首页 > 论文期刊知识库 > 仿真的核心是什么内容

仿真的核心是什么内容

发布时间:

仿真的核心是什么内容

模拟与仿真 在基于 DSP 的开发设计中,模拟与仿真的作用很容易使人混淆,因为粗略看来,它们执行的功能非常相似。从最简单的方面讲,模拟与仿真的主要区别在于模拟完全是在软件中完成的,而仿真则是在硬件中进行。但是如果要更深入探究的话,每种工具的唯一特性与强大的优势是非常明显的。两者之间取长补短,共同提供了它们无法单独拥有的优势。 从传统意义上讲,模拟是在设计的最初阶段开始进行,这期间设计人员会借助它来对初始代码进行评估。开发人员需在设计进程的初期阶段--一般在获得硬件前的几个月--使用模拟器对复杂的多核系统进行建模。这使得在无需原型器件的情况下对各种设计配置进行评估成为可能。此外,当设计人员运行核心代码并对之进行不同的更改时,软件模拟可以采集到大量的调试数据。通过模拟会影响代码效果的DSP 及所有外设的性能,软件模拟有可能确定最有效的应用设计。 然而,以往模拟器的缓慢速度使之无法得到广泛的应用。为了提高效率,必须加快模拟器的速度,才能实现针对复杂 DSP 应用所需的大量数据采集。由于模拟器速度缓慢,设计人员往往在开发周期的后期阶段当获得硬件原型后才进行调试与分析--这样的过程会造成巨大的时间与成本的浪费。随着快速模拟技术与数据采集工具的推出,开发人员仅需几分钟便可采集大量数据,而非先前或同类竞争模拟器所需要的数小时。模拟器在设计与调试过程中是一种非常重要的工具,因为它能够反复地运行相同的模拟过程,而基于硬件的评估会因中断等外部事件所导致的变化而无法实现这一过程。此外,模拟器还具有高度的灵活性,可独立对 CPU 进行深入分析,或可用于对整个系统进行建模。模拟器可轻松地进行配置,能够与各种存储器及外设相集成。由于设计人员正在对硬件进行建模,因而他们实际上可以将更多的东西构建到模型中去,使之可提取更多的数据来支持高级分析功能。

①源语言的规范化和处理,即规定描述模型的符号、语句、句法、语法,检测源程序中的错误和将源程序翻译成机器可执行码。②仿真的执行和控制。③数据的分析和显示。④模型、程序、数据、图形的存储和检索。可以通过对软件的设计来实现这些功能。仿真软件分为仿真语言、仿真程序包和仿真软件系统三类。其中仿真语言是应用最广泛的仿真软件。仿真程序包是针对仿真的专门应用领域建立起来的程序系统。软件设计人员将常用的程序段设计成通用的子程序模块,并设计一个主程序模块,用于调用子程序模块。仿真研究人员使用这种程序包可免去繁重的程序编制工作。仿真程序包除不具备仿真软件的功能①以外,至少具备功能②、③、④中的任一种。仿真软件系统以数据库为核心将仿真软件的所有功能有机地统一在一起,构成一个完善的系统。它由建模软件、仿真运行软件(语言)、输出结果分析报告软件和数据库管理系统组成。

你还真吝啬哈,才悬赏五分 建模与仿真最主要的区别在于是否添加运动在机械模型中,一般的三维软件都带有简单的仿真功能,所以在建模完成之后为了更好的表达各个零件之间的运动关系,这下就需要添加力在机构中,看所设计的模型运动是否可靠.

主要包括复杂过程的实时可视化、复杂几何模型的实时处理。在不同的工艺过程中,可能产生各类不同的现象,如闪光、爆炸、烟雾、气流、水流等等复杂现象,仿真系统必需能够实时、逼真、可控地显示这些现象,因此必需解决各类复杂过程的实时生成和控制技术,本公司基于数据场可视化;此外在工艺仿真中还可能伴随着各种几何模型的生成、消亡、变形、破碎等现象,这要求仿真系统能够快速地构造、修改、删除各种类型的几何模型,如锻造过程的毛坯变形、石块破碎过程的石块对象生成和消亡,而目前虚拟现实系统几何模型构造、变形、破碎恰是瓶颈之一,为此本公司基于底层的几何元素构造和显示研发了各类几何体的构造、拓扑和几何参数控制技术,能够解决各类欧式几何或非欧几何对象的快速构造和处理问题,从而为各类生产过程的仿真提供有力支撑。

仿真的核心是什么内容呢

不明白你说的是什么意思,你回去改改你的问题

主要包括复杂过程的实时可视化、复杂几何模型的实时处理。在不同的工艺过程中,可能产生各类不同的现象,如闪光、爆炸、烟雾、气流、水流等等复杂现象,仿真系统必需能够实时、逼真、可控地显示这些现象,因此必需解决各类复杂过程的实时生成和控制技术,本公司基于数据场可视化;此外在工艺仿真中还可能伴随着各种几何模型的生成、消亡、变形、破碎等现象,这要求仿真系统能够快速地构造、修改、删除各种类型的几何模型,如锻造过程的毛坯变形、石块破碎过程的石块对象生成和消亡,而目前虚拟现实系统几何模型构造、变形、破碎恰是瓶颈之一,为此本公司基于底层的几何元素构造和显示研发了各类几何体的构造、拓扑和几何参数控制技术,能够解决各类欧式几何或非欧几何对象的快速构造和处理问题,从而为各类生产过程的仿真提供有力支撑。

物性数据库。包括模块运行时所需的基础物性数据、物性计算等。 单元操作模型库。囊括模拟所需的模块,每个模块用包括物料平衡、能量平衡、相平衡、反应速率等方程在内的数学模型构成。 模型求解算法库。包括各种数值求解算法,线性、非线性方程组的求解、参数拟合、最优化算法等等各种算法。 仿真环境及其输入输出。仿真环境是模型仿真运行的管理机构,控制着仿真的进行程度 。

