首页 > 论文期刊知识库 > 传感器的分类及应用论文

传感器的分类及应用论文

发布时间:

传感器的分类及应用论文

室内空气质量检测与传感器的应用    [摘要]室内空气品质对人的影响至关重要,利用传感器检测空气质量是当今流行的一种方法,本文介绍了传感器在空气质量检测方面的原理应用,分析了当前气体传感器的优点和不足,以及气体传感器的发展趋势和前景。   [关键词]空气质量 气体传感器 室内环境污染      一、空气对于人的重要性   人们每时每刻都离不开氧,并通过吸入空气而获得氧。一个成年人每天需要吸入空气达6500升以获得足够的氧气,因此,被污染了的空气对人体健康有直接的影响。人的一生中有90%以上时间在室内度过,可见,室内空气品质对人的影响更是至关重要。   二、室内环境污染背景   当今,人类正面临“煤烟污染”、“光化学烟雾污染”之后,又出现了“室内空气污染”为主的第三次环境污染。美国专家检测发现,在室内空气中存在500多种挥发性有机物,其中致癌物质就有 20多种,致病病毒 200多种。危害较大的主要有:氡、甲醛、苯、氨以及酯、三氯乙烯等。大量触目惊心的事实证实,室内空气污染已成为危害人类健康的“隐形杀手”,也成为全世界各国共同关注的问题。据统计,全球近一半的人处于室内空气污染中,室内环境污染已经引起7%的呼吸道疾病,22%的慢性肺病和15%的气管炎、支气管炎和肺癌。   三、关于开展室内空气质量服务的几点设想   着手调查国内家庭和办公室内空气质量的基本情况。   了解并着手引进室内空气质量检测设备。   进行规模较大的宣传活动,首先应由气象主管部门与环保主管部门联合建立室内空气质量问题的管理机制。   对国际环保部门有关室内空气质量的法规、技术标准、室内污染测定方法及对测定仪器等问题进行专门的调查和研究。   四、空气检测仪的强力武器——传感器   检测技术是人们认识和改造世界的一种必不可少的重要技术手段。而传感器是科学实验和工业生产等活动中对信息资源的开发获取、传输与处理的一种重要工具。下面将介绍六种在空气质量检测方面发挥重要作用的传感器。   金属氧化物半导体式传感器。金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。   催化燃烧式传感器。催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,是温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。   定电位电解式传感器。定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。   迦伐尼电池式氧气传感器。迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10-30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器  红外式传感器。红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。   PID光离子化气体传感器。PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。   五、气体检测仪器仪表产业发展现状深度分析   近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元;2007年仪器仪表行业总产值达3078亿元,增长率高达5%;据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 9亿元,同比增长8%,其中分析仪器、环境监测仪器仪表增长率高达32%。   科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。   从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。   六、对未来空气质量检测的展望   随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。      参考文献:   [1]陈艾敏感材料与传感器[M]北京:高等教育出版社   [2]高晓蓉传感器技术[M]成都:西安交通大学出版社   [3]彭军传感器与检测技术[M]北京:高等教育出版社   [4]王元庆新型传感器原理及应用[M]北京:机械工业出版社   [5]赵茂泰智能仪器原理及应用[M]北京:电子工业出版社

一氧化碳是一种无色无味、易燃易爆的有毒气体,是碳基燃料燃烧后不完整后的主要产物。我们可以用一氧化碳所占燃烧气体的比例来表示燃烧的效率。即便国家对汽车尾气排放的审核标准一再提高,但是随着人们与日俱增的对物质需求的提升和人均用车量导致CO等温室的气体污染不断加重。在原矿进行提炼时,整个能量转化过程比较容易释放煤气。因为在现代化的生活与工业生产中,煤气属于中关键性能源,伴随社会发展与进步,煤气使用、生产以及运输规模不断变大,而煤气中一氧化碳的含量比较多。并且其中一氧化碳占比将近97,基本等同于空气含量,所以扩散难度比较大,经常会聚集在某个区域。如果一个区域中一氧化碳的含量达到特定浓度,极易引起爆炸的事故。同时一氧化碳是无味无色的气体,比较难察觉,这种气体是有毒的气体,所以经常会见到一氧化碳的中毒事件。一氧化碳这种剧毒性的气体,最主要的危害有两点:一是会污染大气环境,二是会一氧化碳会使得人体内细胞缺氧而导致人机体细胞死亡。如果人体血液的循环系统中进入了一氧化碳,这种气体就会结合血红蛋白,生产碳氧的血红蛋白,这种血红蛋白比较难解离,导致人的组织细胞缺氧甚至死亡。二氧化碳是一种完全燃烧的产物,通常用于定量摄入EGR水平;它也是一种重要的温室气体,与CO一起,是一种燃烧完成度和总排碳量的测量方法。因此,如何在生活以及工作环境对一氧化碳和二氧化碳进行准确检测,对于今后生态环境保护至关重要。在国内环境污染不断加重以及检测技术不够先进的背景下,各种检测设备老化,因为这些诸多问题,需要将环境的监测领域投资加大,继而推动光纤气体的监测技术发展。就目前而言,国内大气质量的周报中,五大主要污染源就是臭氧、PM10、二氧化氮、二氧化硫以及一氧化碳,这些气体监测仪主要源自国外,并且这些仪器主要采取光化学方式监测,就监测技术发展的态势来看,最新一代的监测技术是光谱学与光学技术,这两种技术即为差分吸收的光谱技术。[i]1 气体传感技术的现状和发展趋势伴随全球工业化的革命发展,生产力提升和日新月异科技的发展却导致环境污染变得越来越严重,环境保护已成为了全世界不得不一起共同面对的巨大挑战。各国政府都设置环境保护的组织,旨在经科学手段检测污染源,合理的运用新型的传感测量技术是针对环境污染最有效监控途径。近几年来,世界各国对环境保护投资比较大,通过大量物力以及人力对新型传感的器件进行开发,用来对未知的污染源进行识别,同时对已知的污染源变化进行监测。有学者预测,环境保护传感器的市场会逐渐扩大,直至在未来环境保护方面市场份额达到举足轻重的地位。仅仅在我国2016年对传感器需求就达到了30亿只,换算市值可达到1200亿元。光纤传感技术是一种七十年代后期才逐渐开始发展起来的新技术。但是我国中高档传感器几乎均靠国外进口,国内缺乏对新型光纤传感技术为原理的新型传感器研发和产品化。而由于光纤传感器有极高的灵敏度和精度、轻细柔软便于安装、良好的化学稳定性和安全抗干扰性的特性,能补足传统传感器的种种局限,因此我们可以断言光纤传感器将会在未来环境监控上起到重大的作用和影响。气体检测传感器的发展趋势是:由劳动密集型向技术密集型方向发展。气体检测现在主要经大型工业的实验室以及人工采样方式来处理,今后应该转向智能化、机械化以及自动化的方向。由物理理论领域监测向全方位信息领域监测的方向发展。4.向新材料新工艺传感器发展。向物理、电子、光学等多方面高新领域发展。由单功能向多功能传感器发展。3 本论文内容和结构框架本论文第一章对气体传感器应用前景与当前进展进行简要分析,对气体传感器发展趋势进行总结,以便给气体传感器研究提供参考。第二章对光纤气体的传感器分类与发展进行介绍,同时分析LED灯在今后气体传感器的发展中所产生的影响。第三章介绍了了气体传感器的特性概述,首先简单介绍了气体分子光谱理论,然后粗略的介绍了光谱吸收定律和气体分子的吸收线,最后描述了一下气体传感器耦合问题。第四章主要介绍了在光纤气体传感系统当中,因为存在很多影响测试结果的不利因素,而我们可以通过差分吸收检测方法和波长调制谐波检测方法来保证实验的准确性,本章简单的介绍了一下差分吸收法和谐波检测的数学理论基础和给出了模型支持简单的了解了两种方法的工作原理。还以此建立了传感器的理论模型。第五章主要研究了一种简单的检测co2和co的基于LED光谱吸收的气体传感器,同时分析了其工作原理和工作模拟图,通过比对不同气体的吸收谱来选择相应的波长阐述了具体的设计理念展示了相关数据。第六章总结了本论文所完成的研究工作,讨论了论文本身存在的不足之处。展望了未来光纤传感器的发展和进步。2 光纤气体传感器概论1 光纤气体传感器的发展由于气体光谱的吸收气体测量的技术,主要优势就是鉴别气体浓度以及测量的灵敏度比较高,所以在控制工业的气体监测以及环境监测中有着重要作用。通常传统吸收光谱的分析方法只可以对野外实地的采集样本进行监测,再经实验室的仪器实施精确光谱的分析。