝织物在织法上,不仅能织细密的平纹,而且能织复杂的斜纹,还能提花和绣花。中国还是全世界最早使用蚕丝做纺织材料的国家。两汉时期又出现了工艺更加复杂的缂丝。由于缂丝工艺多为皇亲贵族的奢侈品,所以只追求工艺的精美绝伦而很少考虑人工成本。宋代母子经缂法的运用使缂丝艺术品纹丝的均匀性胜过当时的工笔绘画作品。当时用缂丝技法临摹书画原作已经达到惟妙惟肖的境地,其工艺之精湛令人叹为观止。虽然缂丝采用的编织材料和欧洲壁毯不同,但通经断纬的编织技法却是相通的。清代缂丝的中心转移到了苏州一带,这时使用的彩色纬线已有六千多种颜色。  新中国成立后,纤维艺术的成就主要表现在地毯行业,地毯作为中国传统工艺美术的一个主流品种之一,一向以编织120道壁毯作为约定俗成的技术和质量标准。运用传统的栽绒工艺,遵循现实主义的创作原则,追求写实的画面效果,在艺术作品中还原生活的真实原貌。中国的地毯作品《万里长城》作为国礼赠送给联合国总部,一时传为佳话。  20世纪80年代,中国进入了改革开放的快车道,纤维艺术也迎来了明媚的春天“……一批青年艺术家揭竿而起,切入纤维艺术语言的探索,塑造了一些纤维感较强的艺术形象。”  当代中国工艺美术家学习欧洲高比林的编织技法,在极其简陋的工作环境中,开始进行独立的纤维艺术创作。一批采用高比林编织技法表达中国传统审美意趣的纤维艺术作品,如《山高水长》《秋水长天》等获得了艺术界的高度评价。  三、展望中国的纤维艺术的发展前景  纤维艺术的手工编织的特性使得这门传统的手工艺独具民族文化的特性。只有当一门技艺与文化相结合,才能在艺术的道路上永葆青春,常开不败。  国际纤维艺术的交流  2000年“从洛桑到北京”纤维艺术双年展,聚集了中国、美国、日本、格鲁吉亚等16个国家二百多位纤维艺术家,这些艺术家的作品在中国最具现代意识的大都市上海集中展示,为世界范围内各种传统与现代的纤维艺术提供了展示空间和研讨殿堂。这本身就是一件促进中国纤维艺术发展,展现中国纤维艺术文化的大事件。  2002年第二届“从洛桑到北京”国际纤维艺术双年展在中国12所高校纤维艺术家共同努力下,在北京拉开了帷幕。这标志着中国纤维艺术进入到了一个崭新的发展阶段,它引领着世界纤维艺术的潮流,建立了国际学术交流的平台。中国成为世界纤维艺术的热点地区,纤维艺术也因为有了中国大舞台而焕发了蓬勃生机。  中国纤维艺术教育的开展  林乐成教授,清华大学美术学院纤维艺术高等教育的开创者,于1985年首先开设了编织壁挂设计制作课,这应是中国教育史上在大学开设编织壁挂教学的第一课。2000年,他又率先正式招收了纤维艺术研究方向的硕士研究生,这也应是中国教育史上第一个纤维艺术研究方向的硕士学位教育。他的社会实践和教育探索可谓硕果累累。2000年,清华大学美术学院工艺美术系纤维艺术工作室正式成立。几年来,纤维艺术工作室学生创作实践作品纷纷获奖。林乐成教授出版的《纤维艺术》一书,是他多年教育研究的结晶,是我国的纤维艺术教育领域具有学术价值和应用价值的第一本纤维艺术专著。  如今,纤维艺术已经在中国的高校开花结果,一批热爱纤维艺术的教育工作者正乐此不疲地耕耘在讲坛和工作室里。我国的纤维艺术教育,已经初具体系和规模。与此同时,理论文化的建设和研究,也逐步由感性到理性,由表层到纵深地发展着。  中国的纤维艺术有着悠久的历史,在改革开放的今天更加快速地发展着。纤维艺术不断与国际交流,吸取着欧美纤维艺术观念的开放性思潮,保留发扬着我国古老而独有的情怀和含蓄深远的意趣,也基本实现了传统手工艺与现代科技的完美结合。我们有理由相信,我国的纤维艺术在中国的经济日新月异和政治环境十分稳定下,在不断与世界的交流学习中,在国内纤维艺术教育的普及和国人审美情趣的不断提高中,一定会开拓出美好的明天。  参考文献:  [1]林乐成,王凯纤维艺术上海画报出版社,  [2]朱尽晖现代纤维艺术设计陕西人民美术出版社,

高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 2GPa,断 裂伸长率为 5%。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 97g/cm , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 5N/tex 以上的强度 和 84N/tex 以上弹性模量, 经热处理后可得到强度不变、 模量达 4N/tex 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 54 56 抗拉强度(GPa) 8 8 拉伸模量(GPa) 180 280 断裂延伸率(%) 5 5 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 56 24 8 280 5 45 12 2 115 0 80 6 58 230 5 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 7GPa。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 58 5 230 10 90 80 0 一 43 0 0 一 一 97 一 一 2 0 115 58 50 45 5 29 8 5 280 40 15 56 6 68 0 5 330 70 50 70 0 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好文中还展望了M5纤维的应用前景前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2]通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3]由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能1高性能纤维M1 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构1 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键因此,其压缩和扭曲性能为目前所有聚合物纤维之最M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5]图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5]图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图2 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能表2和表3所列出的实验结果也证实了这一结论[16,19]如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16]从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示)单斜和三斜的晶胞参数分别为:单斜结晶: a=49 ,b=48 ,c=01 ,=90°,=107°,=90°三斜结晶:a=68 ,b=48 ,c=02 ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a=33 ,b=462 ,c=16 ,=84°,=4°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16]1 M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为0×104~5×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥图7 M5纤维的热处理示意图2 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的因此,热处理温度与热处理时间对M5纤维的模量影响很大4 M5纤维的性能1 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的7Gpa提高到7Gpa,而经过400℃热处理的初生纤维压缩强度由原来的7Gpa提高到1G显然对于PIPD的初生纤维来讲,并非热处理温度越高越好通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为4%;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17]表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/(-3)回潮率/%Twaron-HM5C-HS0PBO6M0纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和6GPa,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11]如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多2 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)PIPD-AS76061PIPD-HT89062PBO-HM17072T09811N08724PVC05515注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值纤维试样放在一块1cm2的线网上试样原始重量在3g-5g之间从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为7kWm-2,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为76sm2kW-从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7]3 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8]4 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为MGNoRTHoLIT[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图研究发现将1g试样材料放在一个开放的测试槽内,以2℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用

  • 索引序列
  • 纤维素的综合利用论文题目怎么写
  • 纤维素的综合利用论文题目
  • 纤维素的综合利用论文怎么写
  • 纤维素的综合利用论文选题怎么写
  • 纤维素的综合利用论文怎么写啊
  • 返回顶部