模拟是以模型为基础的拟合,仿真是以功能为基础的效仿。

仿真的核心是什么内容和特点

仿真系统就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。仿真系统的基本方法是建立系统的结构模型和量化分析模型,并将其转换为适合在计算机上编程的仿真模型,然后对模型进行仿真实验。由于连续系统和离散(事件)系统的数学模型有很大差别,所以系统仿真方法基本上分为两大类,即连续系统仿真方法和离散系统仿真方法。扩展资料仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。中美两国研究人员研发的新型仿真系统可利用激光雷达和双目相机扫描一段街道,模拟出与真实情况高度相似的交通流量。新型仿真系统无需制作高成本的计算机绘图模型或编写繁琐的程序来定义车辆行人运动,可大规模用于训练和测试评估自动驾驶系统的路径规划和决策算法。另外,随着军事和科学技术的迅猛发展,仿真已成为各种复杂系统研制工作的一种必不可少的手段。尤其是在航空航天领域,仿真技术已是飞行器和卫星运载工具研制必不可少的手段。在研制、鉴定和定型全过程都必须全面地应用先进的仿真技术。参考资料来源:百度百科-仿真系统参考资料来源:人民网-新型自动驾驶仿真系统研发成功

软件仿真测试有以下特点:第一,很强的针对性。仿真测试使软件产品的应用设计具体化。即仿真测试是针对具体环境的测试,有很强的针对性。反过来讲,仿真测试解决的是仿真的问题,不能解决所有的问题。第二,很强的目的性。仿真测试是为某些具体的目的设计的,它不是遍历所有功能的测试,也不是系统测试,它是以用户的具体使用为标准的测试(也不是黑盒测试,从用户的意义上讲,它超出黑盒测试)第三,需要充足的的准备。显然仿真越是和实际的使用环境接近,效果会越好。所以说仿真测试首要的就是调研,调研实际使用环境,并得出仿真的具体指标,这些指标要反映真实环境的需求,但是又不能过于具体,过于具体则很难执行(可行性低),但是如果抽象的过头又会脱离实际,所以这个度是要根据具体的需求来具体把握的。仿真准备的好坏直接决定了仿真测试的成败和意义。模糊的仿真或者大而全的仿真基本上就失去了其意义。第四,需要明确的标准。在准备好了之后,据需要制定具体的方案,使得仿真可以进行,方案的制定一般不会有什么困难,困难一般在方案的可测量标准,以及这种标准对仿真的体现度。好的标准既可以使方案易于执行,也能很好的体现仿真的内容。第五,数据的可分析性。在执行完仿真测试之后,会有一系列的数据,这些数据是仿真的结果,也是仿真测试的目的所在:正是这些数据体现了产品对环境的适应度。所以这些数据的可分析性在明确标准的时候就应该有所规划。最后值得注意的一点就是,为什么仿真需要产品的每个环节都有人参与?因为仿真是对整个产品的检验,而产品的使用中每个环节的工作只有这个环节的人员最为清楚,这样对仿真的分析以及标准的制定就尤为重要,而更为重要的是每个环节的人员可以具体分析最后的仿真数据对自己的这个环节意味着什么。