另外,传统吸收光谱工作的时间比较长,仪器的精密性要求,所以对工作环境有着一定要求,所以导致实际应用受限,特别在工业气体与环境监测控制的过程中,传统分析方法无法与在线连续性的精准监测要求相符。而光纤传的感技术在70年代的末期才逐渐出现在大家视野的一门高新技术。把石英光纤当作例子,于55波长附近,光纤的损耗能够降低到每公里 2d B。换句话说,光纤气体传感器可以克服以往旧的传感器无法对恶劣环境的情况(例如高温环境、易爆高危高毒环境或高频高磁场环境),工作人员可以通过相应的软件程序进行远距离操控。与传统的电传感器相比,光纤传感器所需要的匹配功率较低,操作人员的安全得到大大提升。另外,光纤由于具有耐腐蚀的特性,可在高核辐射这种危险环境中进行作业。由于光纤有交宽频带,可以携带海量信息,经分波长、分时与分频等多路服用的技术,可实现不同传感器共用传输的光纤,一个探测器或是一个光源,一根光纤,就可以测量不同的化学参量,或用于多点或分布式测量,这样可以大大降低整个系统的成本。[ii]光纤传感器主要优势是结构比较简单、灵敏度比较高、体积较小以及耐腐蚀等,也就因为这些优势逐渐受到广大科研人员的喜爱。在无数的智慧火花碰撞后衍生出了许多结合其他的高新领域和光纤的传感技术的新技术,也就是气体传感的技术。到目前为止,光纤的传感器在浓度、位移、加速度以及振动等物理量测量中有广泛应用,其市场前景与潜力比较大[iii]。2 光纤气体传感器的分类光纤传感器主要在气体物理与化学性质、光学现象等测量中,下面我们将简单的介绍几种主流的光纤传感器:1光谱吸收型荧光型我们可以通过测量与之相对应荧的光辐射对气体浓度进行检测,荧光不仅可以由被物质的被测物质自身变化而来,而且可以由荧光染料和被测物化学反应而来。图2-1呈现的是荧光物质经吸收特定的波长所得光照,当电子将能量吸收以后,就会转变成受激的状态,由低能态转变成高能态;电子受光辐射的刺激以后,会出现荧光,并且此时荧光波长比应激波长大。通常在受激的状态下,电子不会长时间停留,其寿命普遍在1-20ns之间。图2-1荧光产生机理如果测量浓度将某种特定光照射吸收以后,不仅可以对荧光辐射强度进行改变,而且能引起寿命的变化。所以按照各种测量的方式以及传感的机理,可以划分成两种,其一是对荧光辐射的寿命进行测量;其二是对荧光辐射的强度进行测量[iv]。相较于吸收型的光纤传感器,荧光型的传感器中传感荧光波长与激励光波长不一样,因为各种荧光材料中荧光辐射的波长不一样,所以荧光传感器在鉴别被测量物方面,准确性比较高[v]。就实际应用而言,人们经常希望激励波长和辐射波长可以有较远的距离,以便经价格低廉波长的滤波器划分传感光和激励光。都要去激励波长处于近红外区或是见光区,关于这段波的研究技术相对成熟,价格方面人们也比较容易接受。荧光传感的原理主要就是对某固定的波长段荧光的强度进行测量,经过这个原理,能够制作出荧光pH的传感器,即通过实验不断改变浓度ph值的大小,使得荧光辐射的强度也不断改变。荧光寿命的测量方法较为复杂,这里我们就暂且不去讨论。荧光型传感器具有极高的物质鉴别能力但其缺点就是其检测信号极其微弱不易测量且设计检测系统极其复杂,不利于实现工业化和商品化。2基于折射率变化的传感器 就折射率的变化也就是光程变化光纤传感器而言,主要是将特殊材料涂敷在光纤端面或是表面,该材料折射率与体积在气体上有较强的敏感性。例如:杂聚硅氧烷( HPS)材料能够经溶胶凝胶(Sol-Gel)方式,将其涂抹于光纤的表面,并且设计涂层的折射率类似石英光纤的折射率。该材料与某种化学量发生作用后,会改变了折射率,这各类型HPS能够对不同化学量进行测量。例如:glycidoxyl propyl siloxane折射率在碳氢化合物反应后,对于甲苯会有敏感性。并且折射率发生变化,会使得波导参数发生变化,例如:双折射率、损耗与有效的折射率等,上述参数能够采取千涉或是强度检测方式进行测量。膜与氢气相遇,就会出现膨胀,四氟乙烯、高分子膜与己烷、酒精灯相遇,同样会膨胀。这些材料会在光纤的端部沉积,构成Fabry-Perot的干涉仪,而气体所致薄膜膨胀可已经测量干涉仪的光强度输出获得。[vi]3基于染料染色剂的传感器在石英的吸光谱上,部分气体吸收波不够明显,即便存在吸收波,但是因为各种因素导致相应波长的光源并不存在与现实生活中,基于这种情况应运而生的便是将染料指示剂当作中间产物,完成间接的传感。一旦燃料和气体产生化学的反应,本身光学的性质同样会变化,经过对其中变化进行测量,可以获取被测气体信息[vii]。ph值的传感器属于较常见的一种,染料的指示剂,例如:石蕊试纸颜色会伴随ph大小改变而发生变化。因此我们可以通过测量所对应的溶液ph值来测量部分气体的浓度(如NHCO2等)。4 光纤渐逝场气体传感器光纤渐逝场气体传感器在现实生活是一类已经得到实现且具有广大潜力前景的一类传感器。企业已经能商业化出产着在波长39um处利用渐逝场原理的光纤传感器。但是另一方面因为该类传感器在该波长段处的光纤传输损耗极高运用效率极低,导致该类别传感器的光路往往不能够超过3米及以上标准。此类传感器检测的气体浓度同时也将限制于百分之二量级上。渐逝场的传感器并且容易发生表面污染的问题,即便经高分子的隔离膜能够防止大型的污染物进入到渐逝场的区域,和气体分子的体积接近的分子却难以阻挡,这些污染物将会改变光纤表面的波导结构,从而改变其测量出的参数导致影响传感器的灵敏度。如何降低表面污染对渐势场型传感器的影响是未来科研人员仍需要攻克的主要技术性难关。渐势场型光纤气体传感原理图5 吸收式光纤气体传感器在这些传感器之中,光纤作用就是当作传输的介质,只可以对光能量进行传输,所传输光能量能够和待测气体的样本互相作用,产生各类信息,以便在某些区域检测待测气体的样本[viii]。依据现有的情况数据分析,吸收式光纤气体传感器是在现有的科学技术手段支持下由理论走向造福社会的一类新型的传感器。吸收型的传感器主要是经气体测量石英光纤透射窗口(8-7um)吸收峰。通过气体吸收产生的光强衰减程度来通过一定的数学公式运算对气体浓度进行测定,主要是按照Lambert-Beer的定律计算。常见气体(如CO2, C2H2, CH4, N02, C0)在红外光谱范围内都存在较强的吸收谱线,该红外光谱波段对应接收器与气体的发光器均是相对理想光电转换的器件。经该方式能够准确测量大部分气体的浓度,不仅能保证产品质量安全,而且具有灵敏度高、高抗电磁干扰功能、响应速度比传统传感器快、成本价格低廉、运用对象广泛、具有良好的兼容性特别是传感头不带电、本质防爆的特点,在高危工业的检测中应用前景较好,此次所用传感器就是吸收型传感器图3吸收型光纤气体传感的原理图3 LED在传感器起到的功效在光纤的系统中,主要是采取光纤和发光二极管最佳耦合高亮度,并且传感器中明确要求部件达到最大利用率和安全保障率的同时,确保发射波长和光纤吸收的频率创口一样。LED的器件公共特性都一样,光/电流的曲线特性如图2-3所示。如果范围比较宽,也就是40dB左右,在一定的范围区间内光输出就会伴随正向偏置电流变化方向,与线性图比较接近,然而,伴随器件的温度变化,会增加使用期,曲线也会越来月平稳。这种变化会影响到传感器的系统,继而使得测量数据间存在极大偏差。因此需要及时经热反馈方式,对这些变化进行了解,本文经发射系统或是温度的敏感电源中光电二极管进行监测。图2-3发光二极管的光/电流曲线面发光二极管与光纤的藕合从结果上分析这是个低效率过程。为什么这么说呢?这是因为LED面发光管所产生的光功率会散漫的分布在一个极大的立体角内,能够进入光纤部分的输出光功率甚至不足百分之十,所以结合单模的光纤系统和发光二极管使用,没有现实的意义。边发光放入二极管主要是经双异质的结构发生辐射,引起局部内波导的效应,可以构成稳定定向红外的光束,能够对发射光方向性进行保证,将光束限制于垂直方向的30°范围中,限制在水平方向的120°内。所以对比了面发光二极管以及边发光二极管得出,边发光二级光光耦合的效率比较高,而就接收小立体角类光纤而言,光耦合的效率就是一个重要部分。图1从图1中我们可以看出只有在某一波段的光才具有在光纤中低损耗传输的能力。4 本章小结本章主要介绍了气体传感器的发展历程,之后又介绍了几种不同工作类型的光纤型传感器;为后面介绍该论文阐述的气体传感器系统原理做了铺垫;接着介绍了光纤在LED中起到的作用和功效,展现了吸收型光纤传感器在未来的前景。吸收型气体传感器特性分析1引言就气体分子吸收光谱的理论而言,经气体分子吸收作用以及特定波长光原理,能够对气体浓度进行检测,因为气体分子中存在吸收光谱,如果穿过待测的气体,并且气体浓度不高,该气体就会吸收特定波长的能量,满足Lambert -Beer定律。气体分子的吸收光谱理论和Lambert -Beer定律,建立吸收型传感器的支持理论框架。然而,因为气体分子光谱线宽极比较窄,其谱宽主要是纳米的量级,同时吸收的功劳不大,经测光照的强度增减,对气体难度进行测量的难度比较大。因此,需要按照比尔朗伯吸收定律以及气体分子的光谱理论,经谐波检测与差分吸收方式,对各种因素的干扰进行克服,有效检测出微弱光电的信号。2 气体分子光谱理论当电磁辐射与气体分子相互作用时,能引起分子状态由低能态过渡到高能态,发生所谓的能级跃迁,记录不同气体所需要的电磁辐射强度变化被气体分子所吸收随波长的变化,所得到的光谱图便是气体分子吸收光谱在光纤气体传感器传感系统当中由于选择的光源的波段主要是红外光的波动,在红外光谱区,分子振动和吸收等,都会在各能级间跃迁,能量跃迁能够经量子力学的原理解释,在能量的跃迁过程,气体分子之中原子会不断振动,并且分子振动过程,会发生自我的转动。