首页 > 论文期刊知识库 > 力学的核心内容有哪些

力学的核心内容有哪些

发布时间:

力学的核心内容有哪些

主要两大块 静力学 和动力学 在其他都是他们的分支

万变不离其宗,主要记住那几个力学定律,然后多做一些有关的练习题就可以了。

力学包括:运动学【直线运动,曲线运动】,静力学【重力,弹力,摩擦力及力的合成,力的分解等】,动力学【牛顿运动定律】

力学可粗分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。  力学也可按所研究对象区分为固体力学、流体力学和一般力学三个分支,流体包括液体和气体;固体力学和流体力学可统称为连续介质力学,它们通常都采用连续介质的模型。固体力学和流体力学从力学分出后,余下的部分组成一般力学。  一般力学通常是指以质点、质点系、刚体、刚体系为研究对象的力学,有时还把抽象的动力学系统也作为研究对象。一般力学除了研究离散系统的基本力学规律外,还研究某些与现代工程技术有关的新兴学科的理论。  一般力学、固体力学和流体力学这三个主要分支在发展过程中,又因对象或模型的不同出现了一些分支学科和研究领域。属于一般力学的有理论力学(狭义的)、分析力学、外弹道学、振动理论、刚体动力学、陀螺力学、运动稳定性等;属于固体力学的有材料力学、结构力学、弹性力学、塑性力学、断裂力学等;流体力学是由早期的水力学和水动力学这两个风格迥异的分支汇合而成,现在则有空气动力学、气体动力学、多相流体力学、渗流力学、非牛顿流体力学等分支。各分支学科间的交叉结果又产生粘弹性理论、流变学、气动弹性力学等。  力学也可按研究时所采用的主要手段区分为三个方面:理论分析、实验研究和数值计算。实验力学包括实验应力分析、水动力学实验和空气动力实验等。着重用数值计算手段的计算力学,是广泛使用电子计算机后才出现的,其中有计算结构力学、计算流体力学等。对一个具体的力学课题或研究项目,往往需要理论、实验和计算这三方面的相互配合。  力学在工程技术方面的应用结果形成工程力学或应用力学的各种分支,诸如土力学、岩石力学、爆炸力学复合材料力学、工业空气动力学、环境空气动力学等。  力学和其他基础科学的结合也产生一些交又性的分支,最早的是和天文学结合产生的天体力学。在20世纪特别是60年代以来,出现更多的这类交叉分支,其中有物理力学、化学流体动力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、理性力学、生物力学、生物流变学、地质力学、地球动力学、地球构造动力学、地球流体力学等。  20世纪以来,力学有了很大的发展,创立了一系列重要的新概念、新理论和新方法。力学与其它学科的交叉和融合日显突出,形成了许多力学交叉学科:力学与物理学的交叉形成了物理力学,与生命科学的交叉形成了生物力学,与环境科学和地学的交叉形成了环境力学,以及爆炸力学、等离子体力学等都形成了力学的新的学科生长点,不断地丰富着力学的研究内容和方法,并使力学学科始终保持着旺盛的生命力。同时,人类社会和经济发展的更高需求将不断促进力学与其他学科的交叉,促进力学交叉学科发展到一个崭新的阶段。

材料力学的核心内容有哪些

如下:1、静力学是理论力学的一部分,研究刚体在静力作用下力的分布。2、材料力学研究变形体的受力,主要研究对象是单根杆件的拉压弯扭。静力学也可应用于动力学。借助于达朗伯原理,可将动力学问题化为静力学问题的形式。静力学在工程技术中有广泛的应用。例如设计房梁的截面,一般须先根据平衡条件由粱所受的规定载荷求出未知的约束力,然后再进行梁的强度和刚度分析。扩展资料在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。但在实际研究中不可能会有符合这些条件的材料,所以需要各种理论与实际方法对材料进行实验比较。材料力学的研究内容包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆(见柱和拱)、受弯曲(有时还应考虑剪切)的梁和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。