舰载C3I系统仿真技术现状与发展趋向分析  冯泉英  关 键 字: 仿真 多媒体  摘 自:无  本文详细阐述了C3I系统仿真技术的建模方法、仿真环境、舰载C3I系统仿真技术的现状、仿真专家系统、多媒体仿真及分布式交互仿真的发展及趋向  主题词: C3I系统仿真、多媒体、分布式交互仿真  一、前言  现代海战,是空中、水面、水下同时作战的立体战争参战双方的飞机、舰艇数量很多,在加上电子战等电磁环境和气象、海象等物理环境之类的诸多因素,使战场情况错综复杂,瞬息万变因此,对军队指挥自动化系统来说,不仅是要求增加系统的处理批次、提高系统的处理速度,还要能方便、迅速地操作使用,从而有效发挥人的指挥才能  C3I系统作为一个庞大而复杂的工程,其研制费用昂贵, 且不可避免地随战术变化要求升级,因而时间不断往后推,等研制出来后, 还要有少数系统不能发挥出立项时所指望的效益所以,要尽可能花少量经费,较短的研制周期,获得实用的最佳系统, 只有通过仿真技术才能达到安全、可靠、保密、应用灵活和高效费比的目的  仿真是一种可以控制的、无破坏性的、允许多次重复的、不受外界条件限制,功能比较齐全的试验手段仿真技术是以控制论、相似原理和计算机技术为基础,以计算机和多种物理效应为工具, 借助系统模型对真实的或设想的系统进行试验研究的一门综合性技术,是用来研究C3I的先期开发工作及系统试验、检测和评估的一种有效手段它可以有效地确定武器系统的作战区域,省弹、省钱、省时间; 可以弥补外场打靶试验的不足;能为管理决策和技术决策提供依据通过仿真实验, 可使设计人员加深对系统的理解,对研制过程出现的问题快速研究并加以解决先进仿真技术在国防系统和先进武器系统的规划、分析、设计、研制、运行、维护及战场模拟、军事演习、战斗管理和人员训练等方面起着极其重要的作用,受到人们的重视  二、C3I系统仿真建模  C3I系统仿真是用来研究系统在特定条件下攻击特定目标的有效性、响应时间;研究指挥员的决策预案,优化操作程序;研究作战软件,并对多目标情况下多武器协同作战进行决策方案分析  1、仿真类型  C3I系统仿真一般有三种类型:  ⑴全实物仿真其特点是全部使用实际系统的子系统或部件,并加入人的因素 它的作用主要是为作战积累经验,为改善系统提供依据  ⑵半实物仿真C3I半实物仿真,也叫 "系统试验床",它使用部分被仿真的C3I的硬件,系统的其它部分则采用计算机仿真形式,系统操作环境(包括威胁)可以是实物模拟,也可以是计算机仿真目的是及早发现系统的问题和增加必要的新技术, 为完善系统提供条件  ⑶计算机仿真其特点是系统用严格的数学模型和一些规则来表示,不使用实际系统的任何硬件,是纯软件系统  三种模型综合使用,以长补短  2、C3I系统仿真环境  仿真环境是一种逐步工作的环境它包括确定仿真目标,建立系统模型, 建立适  于仿真系统实现的仿真模型、仿真模型校验、仿真实验运行,结果分析、 系统模型  校验、再反馈修改模型或实验后再运行  要建立C3I系统仿真试验床,首先要明确仿真的任务和边界条件, 然后使仿真的  战场环境和作战想定要有典型性 要突出仿真各级指挥中心的信息活动和以通信网  络为依托的情报信息和指挥信息处理过程,使指挥员身临其境地处于仿真环境中,进  行信息处理和决策活动,直接参与人—机交互和仿真试验仿真模型中的目标函数  应该突出战斗力毁伤指数和决策总时延这两项指标, 由此反映我方在相同的兵力和  武器装备条件下,由于C3I系统不同的结构或者不同的运用, 所导致的不同的合  成指挥能力和快速反应能力  3、C3I系统仿真建模的方法  一个仿真活动的全过程(生命周期)本质上是一种知识处理活动的过程它包括  :以模型为基础的活动;模型行为有关的活动;质量有关的活动几十年来, 仿真界  一直致力于研究面向用户及面向问题描述系统模型及其实验的各种技术, 其主要  成果有面向方程、面向框图、面向事件、面向进程、面向活动等建模方法及仿真  软件  ⑴面向事件的仿真模型  现在大部分用于C3I系统仿真的语言(或仿真程序)都是面向事件的事件调度法  (Event Scheduling),由事件来驱动仿真程序的运行,如SLAM、GPSS和IHSL 都是通  用的离散仿真语言,可以用来仿真象C3I系统这样的问题 在这些语言中被建模的系  统用事件、进程和实体来描述  ⑵面向进程的建模方法  面向进程的进程交互法(Process Interaction)是最有竞争力的一种方法进程  可以看成是一个实体,它包含一组逻辑上有关联的事件进程可能有活动、睡眠、  已安排和终结四种状态进程要占用C3I系统服务设施,或者排队等待,或者按一定  规则进行服务处理C3I系统中多种进程的生命周期以及进程间的相互依赖关系描述  , 构成仿真模型  ⑶软件建模  a、PSM方法  这是美国通用电气公司使用的一种仿真语言和系统,专门用于处理器系统建模  它由定义语句和仿真语句组成  b、数学模型  它包括目标分配模型、火力分配模型、连接对抗的排队论模型等  c、信息模型  它是适应计算机进入非数值领域、信息处理领域形成的信息管理系统、网络系  统、图象图形处理系统、人—机界面等处理方法的模型  d、人工智能模型  它是把军事问题转换为专家系统式模型知识的软件模型软件建模技术是体现  C3I系统功能的关键技术  三、舰载C3I系统仿真技术现状  系统仿真作为一种特殊的试验技术,经历了半个多世纪的发展,今天已成为一种  真正的系统实验科学 仿真规模已由控制和制导系统研制中的应用向全武器系统及  其全生命周期发展;大规模的作战演练已经可以通过分布交互式仿真,借助于参试人  员与作战平台和建立在数字计算机技术为支撑的虚拟仿真、各种计算机生成兵力、  武器运行模型、作战规划流程交互作用而实现仿真已开始向产业方向发展,仿真  技术在不断自身完善和规范化  近年来,舰船仿真技术有了很大发展,已经成为舰船方案论证、分析设计、故  障诊断、性能预测直至定型验收全过程中必不可少的工具  1、舰用仿真器  舰用仿真器的作用是保证把舰员联系在一起,通过仿真情景和训练提高操作人  员的熟练程度舰用仿真器有两种:一种用于研究开发;一种用于训练研究开发用  的仿真器是用于舰船结构分析、运动分析、音响模拟技术 训练用仿真器又分为以  操作方法训练为中心的局部任务教练设备和以战术训练为中心的战术教练设备  ⑴舰用战术训练仿真器结构及功能  这种训练仿真器由CIC(作战情报中心)、计算机室、电源室、指挥室组成  CIC训练室设有与实际舰船功能相同的控制台,计算机房里用模拟材料制成的雷达  影像,可显示与海上真实情况相同的图像,还可根据训练脚本控制模拟模型并显示  每时每刻的变化训练人员依靠这个显示可在与海上战斗相同的环境条件下进行  训练  训练用脚本输入在控制计算机中,不间断地执行,指挥官可以边监控训练状况边  根据情况介入训练,或中断训练重新开始详细记录训练经过和指挥官用控制台上的  显示,在训练中或训练结束后自动分析其结果,供指挥官判断用 控制用计算机的方  式有多种,在训练仿真器中常用的有四种形式:  ·集中式一般用于小规模系统,用一台计算机就完全可以连接所有的机器, 即  简便又没有复杂的数据交换协议带来的烦恼,还易于实现实时处理  ·并行松耦合式可用于多个特殊的输入输出,但这种方式在2 台计算机间的数  据交换量大,难于进行高速实时操作,适于较低速或小容量的数据交换  ·并行紧耦合式它使用存储器连接多台超小型机,能处理比较大规模的数据  交换量,可用于大规模系统  ·网络分布式该方式使用5台网络机连接低的EWS (电子战系统)使用伊萨网  ,低级协议实现数据交换,不仅可以加大系统规模,而且可以并行地增设计算机,是  一种扩充性好的方式,费用方面也比其它方式低廉  ⑵训练用仿真器的模拟方法  在采用仿真方法之前首先要将仿真对象模型化 训练用仿真器的整个仿真模型  是由目标模型、战场模型、设备性能模型、机器操作模型、博奕板等局部模型组成    其模拟方法是按实战环境从雷达发出电波经过战场反射到目标 其反射波再次  经过战场被天线接收被接收的电波经过天线、接收机等仪器后,在转发器中变成  雷达影像操作员边监视雷达影像边将探测结果传送给决策人员这个过程是通过  战场模型、目标模型、设备性能模型、机器操作模型来完成的  战场模型由传播、反射、杂乱回波三个局部模型组成 传播模型采用电波方程  式的数字式模型实现; 反射模型是根据数字式模型按照目标的态势实现雷达方位变  化;杂乱回波模型是最难实现的模型杂乱回波是在平面波通过云彩等杂乱回波时实  现反射、衰减效果的 该模型的实现是采用在集中地堆积很多木材的方法来考虑杂  乱回波的其做法是让每个单元都具有反射率和穿透率,然后把电波经过路线上单元  的反射率和穿透率综合起来,作为整个杂乱回波的反射率和穿透率  机器操作模型分为传感器操作、情报处理系统操作、武器操作三种模型 传感  器操作模型是把操作员监视雷达和声纳的影像, 探测目标的操作模型化情报处理  系统操作模型是情况判断及决策的模型化,要实现精密模型需要高水平的知识处理  武器操作模型是使用规则库将武器操作模型化  ⑶现用的舰载仿真器  现代仿真技术的应用已从导弹动力学及控制系统仿真扩展到雷达系统, 引信战  斗部系统、武器控制系统以及多兵种、多种武器的联合作战系统的仿真; 已从只在  研制阶段进行仿真发展到包含批生产及部署使用等阶段在内的武器系统全寿命周期  的仿真舰载仿真器的作用是保证把舰员联系在一起,通过仿真情景和训练, 提高操  作人员的熟练程度  ·战略防御计划(SDI)国家试验台采用了先进的建模及仿真技术该试验台可  进行对选择结构的评价,并采用"人在闭环中"技术进行指挥与控制作战模拟仿真  与建模研制的重点放在对有能力支援SDI作战管理/指挥、控制、 通信的可靠的  软件系统进行评价国家试验台还模拟SDI所需要的动态通信网  ·嵌入式仿真器a、OBT(独立的舰载训练装置),分成12个部分永久地安装在  舰上主要包括训练控制台、人工信号发生器和处理机、打印机/绘图仪、信号注  入器、系统状态控制器、RF发射机和天线以及直升机接口它是为与AN/SQS-53B  /C 主动和被动声纳、AN/SQR-19(V)拖曳声纳、AN/SQQ-28(V)和LAMPS MK- Ⅲ  系统连接的其它ASW作战系统以及MK-116Mod5,6或7ASW作战系统而设计的它提供  一个包括与舰艇战术声纳和火控系统相连的模拟器的训练环境  b、舰载雷达环境仿真器系统(RESS)是用来仿真防空战情况的 该设备装在所  有"小猎犬"级远程巡洋舰、"鞑 人"级中程巡洋舰和DDG-993级驱逐舰上它可  用来训练、测试和评估舰载设备的性能,提供动态RF测试输入, 可同时或单独评估  和维护AAW作战系统中的信号雷达处理部件  ·AAI公司1984年开发的20B5作战系统小组训练设备是比20B4 更先进的作战  系统小组训练设备其特点是反潜战(ASW)和全程EW激励,可激励声纳、通信、EW  系统、武器和假目标以及雷达可产生1024海里×1024 海里对抗区域内的情景,  示出多达128个威胁(包括100个空中,12个水上或水下响应,8个鱼雷目标和2个假  目标), 其范围从最大雷达距离到最深的潜艇能仿真包括5个雷达和2个声纳以及  AN/SLQ-32(V)2电子对抗设备和AN/UGR-9海军14号数据链系统的只接收电报装置  等9个舰载系统该系统为MK-13制导导弹发射装置、MK-75、76毫米火炮、MK-15、  20毫米"密集阵"近程武器系统、MK-309可旋转鱼雷发射管、MK-46ASW鱼雷、RIM-  66 SM-1中程导弹、RCM-84"鱼叉"反舰导弹、SRBOC箔条发射装置、SLQ-25 NIXIE  声纳假目标和"大草原"/"假面人"ASW系统提供仿真的操作环境  ·DCB海军指挥系统模拟器是Cossor公司生产的, 安装在英国海军核动力潜艇  上该模拟器包括一个提供仿真目标数据的态势发生器,可以提供逼真的海洋环境信  号,模拟训练所有传感器参数模块化的、灵活的模拟器可以产生各种目标情景, 并  且容易使用和扩展  ·23型护卫舰雷达模拟器是监视和敌我识别雷达模拟器(SIRAS), 安装在位于  朴次茅斯的海军研究院的23型护卫舰上, 用于测试23 型护卫舰的指挥和控制系统  SIRAS模拟器将产生一定数量的有代表性目标的实时输出, 这些输出用于模拟护卫  舰主雷达系统的信号处理系统, 这些实时输出信号及其它相关信息的控制装置将直  接与真实雷达设备接口SIRAS模拟器还将向与其连接的敌我识别系统的编码器/解  