按照量子力学的原理可知,如果分子的能态改变,那么其都是按照特定规律进行变化,分子能级会呈现出规律化。若经低能量红外光的辐射对分子进行照射,则分子能够吸收相应于相邻转动能级之差的远红外辐射能量,由低能态跃迁到高能态,通常我们将这一现象称为能级跃迁。3 光谱吸收定律当光源以平行光的形式通过待测气 体时,如果光源的光谱覆盖 1个或多个气体的吸收谱,那么部分光将被吸收,光通过气体时将会发生强度衰减。未衰减的光将按原路径继续传播。根据朗伯比尔定律定律,出 射发光强度 I 与入射发光强度 I0 和气体的体积分数 之间的关系为(3-3)是气体吸收系数,即气体在频率 v 处 的吸收线型; L 测量气体作用在传感器的长度单位为m; c 为气体的浓 度,通过计算,上式可变形为:(3-1)通过上述公式我们可以知道,当气体的吸收系数和作用长度已知,气体的浓度可以通过投射光和入射光强来求出。图3吸收型传感器原理4气体分子的吸收线气体分子吸收线宽与以下因素相关:气体分子自然的线宽;通过气体分子自由运动所引发多普勒的效应,继而将分子的吸收光谱加宽;分子自由碰撞的展宽。通常情况下,气体分子自然线宽会因为激发态的分子自然寿命、跃迁时间受到影响,而宽度微小,通常可以忽略。图3-4气体分子的典型吸收线图3-4中 表示波长的吸收系数;表示对应的吸收峰;表示带阻尼的电偶极振子的衰减速率。由上图可知影响气体的吸收线宽的因素不仅包括压力因素还包括温度因素。但只考虑到碰撞展宽时,温度因素对大局无影响可忽略。因此我们可以从上图中得出结论:当外界压力保持恒定时,待测气体的谱线形状和宽度可在理论认为其是保持稳定不变的。5 光纤气体传感器耦合1光源与探测器的耦合理论上,光源发射光功率从多地汇入到传输的光纤,属于光纤和光源耦合的问题。通常情况下,采取藕合效率对耦合程度进行表示,公式表示如下;(5)表示为耦合输出功率,表示为光源总功率2 气室的耦合在气体传感器中存在一个敏感元件为气室。稳定的气室能帮我们只需简单的更换光源就可以完成对不同气体的浓度检测。气室组成部分包含输出与输入两组透镜。光纤射出光经输入透镜变成平行光,经气室耦合至输出的透镜,下面给出了三类气室设计的模型图。图3-5气室设计图上面三组设计图分别是(a)投射式气室;(b)反射式气室;(c)渐变折射式气室。6本章小结本章主要介绍了气体传感器的特性概述,首先简单介绍了气体分子光谱理论,然后粗略的介绍了光谱吸收定律和气体分子的吸收线,最后描述了一下气体传感器耦合问题为下一章节介绍总体设计做好铺垫。 系统总体设计1引言在光纤气体传感系统当中,总是会存在很多影响测试结果的不利因素,比如光源光功率的波动、气室对光路的干扰、PIN管的噪声等等,我们可以通过利用差分吸收检测方法和波长调制谐波检测方法来减弱不利因素对结果的影响来保证测试的准确性2谐波检测原理当电路上施加了正弦波的电压时,所通过的电流将会变成非正弦波形式,非正弦波电流在电网阻抗上将会产生压降,使得电压波形也变为非正弦波形式。非正弦波可分解为傅里叶级数,频率与工频相同的分量称为基波,频率大于基波的分量称为谐波;如变频器、电磁炉、电动机、整流器、电子用品等都会产生谐波。谐波检测方法最开始提出来的时候是作为一种检测微弱信号的方法。在电子光谱,声光光谱以及Zeeman及Stark光谱的研究中均有涉及。谐波检测的基本原理是把一个高频调制过的信号(依赖于某频率),使其“检索”待测的特征信号[ix]。之后在信号处理过程中,通过调制频率或调制频率的倍频以此依据来作为参考信号,用锁相放大器记录下所有已得到的特征信息,这里得到的特征信息便是由调制信号产生的谐波信息。如果调制出来的谐波信号不满足规律的数学关系比例就会导致出现极大的偏差。虽然存在一定的弊端,但是谐波检测技术仍适用于上述各种光谱的微弱信号检测。图4-2谐波检测原理图在图4-2 (a)中,发射器的波长被正弦信号的调制,输出的光信号是含有一次和二次谐波的强度信号。如图4-2(b)所示通过把发射器固定在光谱气体吸收峰上,或者让照射光扫过气体的吸收谱,最后用锁相放大器检测二次谐波的最大值,就可测量气体的浓度。3差分吸收原理由Lambert -Beer定律我们可知:(式4-3)在4-3式中,和分别是初始和入射光强; 是某波长下的单位浓度、单位长度介质的吸收系数; 是米氏散射系数; 是瑞利散射系数;是表征气体密度波动造成的吸收和散射总的变化量;0是待测气体与光相互作用的长度;c是待测气体的浓度。如图4-3所示宽带光源LED的谱宽比气体吸收线宽大的多,使用不同中心波长的干涉光栅滤光片就可以提取需要的波长和。为测量气体的吸收谱线中心波长,为偏离吸收谱线某一气体的波长的吸收谷,通过上图结构我们可以依次实现差分吸收法。4系统理论设计图4-4为本文设计的光纤气体传感系统结构,光源LED与传输光纤藕合进入气室,再由气室由藕合器通过光纤到达法布里-珀罗干涉腔。频率调节后进入光检测器PIN由光信号转化为电信号。经电压调制方式,继而调控布里-珀罗干涉腔长,继而有效控制光波长。经由电脑模拟软件处理后,就可以检测出待测气体的浓度。图4-4光纤传感器系统

建议去科技论文网去查,你去你们学校图书馆问问,有没有买什么数据库,一般学校都有的。然后输入你的关键字去查都能查到。透光脉动传感器的影响因素研究 论文透光脉动传感器是一种非接触式光电检测装置,通过对混凝过程中形成的絮体颗粒的检测,可以得到反映颗粒聚集状态的检测参数R。其检测不受混凝剂种类以及原水水质等条件的限制,其输出值不受取样管管壁的粘污以及电子元件老化、漂移等不利因素的影响,广泛适用于饮用水处理以及工业废水处理中混凝过程的在线连续检测[1]。以该传感器为核心的透光脉动混凝投药控制系统在高浊度水的混凝剂自动投加控制方面得到了良好的应用[2],近年来开始在常规浊度水的混凝剂自动投加控制方面得到应用[3]。在实际使用中,透光脉动传感器的检测性能受诸多因素的限制。作者在综合实践应用经验和试验结果的基础上对透光脉动传感器的主要影响因素进行了研究,并确定了其最优工作参数。1 透光脉动传感器 透光脉动传感器由水样检测部分和信号处理部分构成,分别完成信号的检测和处理,其工作原理如图1所示。由光源发射一束狭窄的光照射到传感器取样管中流动的悬浮液,透过光由光检测器接收并转换成电信号,然后通过后续的信号处理电路完成对电信号的处理,输出透光脉动检测值。检测值可以通过数码显示器(LED)显示,也可以通过输出端子输出,通过接口与计算机等连接,以实现检测值的在线采集和分析处理。式中:L—取样管管径; A—光柱有效照射面积; Ni—第i种颗粒的数量浓度; Ci—第i种颗粒的散射截面积。 从表达式可以看出,在被检测对象即悬浮液中颗粒的性质一定的情况下,检测值受光源的有效照射面积及取样管管径等因素的影响。在实际应用中,取样流速和传感器信号处理部分的放大倍数等因素也对检测值有明显影响,下面将对这些影响因素进行具体分析。2 影响因素分析1 光源的影响 对于透光脉动传感器来说,光源的选择无疑是至关重要的。受透光脉动检测技术的限制,只有当被测水样体积足够小时,颗粒的脉动现象才能被传感器检测到。在实际应用中为保证检测效果,必须尽量减小光柱的有效照射面积,因此应选择发射角小的光源,如激光二极管。 在水处理领域,国际标准化组推荐使用波长为860nm的近红外光和550nm的紫外光作为光源[4]。为了保证传感器的灵敏度,光源发射光的波长应随着被测颗粒尺寸的增大而增大,对于透光脉动传感器来说,它检测的是尺寸较大的絮体颗粒,因此宜选择发射波长为860nm的光源。在860nm处水中的溶解性物质对光的吸收非常弱,这一点对于没有色度补偿的透光脉动传感器来说很重要。2 取样流速的影响 由透光脉动检测技术特性可知[5],颗粒的脉动频率与取样流速有关,只有在保证最低取样流速,使得被检测水样能及时得到一定程度的更新的前提下,经过处理后的检测信号才能真实地反映出颗粒的脉动情况,且此时检测值应与取样流速无关。为了验证取样流速对检测值的影响,用内径为3mm的取样管分别对未混凝和混凝的悬浮液进行了连续检测。对于未混凝的悬浮液,当取样流量小于20mL/min时,此时水样流速太小,脉动信号的频率过低,其在信号处理过程中被滤波电路滤掉一部分,从而导致检测值偏小。取样流量在20mL/min左右时检测值波动较大,而当取样流量大于25mL/min时检测值比较稳定,仅当取样流量达到100mL/min时,检测值才略有下降。从试验结果可得,当取样流量在25mL/min以上即取样流速在06m/s以上时,检测值与取样流速无关。对于混凝的悬浮液,当取样流量为25~40mL/min即取样流速为06~094m/s时,流量变化对检测值的影响很小,而当取样流量大于50mL/min后,取样管中层流剪切力造成絮体明显破碎,导致检测值随流量的增大有明显的下降趋势,当取样流量降低后,絮体破碎程度降低,检测值则重新升高。 试验结果表明,当取样管管径为3mm时,对于未混凝的悬浮液,取样流速在06m/s以上时检测值与取样流速无关;而对于混凝的悬浮液,为了保证检测值能反映絮体颗粒真实的聚集情况,应尽量避免絮体在取样过程中的破碎,将取样流速合理的控制在06~094m/s。3 取样管管径的影响絮体在取样管中层流剪切力的作用下会有一定程度的破碎,检测值将受到影响。研究表明,层流的平均剪切率和管径的立方成反比,和流速成正比,因此除通过适当降低取样流速外,还可以通过增大取样管管径的方式来减小剪切率。取样管管径可以根据使用目的以及所检测水样的絮凝情况综合考虑,例如在实验室小试研究中,为了尽量节约试验用水,取样管管径宜选择得小一些,如3mm,在适当控制取样流速的情况下,可以保证絮体基本不破碎。