理论力学顾名思义,就是纯理论的东西,理想化的东西。材料力学主要研究的是杆件,板料、壳体也有涉及但不是主要的。材料力学主要是从理论力学的静力学发展而来,应为刚体是不会变形的,所以在理论力学中是不可能解释变形体的问题的,但实际上物体没有不发生形变的,材料力学就是研究物体在发生形变以后的一些问题,比如说刚度,强度,稳定性等等。扩展资料理论力学(theoreticalmechanics)是研究物体机械运动的基本规律的学科。力学的一个分支。它是一般力学各分支学科的基础。理论力学通常分为三个部分:静力学、运动学与动力学。静力学研究作用于物体上的力系的简化理论及力系平衡条件;运动学只从几何角度研究物体机械运动特性而不涉及物体的受力;动力学则研究物体机械运动与受力的关系。动力学是理论力学的核心内容。理论力学的研究方法是从一些由经验或实验归纳出的反映客观规律的基本公理或定律出发,经过数学演绎得出物体机械运动在一般情况下的规律及具体问题中的特征。理论力学中的物体主要指质点、刚体及刚体系,当物体的变形不能忽略时,则成为变形体力学(如材料力学、弹性力学等)的讨论对象。静力学与动力学是工程力学的主要部分。理论力学建立科学抽象的力学模型(如质点、刚体等)。静力学和动力学都联系运动的物理原因——力,合称为动理学。有些文献把kinetics和dynamics看成同义词而混用,两者都可译为动力学,或把其中之一译为运动力学。此外,把运动学和动力学合并起来,将理论力学分成静力学和动力学两部分。理论力学依据一些基本概念和反映理想物体运动基本规律的公理、定律作为研究的出发点。例如,静力学可由五条静力学公理演绎而成;动力学是以牛顿运动定律、万有引力定律为研究基础的。理论力学的另一特点是广泛采用数学工具,进行数学演绎,从而导出各种以数学形式表达的普遍定理和结论。参考资料理论力学(基本定义)_百度百科

一、弹性和塑性在理论力学中,将所研究的物体看作刚体,即在载荷作用下物体不发生变形。但刚体只是一种理想体,实际物体都是变形体,在外力作用下都会或多或少地发生形状和尺寸的改变。材料力学以变形体为研究对象,着重研究物体在载荷作用下的变形、受力和破坏规律,为合理设计构件提供基础理沦和方法。按变形规律的不同,变形体的变形有弹性变形和塑性变形两种。当载荷不超过某一限度时,多数材料在去除载荷后能恢复原有的形状和尺寸,材料的这种性质称为弹性。去除载荷后能恢复的变形称为弹性变形。当载荷超过一定的限度时,在去除载荷后变形只能部分恢复,而残留一部分变形不能恢复,材料的这种性质称为塑性。不能恢复而残留下来的变形称为塑性变形,也称为永久变形。二、材料力学的基本任务机械设备的每一组成部分称为构件,当机械设备工作时,任一构件都会受到载荷的作用。如,船舶航行时,其推进轴系受到柴油机扭矩和螺旋桨推(或拉)力的作川。为保证机械设备的安全,每一构件都应有足够的能力担负起所承受的载荷,这种承载能力主要由以下三个方面来衡量:1)构件应有足够的强度,以保证构件在工作中不会发生断裂破坏或明显的塑性变形。所谓强度是指构件抵抗破坏(断裂或产生明显的塑性变形)的能力。为保证机械构件或零件的安全工作,首先要求在一定的载荷作用下不发生破坏。例如,起重机钢丝绳不允许被重物拉断,齿轮的轮齿在弯曲和接触应力作用下不发生断裂破坏,船舶传动轴不允许出现裂纹或过大的扭转变形等。2)构件应具有足够的刚度,以保证构件工作时的弹性变形在规定的限度内。所谓刚度是指构件在外力作用下抵抗变形的能力。构件在载荷作用下,尽管不发生断裂,但如果变形过大,也会影响构件或零什间的配合关系使机械无法正常工作。例如车床主轴变形过大就会影响加工精度,齿轮轴发生过大的弯曲变形就会使齿轮不能正常啮合,并造成轴承不均匀磨损。3)构件应有足够的稳定性,以使构件在工作时不发生失稳现象。所谓稳定性是指构保持其原有平衡状态的能力。有些机构十的细长直杆,在压力的作用下有被压弯的可能,为保证这些受压杆件的正常工作,要求它们始终保持原有的形态,即要求原有的平衡形态保持不变。如柴油机中的气门顶杆、千斤顶的螺杆、液压装置的活塞杆等。为提高构件的强度、刚度和稳定性,可选用优质材料或加大构件截面尺寸,但这与降低材料消耗、减少重量和节省成本是矛盾的。材料力学的丰要任务就是在满足强度、刚度和稳定性的要求下,以最经济的代价,为构件确定合理的形状和尺寸,选扦适宜的材料;为构件设计提供必要的理沦基础和计算方法。三、材料力学的基本假设组成构件的材料,其微观结构和性能—般都比较复杂。研究构件的受力和变形时,如果考虑这些微观结构上的差异,不仅理论分析中会遇到极其复杂的数学和物理问题,而且在将理论用于工程实际时也会带来极大的不便。为简单起见,在材料力中中,需要对材料作出一些合理的假定。1.均匀连续性假设该假设认为在构什所占用的整个体积内,材料无间隙、均匀地分布于构件所占的空间。从微观结构看,材料的粒子当然不是处处连续分布的,但从统计学角度看,只要所考察的构件的几何尺寸足够大,而且所考察的构件中的每一点都是宏观上的点,则可以认为构件的全部休积内材料是均匀、连续分布的。根据这一假定,构什内的受力、变形等力学量可以表示为各点坐标的连续函数,从而有利于建立相应的数学模型。2.各向同性假设假没材料沿各个方向具有相同的物理和力学性能。根据这一假设,可川一个参数描写各点在各个方向上的某种力学性能。人多数工程材料虽然微观上不是各向同性的,例如金属材斟,其单个晶粒呈结晶各向异性,但当它们形成多晶体聚集体的金属时,呈随机取向,因而在宏观上表现为各向同性。3.小变形假设假设构什在外力作用下所产生的变形与构件本身的尺寸相比是很小的。根据这一假定,当考察变形休的平衡问题时,一般可以略去变形的影响,因而可以直接应用工程静力学方法;即在材料力学中,当讨论平衡问题时,仍将沿用刚体的概念,采用静力平衡方程式求解构件所受的各种外力或约束力。第二节 载荷、 内力和应力一、载荷及其分类作用于机械构件或零件上的各种外力(包括支座力)称为载荷。按作用方式不同,载荷可分为体积载荷和表面载荷。体积载荷是指连续分布于物体内部的每一个质点上的载荷,如整体的重力和惯性力等。表面载荷是指作用于物体表面上的载荷,又可分为分布载荷和集中载荷。连续作用在物体表面面积上的载荷称为分布载荷,如作用在柴油机活塞顶上的燃气压力。作用于船体上的水压力等。有些分布载荷是沿杆件的轴线作用的,称为线载荷,如船体最骨听受的作用力沿轴向分布。若外力的分布面积远小于轴线长度,就可当作是作用于一点的集中载荷,如起货钢丝绳对吊臂的拉力、滚珠轴承对轴的反作用力等。