码器提供视频输出该模拟器有一个独立的、离线接口,它是借助MICRO VAX11 计算  机操作的,除提供实时模拟外,计算机还与两个同步雷达视频发生器接口  ·模拟无线电系统(SRS)是英国海军在Dryad 舰上安装的具有逼真特征的舰载  无线通信模拟器, 在海上作战学校模拟了海军无线电信号发射的所有特征和困难情  况SRS系统可提供逼真的态势, 根据舰艇和频率的可用性之间的理论距离将操作者  限制在实际"范围"和"通道"极限上演习控制者还可以阻塞通信,并引入不同程度  的噪音干扰,以表示信号的减弱和敌方干扰  ·我国研制的16T-25型作战系统模拟训练仪, 可支持舰上的作战系统进行日常  的操作训练,并具有通道检查、精度评估、 反应时间测试及训练结果的显示记录等  功能  ·攻潜综合训练模拟系统 是我国海军某学院研制的能对攻潜效果及时作出直  观和定量评估,两个态势图上实时地显示武器弹着点、命中计数、命中距离等要素  2、电子战仿真器  电子战仿真是以计算机控制为中心的仿真系统,是在与实战相同的电子战环境  中怎样使对方的雷达和通信丧失战斗力电子战包括电子支援措施(ESM)、电子措  施(ECM)、电子对抗措施(ECCM)自电子战仿真技术兴起之后,对电子战的训练就渐  渐使用仿真器了 建立C3I与电子战系统模型的基本思想是使指挥员的感知战场  与实际战场能最大程度的拟合 为此就要通过仿真训练提高对战场的感知性能C3I  与电子战系统模型由侦察与探测系统子模型、通信系统子模型、数据处理系统子模  型和电子战模型组成 战场态势由侦察与探测系统子模型获得,通过通信系统子模  型传输,最后由数据处理子模型进行处理形成感知战场,供决策之用  ⑴电子战仿真器的分类  根据使用目的和预算的不同,电子战仿真器的种类和规模也是多种多样的电子  战仿真器可分为两类,一类是用于评价、开发电子战仪器的;一类是用于对主要人  员进行训练的为实际进行电波发射,用于评价、开发电子战仪器的仿真器往往带  有电波暗箱室这类仿真器有三种方式:  a、发射电波式实际进行电波发射,制造出实际电子战环境,进行电子战仪器  的开发并分析评估  b、混合式不实际进行电波发射,但发射与实际相同的威胁信号,对电子战仪  器接收装置和显示装置进行控制、试验  c、信号合成式它是根据仿真信号的发生,通过接收功能进行电子战显示该  方式也用于训练主要人员  用于训练主要人员的电子战仿真器有战术剧情方式, 它运用构筑主体程序的  战术剧情,进行电子战训练搭载式是根据接收的假雷达波, 进行实飞条件下的电  子战训练  五种仿真方式中,最引人注目的是搭载型,即是搭载在飞机上进行训练 搭载型  电子战仿真器收藏在外形类似新型中程空对空导弹的吊舱内 其训练脚本是从30种  敌方雷达模型中,预先选出8种编程,排入便携式存储模块该模块记录飞行员操作  等一系列训练结果,训练结束后能够再现其状况,获得准确的评价 使用搭载型电子  战仿真器进行训练对战斗机抵抗对空导弹威胁, 选择适应实战的最佳飞行航向有很  大的帮助  ⑵应用  ·EW-GEMS是一个通用的电子战仿真系统其结构设计分作两个主要领域:1>高  级仿真结构,2>一般软件工具及低级程序基础 高级仿真结构主要考虑计算机/用  户接口以及整个EW-GEMS过程的管理它的最终形式是模块化,适应性强,且使用性、  可维护性都较好采用自下而上的软件设计方法建立软件库和工具  在对抗仿真完成的过程中,用户可通过屏幕得到描述整个仿真过程的信息,还可  通过使用数据上卷功能在同一屏幕上观察到许多仿真运行时的参数并通过图形观察  信息  ·舰载C3I系统的模拟仿真测试系统由探测器模拟分系统、 武器装备模拟分系  统和仿真测试系统组成它可为舰载C3I系统的设计,测验和性能评价提供良好的条  件驱动各类舰载C3I系统,完成系统联调、性能评价,外场应用仿真试验,设备通  道检查, 故障诊断及系统的设计论证等项工作  ·ALQ-T5仿真器和ALQ-T4仿真器是美军在对EWO(电子战军官)教育中,用于  EF-111和B-52电子战训练的仿真器使用ALQ-T5 电子战仿真器掌握雷达预警装置  及电波干扰设备的操作方法和功能、可预测的威胁电波和信号特性、电子战的筹划  和应用方法  今后,我国要在电子战威胁环境仿真关键技术研究的基础上,集中力量迅速突破  电子战建模与计算机仿真模拟技术,建设一个三维动态、多通道、多目标、多功能,  能完成各种电子战装备的仿真设计、性能测试、训练演习的电子战威胁环境仿真系  统  3、C3I仿真专家系统  面对千变万化的作战过程,用传统的仿真只能从一种途径,严格地按预定的作战  方针进行战斗模拟,往往忽略了指挥员的领导艺术、军事素质、 作战经验等许多重  要因素为克服C3I系统仿真建模中人为决策过程中的明显技术障碍, 迫切需要使用  专家系统  要建立一个建模与仿真的专家系统,除了知识库推理系统外,还要以数据库、模  型库、实验框架库等为基础,构成系统的综合信息库信息库与控制结构相互分离,  便于分别对其进行修改,并允许非确定的数据结构及进行动态操作利用知识库专家  系统建立仿真模型,能根据人类的经验知识把综合过程用规则形式进行描述  仿真专家系统遵循的模式是:系统分析人员描述有关系统的知识,确定目标并让  系统类似一个仿真专家辅助建模;选择最优算法,进行程序自动生成, 运行并给出最  优解C3I系统仿真可以利用专家系统的知识建立人为决策的模型  仿真专家系统可用于仿真实验结果的检验和可信度分析 目前最主要的应用是  智能前端,即把专家系统建立在仿真软件与用户之间,用户直接同专家系统对话, 专  家系统产生必要的指示或代码进入仿真软件 还可以将仿真与专家系统结合于一个  大型软件中,两者中的任何一个都可以是大型决策支持系统的一部分  舰艇作战仿真专家系统是将数据库技术, 人工智能和专家系统技术引入舰艇作  战仿真领域的大型集成式智能仿真软件系统它由四个库(数据库、模型库、知识  库、作战仿真统计结果数据库),四个子系统( 舰艇作战智能仿真环境用户对话管  理子系统、数据库管理子系统、模型库管理子系统、知识库管理子系统) 和四个  专家系统(作战仿真辅助建模专家系统、作战仿真专家系统生成及运行控制专家系  统、作战仿真结果分析专家系统、舰艇作战仿真专家系统)组成  