从图4可看出,当取样管管径小至1mm时管中的平均剪切率变得非常大,例如当取样流量仅为5mL/min时,剪切率即达到约300s-1,这样高的剪切率很容易造成絮体的破碎。因此,在实际应用中往往不是用1mm的取样管来检测颗粒的聚集过程,而是充分利用层流剪切力对悬浮液中颗粒的破碎作用,将其用于研究絮体颗粒的抗剪性能或者颗粒物质在悬浮液中的分散过程等[6]。 在水处理工艺中,混凝效果良好时形成的絮体颗粒粒径较大,絮体强度相对较小,特别是在原水浊度较高、投药量较大的情况下;另外,为了保证在长时间运行时取样管不易被沉积物堵塞,必须保证较大的取样流速,这样都容易导致絮体的破碎。当取样管管径仅为3mm时,颗粒破碎程度明显增大,此时需要选择管径较大的取样管。生产实践表明,当取样管管径增加到5mm左右时,就可以保证水样流过取样管时絮体基本不会破碎,当然,也可以根据原水性质选用直径更大的取样管,如在高浊度水絮凝过程的检测中则建议使用内径为8mm左右的取样管4 放大倍数的影响 透光脉动传感器直接检测到的脉动信号很微弱,必须经信号处理部分放大和滤波等处理后才能参与控制。为了研究信号处理部分的放大倍数对检测值的影响,选取放大倍数分别为K1和K2的两个传感器进行了试验研究,在改变水样的絮凝程度时的检测 传感器的放大倍数K1较小,其检测值的变化幅度相当小,仅在2%~5%之间变化,而2号传感器的放大倍数K2较大,检测值在7%~7%之间变化,由此可见放大倍数对于检测值的输出具有相当大的影响。把两条曲线绘于不同的坐标下时发现其变化规律非常接近,说明两个传感器的检测性能基本相同,只是由于信号处理部分的放大倍数不同,导致输出值差异很大。对于投药控制系统来说,传感器信号处理部分的放大倍数过高,检测值波动太大,导致系统稳定性差;放大倍数过低,检测值无法准确反映出絮体颗粒的变化情况,控制系统无法调节投药量,因此在控制系统投入运行之前必须调节好放大倍数。一般来说,放大倍数可以根据所检测水样的性质现场调节,其调节可以分为两步:首先将絮凝充分的水样通过传感器,调节放大倍数使得检测值在40%左右,然后较大幅度地改变取样流速或者水样的絮凝程度,使检测值大约在20%~80%之间变化即可。3 结论通过对传感器的工作参数进行优化,可以改善传感器的检测性能,使其在生产中获得更加良好的应用,主要应注意以下几个方面: (1)光源应选择发射光的波长范围窄、发射角小的激光二极管等,波长宜选择860nm; (2)对于混凝的悬浮液,其检测值受取样流速的影响,在生产中应合理控制取样流速; (3)为了减小絮体在取样管中的破碎,应根据悬浮液的絮凝程度合理选用取样管,试验研究中一般选用1~3mm,生产应用中则选用5~8mm; (4)传感器信号处理部分的放大倍数对检测值的输出有很大影响,为了保证控制系统的控制性能,必须合理确定好放大倍数,其值可根据被检测水样的性质在现场调节确定。参考文献:[1] Gregory, J , Nelson, DW A New Optical Method for Flocculation Monitoring[A] Solid-Liquid Separation[C] Chichester,Ellis Horwood:172-[2] 于水利, 李邦宜, 曹世杰, 李虹, 李圭白 新型在线光学絮凝检测仪的原理、设计与制造[J] 传感器技术, 1997, 16(1):18-[3] 孙连鹏 透光率脉动混凝投药控制系统的应用研究及系统优化[D] 哈尔滨:哈尔滨工业大学, [4] ISO Water qulity-Determination of turbidity[S][5] Gregory, J Laminar dispersion and the monitoring of flocculation processes[J] J of Colloid Interface S, 1987,118(2):397-[6] 李星, 张正磊, 齐文明 颗粒分散和破碎过程在线检测研究[J] 哈尔滨建筑大学学报, 1999,32(6):31- [来源:论文天下论文网 ] 论文天下 希望对你有帮助

浅谈传感器的现状以及发展趋势  2007-1-25 16:39:00 转:中国工控展览网 供稿  1 微型化(Micro)  为了能够与信息时代信息量激增、要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性、可靠性、灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小、重量轻、反应快、灵敏度高以及成本低等优点。  1 由计算机辅助设计(CAD)技术和微机电系统(MEMS)技术引发的传感器微型化  目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本、高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。  对于微机电系统(MEMS)的研究工作始于20世纪60年代,其研究范畴涉及材料科学、机械控制、加工与封装工艺、电子技术以及传感器和执行器等多种学科,是一个极具前景的新兴研究领域。MEMS的核心技术是研究微电子与微机械加工与封装技术的巧妙结合,期望能够由此而制造出体积小巧但功能强大的新型系统。经过几十年的发展,尤其最近十多年的研究与发展,MEMS技术已经显示出了巨大的生命力,此项技术的有效采用将信息系统的微型化、智能化、多功能化和可靠性水平提高到了一个新的高度。在当前技术水平下,微切削加工技术已经可以生产出来具有不同层次的3D微型结构,从而可以生产出体积非常微小的微型传感器敏感元件,象毒气传感器、离子传感器、光电探测器这样的以硅为主要构成材料的传感/探测器都装有极好的敏感元件[1],[2]。目前,这一类元器件已作为微型传感器的主要敏感元件被广泛应用于不同的研究领域中。  2 微型传感器应用现状  就当前技术发展现状来看,微型传感器已经对大量不同应用领域,如航空、远距离探测、医疗及工业自动化等领域的信号探测系统产生了深远影响;目前开发并进入实用阶段的微型传感器已可以用来测量各种物理量、化学量和生物量,如位移、速度/加速度、压力、应力、应变、声、光、电、磁、热、PH值、离子浓度及生物分子浓度等  2 智能化(Smart)  智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用领域,如分布式实时探测、网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。  1 智能化传感器的特点  智能化传感器是指那些装有微处理器的,不但能够执行信息处理和信息存储,而且还能够进行逻辑思考和结论判断的传感器系统。这一类传感器就相当于是微型机与传感器的综合体一样,其主要组成部分包括主传感器、辅助传感器及微型机的硬件设备。如智能化压力传感器,主传感器为压力传感器,用来探测压力参数,辅助传感器通常为温度传感器和环境压力传感器。采用这种技术时可以方便地调节和校正由于温度的变化而导致的测量误差,而环境压力传感器测量工作环境的压力变化并对测定结果进行校正;而硬件系统除了能够对传感器的弱输出信号进行放大、处理和存储外,还执行与计算机之间的通信联络。  通常情况下,一个通用的检测仪器只能用来探测一种物理量,其信号调节是由那些与主探测部件相连接着的模拟电路来完成的;但智能化传感器却能够实现所有的功能,而且其精度更高、价格更便宜、处理质量也更好。与传统的传感器相比,智能化传感器具有以下优点:  1.智能化传感器不但能够对信息进行处理、分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。  2.智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输入信号给出相关的诊断信息。当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内部检测链路找出异常现象或出了故障的部件。  3.智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测与应用领域,而微处理器的介入使得智能化传感器能够更加方便地对多种信号进行实时处理。此外,其灵活的配置功能既能够使相同类型的传感器实现最佳的工作性能,也能够使它们适合于各不相同的工作环境。  4.智能化传感器既能够很方便地实时处理所探测到的大量数据,也可以根据需要将它们存储起来。存储大量信息的目的主要是以备事后查询,这一类信息包括设备的历史信息以及有关探测分析结果的索引等;  5.智能化传感器备有一个数字式通信接口,通过此接口可以直接与其所属计算机进行通信联络和交换信息。此外,智能化传感器的信息管理程序也非常简单方便,譬如,可以对探测系统进行远距离控制或者在锁定方式下工作,也可以将所测的数据发送给远程用户等。  2 智能化传感器的发展与应用现状  目前,智能化传感器技术正处于蓬勃发展时期,具有代表意义的典型产品是美国霍尼韦尔公司的ST-3000系列智能变送器和德国斯特曼公司的二维加速度传感器,以及另外一些含有微处理器(MCU)的单片集成压力传感器、具有多维检测能力的智能传感器和固体图像传感器(SSIS)等。与此同时,基于模糊理论的新型智能传感器和神经网络技术在智能化传感器系统的研究和发展中的重要作用也日益受到了相关研究人员的极大重视。  