力学核心知识有哪些内容

力的概念力是物体之间的相互作用,它不能脱离物体而存在;力对物体的作用效应完全决定于力的三要素——力的大小、方向和作用点(或大小、作用线和指向)。静力学公理两力平衡公理、力的平行四边形公理、加减平衡力系公理、作用与反作用公理、与力的可传性原理、三力平衡汇交定理是研究静力学的理论基础。在讨论物体受力分析、力系的简化和平衡等问题时都要用到这些公理。约束和约束反力在静力学中,当力能主动地使刚体运动或使刚体有运动趋势时,这种力称为主动力。例如,刚体的重力、水压力、风力,等等,在工程上称为荷载。通常,主动力可以是已知的。约束是阻碍物体运动的限制物,以阻碍刚体运动的被动力称为约束反力,简称反力。约束反力的方向总是与约束所能阻碍刚体运动的方向相反,其作用点就是约束与被约束物体之间的接触点。受力图受力图表示物体的受力情况。画受力图一般是解决力学问题的第一步。由于主动力通常是已知的,所以,画受力图的关键在于正确分析约束反力,弄清它的作用位置和方向。在分析约束反力时,必须掌握各类约束的性质,注意作用力与反作用力公理。若作用力的方向一旦假定,则反作用力的方向与之相反。在以整体结构为研究对象时,仅画外部物体对研究对象的作用外力,不必画出成对的内力。以上基本上就是静力学的主要知识点了,如果掌握了这些知识,基本上也算是合格了如果你觉得我的答案对你有帮助,请给个采纳!!!

你说学的课程,老师应该是会给你们划重点的,你把老师上课讲的东西弄清楚就可以了,一般考试都是考老师课堂上讲的。

如何从位置求速度、加速度?(求导) 如何从加速度求速度,求位置?(积分)(2) 位置、速度、加速度的大小怎么求?方向怎么表示?(3) 如何从运动学方程求轨迹方程?(消去时间t,得到之间的函数关系) x,y,z2. 自然坐标系下,速度、加速度的表达,,dsdsv,ev,速率 ,速度 tdtdt22,,,,,dsva,ae,ae,e,e加速度 2ttnntndt,,,dd,,,,圆周运动 角速度 角加速度 dtdta,R,角线关系:v,R,, t问题:自然坐标系下,速度、加速度又怎样表示?切向加速度和法向加速度如何计算?3. 速度合成法则: 绝对速度等于相对速度与牵连速度的矢量和。第三章 动量 牛顿运动定律 动量守恒定律1. 牛顿定律及其应用,,F,ma解题步骤:(1) 确定研究对象(2) 建立坐标系(3) 分析研究对象的受力情况(4) 在各方向上建立牛顿第二定律方程2. 冲量 动量t2,,,,I,F,tI,F(t)dt冲量: 恒力 , 变力 ,t1