四个库均采用ORACLE表形式,四个子系统采用C和PRO*C预编译接口程序实现,  四个专家系统各自都有相应的结构  这种系统有效地克服了传统仿真系统的不足之处,具有更强的仿真能力其仿真  环境是建立在分布式关系数据库系统之上的,融合人工智能专家系统技术,服务于舰  艇作战仿真全过程的智能仿真环境  一个完善的智能化仿真系统应具有的功能是:  ·能接受问题描述,并通过咨询知识库综合仿真模型,最后推荐一个能满足指  定目标的方案;  ·能对仿真建模、实验方案设计、运行及结果解释等的合理性、可信性予以  解释;  ·具有学习能力;  ·具有彩色图形及动画显示,为用户提供多种信息表达形式  智能化仿真系统的研究始于十多年前,其研究成果也有些报道在作战模拟中  应用人工智能和专家系统的例子有:  ·兰德战略评估系统(RSAS):利用人工智能技术(基于启发式规则的构模) 使  模型代替部分或全部局中人  ·鹰:一个军级作战模型,分辨率为营级单位, 由陆军的训练与条令司令部的  分析司令部(TRAC)和络斯阿拉莫斯实验室开发 这个模型使用专家系统来模拟复  杂的指挥和控制活动  ·嵌入式作战仿真专家系统(SCSES):该系统由态势仿真子系统、潜艇作战专  家系统、战舰护航编队作战专家系统组成态势仿真子系统使用大量的数学模型,  在每一个仿真时间步内完成战场态势推演、各作战实体之间发现/丢失等信号的  生成以及武器运动轨迹递推等任务它可看成是战场上各类事件的发生器,是对作  战双方指挥员所面临的真实战场的仿真 潜艇作战专家系统是采用多知识源协同  求解的黑板模型方式实现专家系统的,它接收来自态势仿真子系统的战场态势数据  ,对其分析、总结,正确判明态势,采取相应战术动作 战舰护航编队作战专家系统  是由多个地理位置上分布的单舰作战专家系统和旗舰作战专家系统组成的分布式专  家系统 目前实现的这种系统的主要特点有:⑴将AI和ES、DB、SS技术融为一个有  机整体,各取所长、互相配合;⑵多种知识表示方法;⑶黑板模型及双方、多级、多  种推理机制; ⑷结构清晰,易扩充,便于总结、存贮专家经验;⑸人机界面友好、规  范等等  四、C3I系统仿真技术的新发展及趋势分析  总结仿真技术在海湾战争中应用的经验, 世界各军事大国对仿真技术的发展更  加重视尤其是美国,更加强了这方面的组织领导,新组建了国防建模与仿真办公室  ,提出了新的建模与仿真的投资战略一些高新技术的出现, 使得仿真技术有了新的  发展,并首先应用于军事领域  多媒体仿真技术  多媒体仿真属于感受计算的一种, 试图通过将仿真所产生的信息和数据转变成  为被感受的场景、图示和过程,以辅助人们进行决策它充分利用文本、图形、图  片、二维/三维动画、影像和声音等多媒体手段,将可视化、临场感、交互、 引  导结合到一起来产生一种沉浸感,使人的感官和思维进入仿真回路多媒体仿真技  术充分地利用视觉和听觉媒体的处理和合成技术,将表达模型信息的各种媒体集成  在一起,提供了模型信息表达的有力工具,将模型的属性、状态和行为从抽象空间  转移到视觉和听觉空间它所提供的临场体验扩大了可视仿真的范围,允许将实景  图象与虚拟景象相结合来产生"半虚拟"环境,更强调具体的仿真应用背景  我国的多媒体仿真技术正处于起步和发展时期,取得了一些理论与软件成果目  前多媒体仿真方法正逐步走向成熟,并且得到初步应用"九五"期间, 多媒体仿真技  术将朝着分布、开放和智能的方向发展  (1)多媒体仿真方法  在多媒体仿真中,媒体与对象从建模到仿真的全过程中始终是密不可分的,对象  建模包括其相应的多媒体描述建模仿真过程建立在多媒体技术的基础上,使用多媒  体技术从统一的角度对各种媒体(包括数值)的信息进行空间和时间的安排 具有多  媒体属性的仿真对象模型在一定仿真机制驱动下运行时, 自然会表现出其固有的或  虚拟的媒体特征,勿需对仿真结果数据进行图形转换或再现(可视化)  多媒体仿真遵循建模—仿真—表现(MPS)一体化的方法论建模者可以根据自  己对实际系统中形形色色、多姿多彩的实体对象及其变化规律的观察自然地刻画实  体模型,即是说,多媒体仿真模型是数学/逻辑模型(MLM)、仿真执行模型(SEM)、  表现与交互模型(PIM)三位一体的  多媒体对象MO是面向对象的多媒体仿真的基本模型单元,是可以具有属性、 行  为和单元时钟的最小建模单位MO中有四种变换函数:  ①状态转换函数δs(s,e)  δs仅引起状态变量V的变化,相位不发生变化  ②相位转换函数δs(Phase,c)  引起相位的变化,一般情况下由一系列的状态变化而导致相位变化可以看成是  在瞬间完成的,完成相变的动作又称事件  ③事件输出函数λ  用于在不同的相位中发送事件消息给其它对象, 所有消息的发送必须在相变之  前完成  ④媒体转换函数δπ(s,e)  δπ是多媒体对象的特有函数, 用于将对象从数值状态空间映射到视频和音频  空间在δπ中,对象状态/相位变化伴随着其多媒体属性的变化, 使各种媒体在  模型的基础上得以集成每一多媒体对象按其固有的逻辑,"自主"地完成其生命周  期 各对象自主活动之间的协调,通过信息传递来实现  虽然多媒体仿真要用到多媒体技术, 但它不是仿真技术与多媒体技术的简单结  合多媒体仿真研究方法有其自身的特点  对象模型属性的多媒体化建模者在对实体对象的量化属性(参数和状态) 进  行定义和描述时,还要对其多媒体属性进行定义和描述  仿真模型的二重性多媒体仿真模型具有系统模型和表现模型的二重性,仿  真运行时它将分别生成由实体的状态、事件、活动、进程组成的抽象空间和由文  本、图形、影像、声音组成的多媒体形象空间  抽象时空与形象时空的一致性 多媒体仿真中的抽象时空和形象时空具有一  一对应的映射关系  人的感官和思维活动进入仿真回路中 用户可在形象时空中获得生动的感官  体验,或者说人的感官和思维活动进入了仿真回路  多媒体仿真技术无论从经济技术的可行性,还是效费比上看;无论是从近期应用  的迫切性,还是从远期应用的潜力来讲,都是我国发展和应用虚拟仿真技术的现实途  径  (2)虚拟现实技术与仿真  虚拟现实技术是一种高度逼真地模拟人在自然环境中视、听、动等行为的人机  界面技术它使仿真系统的人机交互方式虚拟化,人可以通过形体动作与其它仿真实  体交互并产生沉浸感,从而使人真