指出的一点是:目前的智能化传感器系统本身尽管全都是数字式的,但其通信协议却仍需借助于4~20 mA的标准模拟信号来实现。一些国际性标准化研究机构目前正在积极研究推出相关的通用现场总线数字信号传输标准;不过,在眼下过渡阶段仍大多采用远距离总线寻址传感器(HART)协议,即Highway Addressable Remote Transducer。这是一种适用于智能化传感器的通信协议,与目前使用4~20mA模拟信号的系统完全兼容,模拟信号和数字信号可以同时进行通信,从而使不同生产厂家的产品具有通用性。  能化传感器多用于压力、力、振动冲击加速度、流量、温湿度的测量,如美国霍尼韦尔公司的ST3000系列全智能变送器和德国斯特曼公司的二维加速度传感器就属于这一类传感器。另外,智能化传感器在空间技术研究领域亦有比较成功的应用实例[6]。  发展中,智能化传感器无疑将会进一步扩展到化学、电磁、光学和核物理等研究领域。可以预见,新兴的智能化传感器将会在关系到全人类国民生的各个领域发挥越来越大作用。  3 多功能传感器(Multifunction)  如前所述,通常情况下一个传感器只能用来探测一种物理量,但在许多应用领域中,为了能够完美而准确地反映客观事物和环境,往往需要同时测量大量的物理量。由若干种敏感元件组成的多功能传感器则是一种体积小巧而多种功能兼备的新一代探测系统,它可以借助于敏感元件中不同的物理结构或化学物质及其各不相同的表征方式,用单独一个传感器系统来同时实现多种传感器的功能。随着传感器技术和微机技术的飞速发展,目前已经可以生产出来将若干种敏感元件综装在同一种材料或单独一块芯片上的一体化多功能传感器。  1 多功能传感器的执行规则和结构模式  概括来讲,多功能传感器系统主要的执行规则和结构模式包括:  (1) 多功能传感器系统由若干种各不相同的敏感元件组成,可以用来同时测量多种参数。譬如,可以将一个温度探测器和一个湿度探测器配置在一起(即将热敏元件和湿敏元件分别配置在同一个传感器承载体上)制造成一种新的传感器,这样,这种新的传感器就能够同时测量温度和湿度。  (2) 将若干种不同的敏感元件精巧地制作在单独的一块硅片中,从而构成一种高度综合化和小型化的多功能传感器。由于这些敏感元件是被综装在同一块硅片中的,它们无论何时都工作在同一种条件下,所以很容易对系统误差进行补偿和校正。  (3)借助于同一个传感器的不同效应可以获得不同的信息。以线圈为例,它所表现出来的电容和电感是各不相同的。  (4)在不同的激励条件下,同一个敏感元件将表现出来不同的特征。而在电压、电流或温度等激励条件均不相同的情况下,由若干种敏感元件组成的一个多功能传感器的特征可想而知将会是多么的千差万别!有时候简直就相当于是若干个不同的传感器一样,其多功能特征可谓名副其实。  2 多功能传感器的研制与应用现状  多功能传感器无疑是当前传感器技术发展中一个全新的研究方向,日前有许多学者正在积极从事于该领域的研究工作。如将某些类型的传感器进行适当组合而使之成为新的传感器,如用来测量流体压力和互异压力的组合传感器。又如,为了能够以较高的灵敏度和较小的粒度同时探测多种信号,微型数字式三端口传感器可以同时采用热敏元件、光敏元件和磁敏元件;这种组配方式的传感器不但能够输出模拟信号,而且还能够输出频率信号和数字信号  从目前的发展现状来看,最热门的研究领域也许是各种类型的仿生传感器了,而且在感触、刺激以及视听辨别等方面已有最新研究成果问世。从实用的角度考虑,多功能传感器中应用较多的是各种类型的多功能触觉传感器,譬如人造皮肤触觉传感器就是其中之一,这种传感器系统由PVDF材料、无触点皮肤敏感系统以及具有压力敏感传导功能的橡胶触觉传感器等组成。据悉,美国MERRITT公司研制开发的无触点皮肤敏感系统获得了较大的成功,其无触点超声波传感器、红外辐射引导传感器、薄膜式电容传感器、以及温度、气体传感器等在美国本土应用甚广。  与其它方面的研究成果相比,目前在人工嗅觉方面的研究还似乎远远不尽人意。由于嗅觉元件接收到的判别信号是非常复杂的,其中总是混合着成千上万种化学物质,这就使得嗅觉系统处理起这些信号来异常错综复杂。  人工嗅觉传感系统的典型产品是功能各异的Electronic nose(电子鼻),近10多年来,该技术的发展很快,目前已有数种商品化的产品在国际市场流通,美、法、德、英等国家均有比较先进的电子鼻产品问世。  “电子鼻”系统通常由一个交叉选择式气体传感器阵列和相关的数据处理技术组成,并配以恰当的模式识别系统,具有识别简单和复杂气味的能力,主要用来解决一般情况下的气味探测问题。根据应用对象的不同,“电子鼻”系统传感器阵列中传感器的构成材料及配置数量亦有所不同,其中,构成材料包括金属氧化物半导体、导电聚合物、石英晶振等,配置数量则从几个到数十个不等。总之,“电子鼻”系统是气体传感器技术和信息处理技术进行有效结合的高科技产物,其气体传感器的体积很小,功耗也很低,能够方便地捕获并处理气味信号。气流经过气体传感器阵列进入到“电子鼻”系统的信号预处理元件中,最后由阵列响应模式来确定其所测气体的特征。阵列响应模式采用关联法、最小二乘法、群集法以及主要元素分析法等方法对所测气体进行定性和定量鉴别。美国Cyranosciences公司生产的Cyranose 320电子鼻是目前技术较为先进、适用范围也比较广的嗅觉传感系统之一,该系统主要由传感器阵列和数据分析算法两部分组成,其基本技术是将若干个独特的薄膜式碳-黑聚合物复合材料化学电阻器配置成一个传感器阵列,然后采用标准的数据分析技术,通过分析由此传感器阵列所收集到的输出值的办法来识别未知分析物。据称,Cyranose 320电子鼻的适用范围包括食品与饮料的生产与保鲜、环境保护、化学品分析与鉴定、疾病诊断与医药分析以及工业生产过程控制与消费品的监控与管理等。  4 无线网络化(wireless networked)  无线网络对我们来说并不陌生,比如手机,无线上网,电视机。传感器对我们来说也不陌生,比如温度传感器、压力传感器,还有比较新颖的气味传感器。但是,把二者结合在起来,提出无线传感器网络(Wireless Sensor Networks)这个概念,却是近几年才发生的事情。  这个网络的主要组成部分就是一个个可爱的传感器节点。说它们可爱,是因为它们的体积都非常小巧。这些节点可以感受温度的高低、湿度的变化、压力的增减、噪声的升降。更让人感兴趣的是,每一个节点都是一个可以进行快速运算的微型计算机,它们将传感器收集到的信息转化成为数字信号,进行编码,然后通过节点与节点之间自行建立的无线网络发送给具有更大处理能力的服务器  1 传感器网络  传感器网络是当前国际上备受关注的、由多学科高度交叉的新兴前沿研究热点领域。传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,通过嵌入式系统对信息进行处理,并通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到用户终端。从而真正实现“无处不在的计算”理念。传感器网络的研究采用系统发展模式,因而必须将现代的先进微电子技术、微细加工技术、系统SOC(system-on-chip)芯片设计技术、纳米材料与技术、现代信息通讯技术、计算机网络技术等融合,以实现其微型化、集成化、多功能化及系统化、网络化,特别是实现传感器网络特有的超低功耗系统设计。传感器网络具有十分广阔的应用前景,在军事国防、工农业、城市管理、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等许多领域都有重要的科研价值和巨大实用价值,已经引起了世界许多国家军界、学术界和工业界的高度重视,并成为进入2000 年以来公认的新兴前沿热点研究领域,被认为是将对二十一世纪产生巨大影响力的技术之一。  2 传感器网络研究热点问题和关键技术  传感器网络以应用为目标,其构建是一个庞大的系统工程,涉及到的研究工作和需要解决的问题在每一个层面上都很多。对无线传感器网络系统结构及界面接口技术的研究意义重大。如果我们把传感器网络按其功能抽象成五个层次的话,将会包括基础层(传感器集合)、网络层(通信网络)、中间件层、数据处理和管理层以及应用开发层。  其中,基础层以研究新型传感器和传感系统为核心,包括应用新的传感原理、使用新的材料以及采用新的结构设计等,以降低能耗、提高敏感性、选择性、响应速度、动态范围、准确度、稳定性以及在恶劣环境条件下工作的能力。  3 传感器网络的应用研究  传感器网络有着巨大的应用前景,被认为是将对21 世纪产生巨大影响力的技术之一。已有和潜在的传感器应用领域包括:军事侦察、环境监测、医疗、建筑物监测等等。随着传感器技术、无线通信技术、计算技术的不断发展和完善,各种传感器网络将遍布我们生活环境,从而真正实现“无处不在的计算”。以下简要介绍传感器网络的一些应用。  (1)军事应用  传感器网络研究最早起源于军事领域,实验系统有海洋声纳监测的大规模传感器网络,也有监测地面物体的小型传感器网络。现代传感器网络应用中,通过飞机撒播、特种炮弹发射等手段,可以将大量便宜的传感器密集地撒布于人员不便于到达的观察区域如敌方阵地内,收集到有用的微观数据;在一部分传感器因为遭破坏等原因失效时,传感器网络作为整传感器网络体仍能完成观察任务。传感器网络的上述特点使得它具有重大军事价值,可以应用于如下一些场景中:  ▉监测人员、装备等情况以及单兵系统:通过在人员、装备上附带各种传感器,可以让各级指挥员比较准确、及时地掌握己方的保存状态。