静力学的基本知识:力、力偶。力的概念是静力学的基本概念之一。经验证明,力对已知物体的作用效果决定于:力的大小(即力的强度);力的方向;力的作用点。通常称它们为力的三要素。力的三要素可以用一个有向的线段即矢量表示。凡大小相等方向相反且作用线不在一直线上的两个力称为力偶它对任用平面内任一点之矩与矩心位置无关,其大小为力乘以二力作用线间的距离,即力臂,方向由右手螺旋定则确定并垂直于二力所构成的平面。力作用于物体的效应分为外效应和内效应。外效应是指力使整个物体对外界参照系的运动变化;内效应是指力使物体内各部分相互之间的变化。对刚体则不必考虑内效应。静力学只研究最简单的运动状态即平衡。如果两个力系分别作用于刚体时所产生的外效应相同,则称这两个力系是等效力系。若一力同另一力系等效,则这个力称为这一力系的合力。静力学的全部内容是以几条公理为基础推理出来的。这些公理是人类在长期的生产实践中积累起来的关于力的知识的总结,它反映了作用在刚体上的力的最简单最基本的属性,这些公理的正确性是可以通过实验来验证的,但不能用更基本的原理来证明。静力学静力学是力学的一个分支,它主要研究物体在力的作用下处于平衡的规律,以及如何建立各种力系的平衡条件。平衡是物体机械运动的特殊形式,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态都称为平衡。对于一般工程问题,平衡状态是以地球为参照系确定的。静力学还研究力系的简化和物体受力分析的基本方法。

力学的核心内容

力学可粗分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。  力学也可按所研究对象区分为固体力学、流体力学和一般力学三个分支,流体包括液体和气体;固体力学和流体力学可统称为连续介质力学,它们通常都采用连续介质的模型。固体力学和流体力学从力学分出后,余下的部分组成一般力学。  一般力学通常是指以质点、质点系、刚体、刚体系为研究对象的力学,有时还把抽象的动力学系统也作为研究对象。一般力学除了研究离散系统的基本力学规律外,还研究某些与现代工程技术有关的新兴学科的理论。  一般力学、固体力学和流体力学这三个主要分支在发展过程中,又因对象或模型的不同出现了一些分支学科和研究领域。属于一般力学的有理论力学(狭义的)、分析力学、外弹道学、振动理论、刚体动力学、陀螺力学、运动稳定性等;属于固体力学的有材料力学、结构力学、弹性力学、塑性力学、断裂力学等;流体力学是由早期的水力学和水动力学这两个风格迥异的分支汇合而成,现在则有空气动力学、气体动力学、多相流体力学、渗流力学、非牛顿流体力学等分支。各分支学科间的交叉结果又产生粘弹性理论、流变学、气动弹性力学等。  力学也可按研究时所采用的主要手段区分为三个方面:理论分析、实验研究和数值计算。实验力学包括实验应力分析、水动力学实验和空气动力实验等。着重用数值计算手段的计算力学,是广泛使用电子计算机后才出现的,其中有计算结构力学、计算流体力学等。对一个具体的力学课题或研究项目,往往需要理论、实验和计算这三方面的相互配合。  力学在工程技术方面的应用结果形成工程力学或应用力学的各种分支,诸如土力学、岩石力学、爆炸力学复合材料力学、工业空气动力学、环境空气动力学等。  力学和其他基础科学的结合也产生一些交又性的分支,最早的是和天文学结合产生的天体力学。在20世纪特别是60年代以来,出现更多的这类交叉分支,其中有物理力学、化学流体动力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、理性力学、生物力学、生物流变学、地质力学、地球动力学、地球构造动力学、地球流体力学等。  20世纪以来,力学有了很大的发展,创立了一系列重要的新概念、新理论和新方法。力学与其它学科的交叉和融合日显突出,形成了许多力学交叉学科:力学与物理学的交叉形成了物理力学,与生命科学的交叉形成了生物力学,与环境科学和地学的交叉形成了环境力学,以及爆炸力学、等离子体力学等都形成了力学的新的学科生长点,不断地丰富着力学的研究内容和方法,并使力学学科始终保持着旺盛的生命力。同时,人类社会和经济发展的更高需求将不断促进力学与其他学科的交叉,促进力学交叉学科发展到一个崭新的阶段。