主要包括复杂过程的实时可视化、复杂几何模型的实时处理。在不同的工艺过程中,可能产生各类不同的现象,如闪光、爆炸、烟雾、气流、水流等等复杂现象,仿真系统必需能够实时、逼真、可控地显示这些现象,因此必需解决各类复杂过程的实时生成和控制技术,本公司基于数据场可视化;此外在工艺仿真中还可能伴随着各种几何模型的生成、消亡、变形、破碎等现象,这要求仿真系统能够快速地构造、修改、删除各种类型的几何模型,如锻造过程的毛坯变形、石块破碎过程的石块对象生成和消亡,而目前虚拟现实系统几何模型构造、变形、破碎恰是瓶颈之一,为此本公司基于底层的几何元素构造和显示研发了各类几何体的构造、拓扑和几何参数控制技术,能够解决各类欧式几何或非欧几何对象的快速构造和处理问题,从而为各类生产过程的仿真提供有力支撑。

仿真的核心是什么

还是的,最新核心目录里面有这个期刊。

模拟是以模型为基础的拟合,仿真是以功能为基础的效仿。

核心思想是提高效率和降低成本。系统仿真是现代企业科学管理技术之一,是将对象系统模型化,把模型作为实验装置,用来分析已存在的或计划中系统的一种技术。

是核心期刊的由中国航天科工集团公司第十七研究所主办出版周期月刊详细的你可以去中国鸣网问下 如果想投稿的话也是可以的

仿真的核心是什么样的

二、系统仿真系统仿真是20世纪40年代末以来伴随着计算机技术的发展而逐步形成的一门新兴学科。仿真(Simulation)就是通过建立实际系统模型并利用所见模型对实际系统进行实验研究的过程[2]。最初,仿真技术主要用于航空、航天、原子反应堆等价格昂贵、周期长、危险性大、实际系统试验难以实现的少数领域,后来逐步发展到电力、石油、化工、冶金、机械等一些主要工业部门,并进一步扩大到社会系统、经济系统、交通运输系统、生态系统等一些非工程系统领域。可以说,现代系统仿真技术和综合性仿真系统已经成为任何复杂系统,特别是高技术产业不可缺少的分析、研究、设计、评价、决策和训练的重要手段。其应用范围在不断扩大,应用效益也日益显著。1.系统仿真及其分类系统仿真是建立在控制理论、相似理论、信息处理技术和计算机初等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假设的系统进行试验,并借助于专家的经验知识、统计数据和信息资料对实验结果进行分析研究,进而做出决策的一门综合的实验性学科。从广义而言,系统仿真的方法适用于任何的领域,无论是工程系统(机械、化工、电力、电子等)或是非工程系统(交通、管理、经济、政治等)。系统仿真根据模型不同,可以分为物理仿真、数学仿真和物理—数学仿真(半实物仿真);根据计算机的类别,可以分为模拟仿真、数字仿真和混合仿真;根据系统的特性;可以分为连续系统仿真、离散时间系统(采样系统)仿真和离散事件系统仿真;根据仿真时钟与实际时钟的关系,可以分为实时仿真、欠实时仿真和超实时仿真等。2.系统仿真的一般步骤对于每一个成功的仿真研究项目,其应用都包含着特定的步骤,见图9-2。不论仿真项目的类型和研究目的又何不同,仿真的基本过程是保持不变的,要进行如下9步:问题定义制定目标描述系统并对所有假设列表罗列出所有可能替代方案收集数据和信息建立计算机模型校验和确认模型运行模型分析输出下面对这九步作简单的定义和说明。它不是为了引出详细的讨论,仅仅起到抛砖引玉的作用。注意仿真研究不能简单遵循这九步的排序,有些项目在获得系统的内在细节之后,可能要返回到先前的步骤中去。同时,验证和确认需要贯穿于仿真工程的每一个步骤当中。(1)问题的定义一个模型不可能呈现被模拟的现实系统的所有方面,有时是因为太昂贵。另外,假如一个表现真实系统所有细节的模型也常常是非常差的模型,因为它将过于复杂和难于理解。因此,明智的做法是:先定义问题,再制定目标,再构建一个能够完全解决问题的模型。在问题定义阶段,对于假设要小心谨慎,不要做出错误的假设。例如,假设叉车等待时间较长,比假设没有足够的接收码头要好。作为仿真纲领,定义问题的陈述越通用越好,详细考虑引起问题的可能原因。(2)制定目标和定义系统效能测度没有目标的仿真研究是毫无用途的。目标是仿真项目所有步骤的导向。系统的定义也是基于系统目标的。目标决定了应该做出怎样的假设、应该收集那些信息和数据;模型的建立和确认考虑到能否达到研究的目标。目标需要清楚、明确和切实可行。目标经常被描述成像这样的问题“通过添加机器或延长工时,能够获得更多的利润吗?”等。在定义目标时,详细说明那些将要被用来决定目标是否实现的性能测度是非常必要的。每小时的产出率、工人利用率、平均排队时间、以及最大队列长度是最常见的系统性能测度。最后,列出仿真结果的先决条件。如:必须通过利用现有设备来实现目标,或最高投资额要在限度内,或产品订货提前期不能延长等。(3)描述系统和列出假设简单点说,仿真模型降低完成工作的时间。系统中的时间被划分成处理时间、运输时间和排队时间。不论模型是一个物流系统、制造工厂、或服务机构,清楚明了的定义如下建模要素都是非常必要的:资源、流动项目(产品、顾客或信息)、路径、项目运输、流程控制、加工时间,资源故障时间。仿真将现实系统资源分成四类:处理器,队列,运输,和共享资源如操作员。流动项目的到达和预载的必要条件必须定义,如:到达时间、到达模式和该项目的类型等属性。在定义流动路径时,合并和转移需要详细的描述。项目的转变包括属性变化、装配操作(项目和并)、拆卸操作(项目分离)。在系统中,常常有必要控制项目的流动。如:一个项目只有在某种条件或某一时刻到来时才能移动,以及一些特定的规则。所有的处理时间都要被定义,并且要清楚表明那些操作是机器自动完成,哪些操作是人工独立完成,哪些操作需要人机协同完成。资源可能有计划故障时间和意外故障时间。计划故障时间通常指午餐时间,中场休息,和预防性维护等。意外故障时间是随机发生的故障所需的时间,包括失效平均间隔时间和维修平均间隔时间。在这些工作完成之后,需要将现实系统作模型描述,它远比模型描述向计算机模型转化困难。现实向模型的转化意味着你已经对现实有了非常彻底的理解,并且能将其完美的描述出来。这一阶段,将此转换过程中所作的所有假设作详细说明非常有必要。事实上,在整个仿真研究过程中,所有假设列表保持在可获得状态是个很好的主意,因为这个假设列表随着仿真的递进还要逐步增长。假如描述系统这一步做得非常好,建立计算机模型这一阶段将非常简便。注意,获得足够的,能够体现特定仿真目的的系统本质的材料是必要的,但是不需要获得与真实系统一一对应的模型的描述。