通过在敌方阵地部署各种传感器,可以了解敌方武器部署情况,为己方确定进攻目标和进攻路线提供依据。  ▉监测敌军进攻:在敌军驻地和可能的进攻路线上部署大量传感器,从而及时发现敌军的进攻行动、争取宝贵的应对时间。并可根据战况快速调整和部署新的传感器网络。  ▉评估战果:在进攻前后,在攻击目标附近部署传感器网络,从而收集目标被破坏程度的数据。  ▉核能、生物、化学攻击的侦察:借助于传感器网络可以及早发现己方阵地上的生、化污染,提供快速反应时间从而减少损失。不派人员就可以获取一些核、生、化爆炸现场的详细数据。  (2)环境应用  应用于环境监测的传感器网络,一般具有部署简单、便宜、长期不需更换电池、无需派人现场维护的优点。通过密集的节点布置,可以观察到微观的环境因素,为环境研究和环境监测提供了崭新的途径传感器网络研究在环境监测领域已经有很多的实例。这些应用实例包括:对海岛鸟类生活规律的观测;气象现象的观测和天气预报;森林火警;生物群落的微观观测等  ▉洪灾的预警:通过在水坝、山区中关键地点合理地布置一些水压、土壤湿度等传感器,可以在洪灾到来之前发布预警信息,从而及时排除险情或者减少损失。  ▉农田管理:通过在农田部署一定密度的空气温度、土壤湿度、土壤肥料含量、光照强度、风速等传感器,可以更好地对农田管理微观调控,促进农作物生长。  (3)家庭应用  建筑及城市管理各种无线传感器可以灵活方便地布置于建筑物内,获取室内环境参数,从而为居室环境控制和危险报警提供依据。  ▉ 智能家居:通过布置于房间内的温度、湿度、光照、空气成分等无线传感器,感知居室不同部分的微观状况,从而对空调、门窗以及其他家电进行自动控制,提供给人们智能、舒适的居住环境[16]。  ▉建筑安全:通过布置于建筑物内的图像、声音、气体检测、温度、压力、辐射等传感器,发现异常事件及时报警,自动启动应急措施。  ▉智能交通:通过布置于道路上的速度、识别传感器,监测交通流量等信息,为出行者提供信息服务,发现违章能及时报警和记录[17]。反恐和公共安全通过特殊用途的传感器,特别是生物化学传感器监测有害物、危险物的信息,最大限度地减少其对人民群众生命安全造成的伤害。  (4)结论  无线传感器网络有着十分广泛的应用前景,它不仅在工业、农业、军事、环境、医疗等传统领域有具有巨大的运用价值,在未来还将在许多新兴领域体现其优越性,如家用、保健、交通等领域。我们可以大胆的预见,将来无线传感器网络将无处不在,将完全融入我们的生活。比如微型传感器网最终可能将家用电器、个人电脑和其他日常用品同互联网相连,实现远距离跟踪,家庭采用无线传感器网络负责安全调控、节电等。无线传感器网络将是未来的一个无孔不入的十分庞大的网络,其应用可以涉及到人类日常生活和社会生产活动的所有领域。但是,我们还应该清楚的认识到,无线传感器网络才刚刚开始发展,它的技术、应用都还还远谈不上成熟,国内企业应该抓住商机,加大投入力度,推动整个行业的发展。  无线传感器网络是新兴的通信应用网络,其应用可以涉及到人类生活和社会活动的所有领域。因此,无线传感器网络将是未来的一个无孔不入的十分庞大的网络,需要各种技术支撑。目前,成熟的通信技术都可能经过适当的改进和进一步发展,应用到无线传感器网络中,形成新的市场增长点,创造无线通信的新天地。  5 结语  当前技术水平下的传感器系统正向着微小型化、智能化、多功能化和网络化的方向发展。今后,随着CAD技术、MEMS技术、信息理论及数据分析算法的继续向前发展,未来的传感器系统必将变得更加微型化、综合化、多功能化、智能化和系统化。在各种新兴科学技术呈辐射状广泛渗透的当今社会,作为现代科学“耳目”的传感器系统,作为人们快速获取、分析和利用有效信息的基础,必将进一步得到社会各界的普遍关注。  微波传感器依靠微波的很多优点,将广泛地用于微波通讯、卫星发送等无线通讯,和雷达、导弹诱导、遥感、射电望远镜中。并且在一些非接触式的监测和控制中也有很好的应用。

传感器的种类及应用论文

建议去科技论文网去查,你去你们学校图书馆问问,有没有买什么数据库,一般学校都有的。然后输入你的关键字去查都能查到。透光脉动传感器的影响因素研究 论文透光脉动传感器是一种非接触式光电检测装置,通过对混凝过程中形成的絮体颗粒的检测,可以得到反映颗粒聚集状态的检测参数R。其检测不受混凝剂种类以及原水水质等条件的限制,其输出值不受取样管管壁的粘污以及电子元件老化、漂移等不利因素的影响,广泛适用于饮用水处理以及工业废水处理中混凝过程的在线连续检测[1]。以该传感器为核心的透光脉动混凝投药控制系统在高浊度水的混凝剂自动投加控制方面得到了良好的应用[2],近年来开始在常规浊度水的混凝剂自动投加控制方面得到应用[3]。在实际使用中,透光脉动传感器的检测性能受诸多因素的限制。作者在综合实践应用经验和试验结果的基础上对透光脉动传感器的主要影响因素进行了研究,并确定了其最优工作参数。1 透光脉动传感器 透光脉动传感器由水样检测部分和信号处理部分构成,分别完成信号的检测和处理,其工作原理如图1所示。由光源发射一束狭窄的光照射到传感器取样管中流动的悬浮液,透过光由光检测器接收并转换成电信号,然后通过后续的信号处理电路完成对电信号的处理,输出透光脉动检测值。检测值可以通过数码显示器(LED)显示,也可以通过输出端子输出,通过接口与计算机等连接,以实现检测值的在线采集和分析处理。式中:L—取样管管径; A—光柱有效照射面积; Ni—第i种颗粒的数量浓度; Ci—第i种颗粒的散射截面积。 从表达式可以看出,在被检测对象即悬浮液中颗粒的性质一定的情况下,检测值受光源的有效照射面积及取样管管径等因素的影响。在实际应用中,取样流速和传感器信号处理部分的放大倍数等因素也对检测值有明显影响,下面将对这些影响因素进行具体分析。2 影响因素分析1 光源的影响 对于透光脉动传感器来说,光源的选择无疑是至关重要的。受透光脉动检测技术的限制,只有当被测水样体积足够小时,颗粒的脉动现象才能被传感器检测到。在实际应用中为保证检测效果,必须尽量减小光柱的有效照射面积,因此应选择发射角小的光源,如激光二极管。 在水处理领域,国际标准化组推荐使用波长为860nm的近红外光和550nm的紫外光作为光源[4]。为了保证传感器的灵敏度,光源发射光的波长应随着被测颗粒尺寸的增大而增大,对于透光脉动传感器来说,它检测的是尺寸较大的絮体颗粒,因此宜选择发射波长为860nm的光源。在860nm处水中的溶解性物质对光的吸收非常弱,这一点对于没有色度补偿的透光脉动传感器来说很重要。2 取样流速的影响 由透光脉动检测技术特性可知[5],颗粒的脉动频率与取样流速有关,只有在保证最低取样流速,使得被检测水样能及时得到一定程度的更新的前提下,经过处理后的检测信号才能真实地反映出颗粒的脉动情况,且此时检测值应与取样流速无关。为了验证取样流速对检测值的影响,用内径为3mm的取样管分别对未混凝和混凝的悬浮液进行了连续检测。对于未混凝的悬浮液,当取样流量小于20mL/min时,此时水样流速太小,脉动信号的频率过低,其在信号处理过程中被滤波电路滤掉一部分,从而导致检测值偏小。取样流量在20mL/min左右时检测值波动较大,而当取样流量大于25mL/min时检测值比较稳定,仅当取样流量达到100mL/min时,检测值才略有下降。从试验结果可得,当取样流量在25mL/min以上即取样流速在06m/s以上时,检测值与取样流速无关。对于混凝的悬浮液,当取样流量为25~40mL/min即取样流速为06~094m/s时,流量变化对检测值的影响很小,而当取样流量大于50mL/min后,取样管中层流剪切力造成絮体明显破碎,导致检测值随流量的增大有明显的下降趋势,当取样流量降低后,絮体破碎程度降低,检测值则重新升高。 试验结果表明,当取样管管径为3mm时,对于未混凝的悬浮液,取样流速在06m/s以上时检测值与取样流速无关;而对于混凝的悬浮液,为了保证检测值能反映絮体颗粒真实的聚集情况,应尽量避免絮体在取样过程中的破碎,将取样流速合理的控制在06~094m/s。3 取样管管径的影响絮体在取样管中层流剪切力的作用下会有一定程度的破碎,检测值将受到影响。研究表明,层流的平均剪切率和管径的立方成反比,和流速成正比,因此除通过适当降低取样流速外,还可以通过增大取样管管径的方式来减小剪切率。取样管管径可以根据使用目的以及所检测水样的絮凝情况综合考虑,例如在实验室小试研究中,为了尽量节约试验用水,取样管管径宜选择得小一些,如3mm,在适当控制取样流速的情况下,可以保证絮体基本不破碎。从图4可看出,当取样管管径小至1mm时管中的平均剪切率变得非常大,例如当取样流量仅为5mL/min时,剪切率即达到约300s-1,这样高的剪切率很容易造成絮体的破碎。因此,在实际应用中往往不是用1mm的取样管来检测颗粒的聚集过程,而是充分利用层流剪切力对悬浮液中颗粒的破碎作用,将其用于研究絮体颗粒的抗剪性能或者颗粒物质在悬浮液中的分散过程等[6]。 在水处理工艺中,混凝效果良好时形成的絮体颗粒粒径较大,絮体强度相对较小,特别是在原水浊度较高、投药量较大的情况下;另外,为了保证在长时间运行时取样管不易被沉积物堵塞,必须保证较大的取样流速,这样都容易导致絮体的破碎。当取样管管径仅为3mm时,颗粒破碎程度明显增大,此时需要选择管径较大的取样管。