力学学习的两条主线牛顿运动定律是经典力学的基础,也是经典物理的基础之一.动能定理和动量定理及其守恒定律为经典力学的栋梁.现行教材的体系是先讲静力学,后讲运动学,最后讲动力学.把牛顿三定律按三、一、二的顺序安排,第三定律放在静力学中讲授.这种安排符合由易到难、循序渐进的原则.即学习静力学时,有牛顿第三定律作准备知识,学习牛顿第二定律时,有力的合成与分解作先行.通过静力学的教学,要求学生正确理解力的概念.物体受力分析是力学中的关键,几乎所有的力学问题都要涉及物体的受力分析,所以静力学教学是最重要的基础。

大学里面有前三大力学是:《理论力学》《材料力学》《结构力学》,剩下两个叫《流体力学》《弹性力学》,"流体力学"又叫做《水力学》。前三大力学是必须要掌握的,后两大力学会计算运用就行(要考研的话就很重要了)

机械学的五大力学是:理论力学,材料力学,弹塑性力学,流体力学和液压传动力学材料力学研究材料在各种力和力矩的作用下所产生的应力和应变,以及刚度和强度的问题。通常是机械工程、土木工程和建筑工程以及相关专业的大学生必须修读的课程,通常在修读材料力学之前,会要求先修读应用力学。材料力学的研究对象主要是棒状材料,如杆、梁、轴等。对于桁架结构的问题在结构力学中讨论,弹性结构]的问题在弹性力学中讨论。在人们运用材料进行工业工程、机械、土木、建筑生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以:扩展资料结构力学研究的对象包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。理论力学的研究方法是从一些由经验或实验归纳出的反映客观规律的基本公理或定律出发,经过数学演绎得出物体机械运动在一般情况下的规律及具体问题中的特征。理论力学中的物体主要指质点、刚体及刚体系,当物体的变形不能忽略时,则成为变形体力学的讨论对象。

基于技术的核心竞争力有哪些内容

回答 您好!我是职场达人捏沙成石!二十多年职场工作经验,很高兴为您解答!!!! 企业的核心竞争力都包括把握全局、审时度势的判断力,大胆突破、敢于竞争的创新力,博采众长、开拓进取的文化力,保证质量、诚实守信的亲和力! 企业的核心竞争力就是企业的决策力,它包括把握全局、审时度势的判断力,大胆突破、敢于竞争的创新力,博采众长、开拓进取的文化力,保证质量、诚实守信的亲和力。 核心竞争力是群体或团队中根深蒂固的、互相弥补的一系列技能和知识的组合,借助该能力,能够按世界一流水平实施—到多项核心梳程。企业核心竞争力就是企业长期形成的,蕴涵于企业内质中的,企业独具的,支撑企业过去,现在和未来竞争优势,并使企业在竞争环境中能够长时间取得主动的核心能力。 提问 企业核心竞争力是什么 回答 1、高水平的人力资本。 2、领先业内的核心技术。 3、不竭的创新动力。 4、突出的管理能力。 5、稳固的营销网络。 更多8条 

渠道才是。

企业的核心竞争力,对于不同企业,以及不同企业的不同发展阶段,是不同的。通常来说,企业的核心竞争力,是指对企业的竞争优势形成最有力的核心要素。1、企业的核心竞争力,一般表现为规模优势、技术优势、经营模式优势、市场占有优势或品牌优势。制造业企业,最常见的核心竞争力是品牌优势和规模优势;互联网企业,最常见的是经营模式优势。经营模式也被称作商业模式、盈利模式等等。2、对于企业来说,不同发展阶段的核心竞争力也是不同的。可能在开始发展阶段,核心优势只是商业模式或者技术优势;到了一定的发展阶段,会转为规模优势、品牌优势、价格优势或者产业链优势。

企业的核心竞争力:首先是产品,好的产品、有特色的产品;第二是经营理念,也就是企业文化;第三是企业的运营模式和盈利能力;第四是品牌

  • 索引序列
  • 力学的核心内容有哪些
  • 材料力学的核心内容有哪些
  • 力学核心知识有哪些内容
  • 力学的核心内容
  • 基于技术的核心竞争力有哪些内容
  • 返回顶部