正如爱因斯坦所说“做到不能再简单为止”。(4)列举可能的替代方案在仿真研究中,确定模型早期运行的可置换方案是很重要的。它将影响着模型的建立。在初期阶段考虑替代方案,模型可能被设计成可以非常容易的转换到替换系统。(5)收集数据和信息收集数据和信息,除了为模型参数输入数据外,在验证模型阶段,还可以提供实际数据与模型的性能测度数据进行比较。数据可以通过历史纪录、经验、和计算得到。这些粗糙的数据将为模型输入参数提供基础,同时将有助于一些需要较精确输入参数数据的收集。有些数据可能没有现成的记录,而通过测量来收集数据可能要费时、费钱。除了在模型分析中,模型参数需要极为精确的输入数据外,同对系统的每个参数的数据进行调查、测量的收集方式相比,采用估计方法来产生输入数据更为高效。估计值可以通过少数快速测量或者通过咨询熟悉系统的系统专家来得到。即使是使用较为粗糙的数据,根据最小值、最大值和最可能取值定义一个三角分布,要比仅仅采用平均值仿真效果都要好得多。有时候采用估计值也能够很好的满足仿真研究的目的。例如,仿真可能被简单的用来指导人员了解系统中特定的因果关系。在这种情况下,估计值就可以满足要求。当需要可靠数据时,花费较多时间收集和统计大量数据,以定义出能够准确反映现实的概率分布函数就是非常必要的。需要的数据量的大小取决于变量的变异程度,但是也有通用的规则,大拇指法指出至少需要三十甚至上百的数据。假如要获得随机停机时间的输入参数,必须要在一个较长时间段内捕获足够多的数据。(6)建立计算机模型构建计算机模型的过程中,首先构建小的测试模型来证明复杂部件的建模是合适的。一般建模过程是呈阶段性的,在进行下一阶段建模之前,验证本阶段的模型工作正常,在建模过程中运行和调试每一阶段的模型。不会直接将整个系统模型构建起来,然后点击“运行”按钮来进行系统的仿真。抽象模型有助于定义系统的重要部分,并可以引导为后续模型的详细化而进行的数据收集活动。我们可能想对同一现实系统构建多个计算机模型,每个模型的抽象程度都不相同。(7)验证和确认模型验证是确认模型的功能是否同设想的系统功能相符合。模型是否同我们想构建的模型相吻合,产品的处理时间、流向是否正确等。确认范围更广泛。它包括:确认模型是否能够正确反映现实系统,评估模型仿真结果的可信度有多大等。(8)验证现在有很多技术可以用来验证模型。最最重要的、首要的是在仿真低速运行时,观看动画和仿真钟是否同步运行,它可以发现物料流程及其处理时间方面的差异。另一种验证技术是在模型运行过程中,通过交互命令窗口,显示动态图表来询问资源和流动项目的属性和状态。通过“步进”方式运行模型和动态查看轨迹文件可以帮助人们调试模型。运行仿真时,通过输入多组仿真输入参数值,来验证仿真结果是否合理也是一种很好的方法。在某些情况下,对系统性能的一些简单测量可以通过手工或使用对比而来获得。对模型中特定区域要素的使用率和产出率通常是非常容易计算出来的。在调试模型中是否存在着某种特定问题时,推荐使用同一随机数流,这样可以保证仿真结果的变化是由对模型所做的修改引起的,同时对随机数流不做改动,有时对于模型运行在一些简单化假设下,非常有帮助,这些假设是为了更加简便的计算或预测系统性能。(9)确认模型确认建立模型的可信度。但是,现在还没有哪一种确认技术可以对模型的结果作出100%的确定。我们永远不可能证明模型的行为就是现实的真实行为。如果我们能够做到这一步,可能就不需要进行仿真研究的第一步(问题的定义)了。我们尽力去做的,最多只能是保证模型的行为同现实不会相互抵触罢了。通过确认,试着判断模型的有效程度。假如一个模型在得到我们提供的相关正确数据之后,其输出满足我们的目标,那么它就是好的。模型只要在必要范围内有效就可以了,而不需要尽可能的有效。在模型结果的正确性同获得这些结果所需要的费用之间总存在着权衡。判断模型的有效性需要从如下几方面着手:①模型性能测度是否同真实系统性能测度匹配?②如果没有现实系统来对比,可以将仿真结果同相近现实系统的仿真模型的相关运行结果作对比。③利用系统专家的经验和直觉来假设复杂系统特定部分模型的运行状况。对每一主要任务,在确认模型的输入和假设都是正确的,模型的性能测度都是可以测量的之前,需要对模型各部分进行随机测试。④模型的行为是否同理论相一致?确定结果的理论最大值和最小值,然后验证模型结果是否落入两值之间。为了了解模型在改变输入值后,其输出性能测度的变化方向,可以通过逐渐增大或减小其输入参数,来验证模型的一致性。⑤模型是否能够准确的预测结果?这项技术用来对正在运行中的模型进行连续的有效性验证。⑥是否有其他仿真模拟器模拟了这个模型?要是有的话那就再好不过了,可以将已有模型的模拟结果同现在设计的模型的运行结果进行对比。(10)运行可替代实验当系统具有随机性时,就需要对实验做多次运行。因为,随机输入导致随机输出。如果可能,在第二步中应当计算出已经定义的每一性能测度的置信区间。可替代环境能够单独构建,并可以通过使用WITNESS软件中的“Optimizer”模块来设置并自动运行仿真优化。WITNESS软件的“Optimizer”模块为了执行优化操作,通过选择目标函数的最大化或最小化,定义需要实验的许多决策变量,需要达到的条件变量,需要满足的约束等,然后让优化模块负责搜索变量的可替换数字,来运行模型。最终得出决策变量集的优化解决方案,和最大化或最小化的模型目标函数。“Optimizer”模块设置了一套优化方法,包括遗传算法、仿真处理、禁忌搜索、分散搜索和其他的混合法来得出模型的优化配置方案。在选择仿真运行长度时,考虑启动时间,资源失效可能间隔时间,处理时间或到达时间的时间或季节性差异,或其他需要系统运行足够长时间才能出现效果的系统特征变量,是非常重要的。(11)输出分析报表、图形和表格常常被用于进行输出结果分析。同时需要于今年用统计技术来分析不同方案的模拟结果。一旦通过分析结果并得出结论,要能够根据模拟的目标来解释这些结果,并提出实施或优化方案。使用结果和方案的矩阵图进行比较分析也是非常有帮助的。

不明白你说的是什么意思,你回去改改你的问题

核心思想是提高效率和降低成本。系统仿真是现代企业科学管理技术之一,是将对象系统模型化,把模型作为实验装置,用来分析已存在的或计划中系统的一种技术。

  • 索引序列
  • 仿真的核心是什么内容
  • 仿真的核心是什么内容呢
  • 仿真的核心是什么内容和特点
  • 仿真的核心是什么
  • 仿真的核心是什么样的
  • 返回顶部