生产实践表明,当取样管管径增加到5mm左右时,就可以保证水样流过取样管时絮体基本不会破碎,当然,也可以根据原水性质选用直径更大的取样管,如在高浊度水絮凝过程的检测中则建议使用内径为8mm左右的取样管4 放大倍数的影响 透光脉动传感器直接检测到的脉动信号很微弱,必须经信号处理部分放大和滤波等处理后才能参与控制。为了研究信号处理部分的放大倍数对检测值的影响,选取放大倍数分别为K1和K2的两个传感器进行了试验研究,在改变水样的絮凝程度时的检测 传感器的放大倍数K1较小,其检测值的变化幅度相当小,仅在2%~5%之间变化,而2号传感器的放大倍数K2较大,检测值在7%~7%之间变化,由此可见放大倍数对于检测值的输出具有相当大的影响。把两条曲线绘于不同的坐标下时发现其变化规律非常接近,说明两个传感器的检测性能基本相同,只是由于信号处理部分的放大倍数不同,导致输出值差异很大。对于投药控制系统来说,传感器信号处理部分的放大倍数过高,检测值波动太大,导致系统稳定性差;放大倍数过低,检测值无法准确反映出絮体颗粒的变化情况,控制系统无法调节投药量,因此在控制系统投入运行之前必须调节好放大倍数。一般来说,放大倍数可以根据所检测水样的性质现场调节,其调节可以分为两步:首先将絮凝充分的水样通过传感器,调节放大倍数使得检测值在40%左右,然后较大幅度地改变取样流速或者水样的絮凝程度,使检测值大约在20%~80%之间变化即可。3 结论通过对传感器的工作参数进行优化,可以改善传感器的检测性能,使其在生产中获得更加良好的应用,主要应注意以下几个方面: (1)光源应选择发射光的波长范围窄、发射角小的激光二极管等,波长宜选择860nm; (2)对于混凝的悬浮液,其检测值受取样流速的影响,在生产中应合理控制取样流速; (3)为了减小絮体在取样管中的破碎,应根据悬浮液的絮凝程度合理选用取样管,试验研究中一般选用1~3mm,生产应用中则选用5~8mm; (4)传感器信号处理部分的放大倍数对检测值的输出有很大影响,为了保证控制系统的控制性能,必须合理确定好放大倍数,其值可根据被检测水样的性质在现场调节确定。参考文献:[1] Gregory, J , Nelson, DW A New Optical Method for Flocculation Monitoring[A] Solid-Liquid Separation[C] Chichester,Ellis Horwood:172-[2] 于水利, 李邦宜, 曹世杰, 李虹, 李圭白 新型在线光学絮凝检测仪的原理、设计与制造[J] 传感器技术, 1997, 16(1):18-[3] 孙连鹏 透光率脉动混凝投药控制系统的应用研究及系统优化[D] 哈尔滨:哈尔滨工业大学, [4] ISO Water qulity-Determination of turbidity[S][5] Gregory, J Laminar dispersion and the monitoring of flocculation processes[J] J of Colloid Interface S, 1987,118(2):397-[6] 李星, 张正磊, 齐文明 颗粒分散和破碎过程在线检测研究[J] 哈尔滨建筑大学学报, 1999,32(6):31- [来源:论文天下论文网 ] 论文天下 希望对你有帮助

一氧化碳是一种无色无味、易燃易爆的有毒气体,是碳基燃料燃烧后不完整后的主要产物。我们可以用一氧化碳所占燃烧气体的比例来表示燃烧的效率。即便国家对汽车尾气排放的审核标准一再提高,但是随着人们与日俱增的对物质需求的提升和人均用车量导致CO等温室的气体污染不断加重。在原矿进行提炼时,整个能量转化过程比较容易释放煤气。因为在现代化的生活与工业生产中,煤气属于中关键性能源,伴随社会发展与进步,煤气使用、生产以及运输规模不断变大,而煤气中一氧化碳的含量比较多。并且其中一氧化碳占比将近97,基本等同于空气含量,所以扩散难度比较大,经常会聚集在某个区域。如果一个区域中一氧化碳的含量达到特定浓度,极易引起爆炸的事故。同时一氧化碳是无味无色的气体,比较难察觉,这种气体是有毒的气体,所以经常会见到一氧化碳的中毒事件。一氧化碳这种剧毒性的气体,最主要的危害有两点:一是会污染大气环境,二是会一氧化碳会使得人体内细胞缺氧而导致人机体细胞死亡。如果人体血液的循环系统中进入了一氧化碳,这种气体就会结合血红蛋白,生产碳氧的血红蛋白,这种血红蛋白比较难解离,导致人的组织细胞缺氧甚至死亡。二氧化碳是一种完全燃烧的产物,通常用于定量摄入EGR水平;它也是一种重要的温室气体,与CO一起,是一种燃烧完成度和总排碳量的测量方法。因此,如何在生活以及工作环境对一氧化碳和二氧化碳进行准确检测,对于今后生态环境保护至关重要。在国内环境污染不断加重以及检测技术不够先进的背景下,各种检测设备老化,因为这些诸多问题,需要将环境的监测领域投资加大,继而推动光纤气体的监测技术发展。就目前而言,国内大气质量的周报中,五大主要污染源就是臭氧、PM10、二氧化氮、二氧化硫以及一氧化碳,这些气体监测仪主要源自国外,并且这些仪器主要采取光化学方式监测,就监测技术发展的态势来看,最新一代的监测技术是光谱学与光学技术,这两种技术即为差分吸收的光谱技术。[i]1 气体传感技术的现状和发展趋势伴随全球工业化的革命发展,生产力提升和日新月异科技的发展却导致环境污染变得越来越严重,环境保护已成为了全世界不得不一起共同面对的巨大挑战。各国政府都设置环境保护的组织,旨在经科学手段检测污染源,合理的运用新型的传感测量技术是针对环境污染最有效监控途径。近几年来,世界各国对环境保护投资比较大,通过大量物力以及人力对新型传感的器件进行开发,用来对未知的污染源进行识别,同时对已知的污染源变化进行监测。有学者预测,环境保护传感器的市场会逐渐扩大,直至在未来环境保护方面市场份额达到举足轻重的地位。仅仅在我国2016年对传感器需求就达到了30亿只,换算市值可达到1200亿元。光纤传感技术是一种七十年代后期才逐渐开始发展起来的新技术。但是我国中高档传感器几乎均靠国外进口,国内缺乏对新型光纤传感技术为原理的新型传感器研发和产品化。而由于光纤传感器有极高的灵敏度和精度、轻细柔软便于安装、良好的化学稳定性和安全抗干扰性的特性,能补足传统传感器的种种局限,因此我们可以断言光纤传感器将会在未来环境监控上起到重大的作用和影响。气体检测传感器的发展趋势是:由劳动密集型向技术密集型方向发展。气体检测现在主要经大型工业的实验室以及人工采样方式来处理,今后应该转向智能化、机械化以及自动化的方向。由物理理论领域监测向全方位信息领域监测的方向发展。4.向新材料新工艺传感器发展。向物理、电子、光学等多方面高新领域发展。由单功能向多功能传感器发展。3 本论文内容和结构框架本论文第一章对气体传感器应用前景与当前进展进行简要分析,对气体传感器发展趋势进行总结,以便给气体传感器研究提供参考。第二章对光纤气体的传感器分类与发展进行介绍,同时分析LED灯在今后气体传感器的发展中所产生的影响。第三章介绍了了气体传感器的特性概述,首先简单介绍了气体分子光谱理论,然后粗略的介绍了光谱吸收定律和气体分子的吸收线,最后描述了一下气体传感器耦合问题。第四章主要介绍了在光纤气体传感系统当中,因为存在很多影响测试结果的不利因素,而我们可以通过差分吸收检测方法和波长调制谐波检测方法来保证实验的准确性,本章简单的介绍了一下差分吸收法和谐波检测的数学理论基础和给出了模型支持简单的了解了两种方法的工作原理。还以此建立了传感器的理论模型。第五章主要研究了一种简单的检测co2和co的基于LED光谱吸收的气体传感器,同时分析了其工作原理和工作模拟图,通过比对不同气体的吸收谱来选择相应的波长阐述了具体的设计理念展示了相关数据。第六章总结了本论文所完成的研究工作,讨论了论文本身存在的不足之处。展望了未来光纤传感器的发展和进步。2 光纤气体传感器概论1 光纤气体传感器的发展由于气体光谱的吸收气体测量的技术,主要优势就是鉴别气体浓度以及测量的灵敏度比较高,所以在控制工业的气体监测以及环境监测中有着重要作用。通常传统吸收光谱的分析方法只可以对野外实地的采集样本进行监测,再经实验室的仪器实施精确光谱的分析。另外,传统吸收光谱工作的时间比较长,仪器的精密性要求,所以对工作环境有着一定要求,所以导致实际应用受限,特别在工业气体与环境监测控制的过程中,传统分析方法无法与在线连续性的精准监测要求相符。而光纤传的感技术在70年代的末期才逐渐出现在大家视野的一门高新技术。把石英光纤当作例子,于55波长附近,光纤的损耗能够降低到每公里 2d B。换句话说,光纤气体传感器可以克服以往旧的传感器无法对恶劣环境的情况(例如高温环境、易爆高危高毒环境或高频高磁场环境),工作人员可以通过相应的软件程序进行远距离操控。与传统的电传感器相比,光纤传感器所需要的匹配功率较低,操作人员的安全得到大大提升。另外,光纤由于具有耐腐蚀的特性,可在高核辐射这种危险环境中进行作业。由于光纤有交宽频带,可以携带海量信息,经分波长、分时与分频等多路服用的技术,可实现不同传感器共用传输的光纤,一个探测器或是一个光源,一根光纤,就可以测量不同的化学参量,或用于多点或分布式测量,这样可以大大降低整个系统的成本。[ii]光纤传感器主要优势是结构比较简单、灵敏度比较高、体积较小以及耐腐蚀等,也就因为这些优势逐渐受到广大科研人员的喜爱。在无数的智慧火花碰撞后衍生出了许多结合其他的高新领域和光纤的传感技术的新技术,也就是气体传感的技术。到目前为止,光纤的传感器在浓度、位移、加速度以及振动等物理量测量中有广泛应用,其市场前景与潜力比较大[iii]。2 光纤气体传感器的分类光纤传感器主要在气体物理与化学性质、光学现象等测量中,下面我们将简单的介绍几种主流的光纤传感器:1光谱吸收型荧光型我们可以通过测量与之相对应荧的光辐射对气体浓度进行检测,荧光不仅可以由被物质的被测物质自身变化而来,而且可以由荧光染料和被测物化学反应而来。图2-1呈现的是荧光物质经吸收特定的波长所得光照,当电子将能量吸收以后,就会转变成受激的状态,由低能态转变成高能态;电子受光辐射的刺激以后,会出现荧光,并且此时荧光波长比应激波长大。通常在受激的状态下,电子不会长时间停留,其寿命普遍在1-20ns之间。图2-1荧光产生机理如果测量浓度将某种特定光照射吸收以后,不仅可以对荧光辐射强度进行改变,而且能引起寿命的变化。所以按照各种测量的方式以及传感的机理,可以划分成两种,其一是对荧光辐射的寿命进行测量;其二是对荧光辐射的强度进行测量[iv]。相较于吸收型的光纤传感器,荧光型的传感器中传感荧光波长与激励光波长不一样,因为各种荧光材料中荧光辐射的波长不一样,所以荧光传感器在鉴别被测量物方面,准确性比较高[v]。就实际应用而言,人们经常希望激励波长和辐射波长可以有较远的距离,以便经价格低廉波长的滤波器划分传感光和激励光。都要去激励波长处于近红外区或是见光区,关于这段波的研究技术相对成熟,价格方面人们也比较容易接受。荧光传感的原理主要就是对某固定的波长段荧光的强度进行测量,经过这个原理,能够制作出荧光pH的传感器,即通过实验不断改变浓度ph值的大小,使得荧光辐射的强度也不断改变。荧光寿命的测量方法较为复杂,这里我们就暂且不去讨论。荧光型传感器具有极高的物质鉴别能力但其缺点就是其检测信号极其微弱不易测量且设计检测系统极其复杂,不利于实现工业化和商品化。2基于折射率变化的传感器 就折射率的变化也就是光程变化光纤传感器而言,主要是将特殊材料涂敷在光纤端面或是表面,该材料折射率与体积在气体上有较强的敏感性。例如:杂聚硅氧烷( HPS)材料能够经溶胶凝胶(Sol-Gel)方式,将其涂抹于光纤的表面,并且设计涂层的折射率类似石英光纤的折射率。该材料与某种化学量发生作用后,会改变了折射率,这各类型HPS能够对不同化学量进行测量。例如:glycidoxyl propyl siloxane折射率在碳氢化合物反应后,对于甲苯会有敏感性。并且折射率发生变化,会使得波导参数发生变化,例如:双折射率、损耗与有效的折射率等,上述参数能够采取千涉或是强度检测方式进行测量。膜与氢气相遇,就会出现膨胀,四氟乙烯、高分子膜与己烷、酒精灯相遇,同样会膨胀。这些材料会在光纤的端部沉积,构成Fabry-Perot的干涉仪,而气体所致薄膜膨胀可已经测量干涉仪的光强度输出获得。[vi]3基于染料染色剂的传感器在石英的吸光谱上,部分气体吸收波不够明显,即便存在吸收波,但是因为各种因素导致相应波长的光源并不存在与现实生活中,基于这种情况应运而生的便是将染料指示剂当作中间产物,完成间接的传感。一旦燃料和气体产生化学的反应,本身光学的性质同样会变化,经过对其中变化进行测量,可以获取被测气体信息[vii]。ph值的传感器属于较常见的一种,染料的指示剂,例如:石蕊试纸颜色会伴随ph大小改变而发生变化。因此我们可以通过测量所对应的溶液ph值来测量部分气体的浓度(如NHCO2等)。4 光纤渐逝场气体传感器光纤渐逝场气体传感器在现实生活是一类已经得到实现且具有广大潜力前景的一类传感器。企业已经能商业化出产着在波长39um处利用渐逝场原理的光纤传感器。但是另一方面因为该类传感器在该波长段处的光纤传输损耗极高运用效率极低,导致该类别传感器的光路往往不能够超过3米及以上标准。此类传感器检测的气体浓度同时也将限制于百分之二量级上。渐逝场的传感器并且容易发生表面污染的问题,即便经高分子的隔离膜能够防止大型的污染物进入到渐逝场的区域,和气体分子的体积接近的分子却难以阻挡,这些污染物将会改变光纤表面的波导结构,从而改变其测量出的参数导致影响传感器的灵敏度。如何降低表面污染对渐势场型传感器的影响是未来科研人员仍需要攻克的主要技术性难关。渐势场型光纤气体传感原理图5 吸收式光纤气体传感器在这些传感器之中,光纤作用就是当作传输的介质,只可以对光能量进行传输,所传输光能量能够和待测气体的样本互相作用,产生各类信息,以便在某些区域检测待测气体的样本[viii]。依据现有的情况数据分析,吸收式光纤气体传感器是在现有的科学技术手段支持下由理论走向造福社会的一类新型的传感器。吸收型的传感器主要是经气体测量石英光纤透射窗口(8-7um)吸收峰。通过气体吸收产生的光强衰减程度来通过一定的数学公式运算对气体浓度进行测定,主要是按照Lambert-Beer的定律计算。常见气体(如CO2, C2H2, CH4, N02, C0)在红外光谱范围内都存在较强的吸收谱线,该红外光谱波段对应接收器与气体的发光器均是相对理想光电转换的器件。经该方式能够准确测量大部分气体的浓度,不仅能保证产品质量安全,而且具有灵敏度高、高抗电磁干扰功能、响应速度比传统传感器快、成本价格低廉、运用对象广泛、具有良好的兼容性特别是传感头不带电、本质防爆的特点,在高危工业的检测中应用前景较好,此次所用传感器就是吸收型传感器图3吸收型光纤气体传感的原理图3 LED在传感器起到的功效在光纤的系统中,主要是采取光纤和发光二极管最佳耦合高亮度,并且传感器中明确要求部件达到最大利用率和安全保障率的同时,确保发射波长和光纤吸收的频率创口一样。LED的器件公共特性都一样,光/电流的曲线特性如图2-3所示。如果范围比较宽,也就是40dB左右,在一定的范围区间内光输出就会伴随正向偏置电流变化方向,与线性图比较接近,然而,伴随器件的温度变化,会增加使用期,曲线也会越来月平稳。这种变化会影响到传感器的系统,继而使得测量数据间存在极大偏差。因此需要及时经热反馈方式,对这些变化进行了解,本文经发射系统或是温度的敏感电源中光电二极管进行监测。图2-3发光二极管的光/电流曲线面发光二极管与光纤的藕合从结果上分析这是个低效率过程。为什么这么说呢?这是因为LED面发光管所产生的光功率会散漫的分布在一个极大的立体角内,能够进入光纤部分的输出光功率甚至不足百分之十,所以结合单模的光纤系统和发光二极管使用,没有现实的意义。边发光放入二极管主要是经双异质的结构发生辐射,引起局部内波导的效应,可以构成稳定定向红外的光束,能够对发射光方向性进行保证,将光束限制于垂直方向的30°范围中,限制在水平方向的120°内。所以对比了面发光二极管以及边发光二极管得出,边发光二级光光耦合的效率比较高,而就接收小立体角类光纤而言,光耦合的效率就是一个重要部分。图1从图1中我们可以看出只有在某一波段的光才具有在光纤中低损耗传输的能力。4 本章小结本章主要介绍了气体传感器的发展历程,之后又介绍了几种不同工作类型的光纤型传感器;为后面介绍该论文阐述的气体传感器系统原理做了铺垫;接着介绍了光纤在LED中起到的作用和功效,展现了吸收型光纤传感器在未来的前景。吸收型气体传感器特性分析1引言就气体分子吸收光谱的理论而言,经气体分子吸收作用以及特定波长光原理,能够对气体浓度进行检测,因为气体分子中存在吸收光谱,如果穿过待测的气体,并且气体浓度不高,该气体就会吸收特定波长的能量,满足Lambert -Beer定律。气体分子的吸收光谱理论和Lambert -Beer定律,建立吸收型传感器的支持理论框架。然而,因为气体分子光谱线宽极比较窄,其谱宽主要是纳米的量级,同时吸收的功劳不大,经测光照的强度增减,对气体难度进行测量的难度比较大。因此,需要按照比尔朗伯吸收定律以及气体分子的光谱理论,经谐波检测与差分吸收方式,对各种因素的干扰进行克服,有效检测出微弱光电的信号。2 气体分子光谱理论当电磁辐射与气体分子相互作用时,能引起分子状态由低能态过渡到高能态,发生所谓的能级跃迁,记录不同气体所需要的电磁辐射强度变化被气体分子所吸收随波长的变化,所得到的光谱图便是气体分子吸收光谱在光纤气体传感器传感系统当中由于选择的光源的波段主要是红外光的波动,在红外光谱区,分子振动和吸收等,都会在各能级间跃迁,能量跃迁能够经量子力学的原理解释,在能量的跃迁过程,气体分子之中原子会不断振动,并且分子振动过程,会发生自我的转动。按照量子力学的原理可知,如果分子的能态改变,那么其都是按照特定规律进行变化,分子能级会呈现出规律化。若经低能量红外光的辐射对分子进行照射,则分子能够吸收相应于相邻转动能级之差的远红外辐射能量,由低能态跃迁到高能态,通常我们将这一现象称为能级跃迁。3 光谱吸收定律当光源以平行光的形式通过待测气 体时,如果光源的光谱覆盖 1个或多个气体的吸收谱,那么部分光将被吸收,光通过气体时将会发生强度衰减。未衰减的光将按原路径继续传播。根据朗伯比尔定律定律,出 射发光强度 I 与入射发光强度 I0 和气体的体积分数 之间的关系为(3-3)是气体吸收系数,即气体在频率 v 处 的吸收线型; L 测量气体作用在传感器的长度单位为m; c 为气体的浓 度,通过计算,上式可变形为:(3-1)通过上述公式我们可以知道,当气体的吸收系数和作用长度已知,气体的浓度可以通过投射光和入射光强来求出。图3吸收型传感器原理4气体分子的吸收线气体分子吸收线宽与以下因素相关:气体分子自然的线宽;通过气体分子自由运动所引发多普勒的效应,继而将分子的吸收光谱加宽;分子自由碰撞的展宽。通常情况下,气体分子自然线宽会因为激发态的分子自然寿命、跃迁时间受到影响,而宽度微小,通常可以忽略。图3-4气体分子的典型吸收线图3-4中 表示波长的吸收系数;表示对应的吸收峰;表示带阻尼的电偶极振子的衰减速率。由上图可知影响气体的吸收线宽的因素不仅包括压力因素还包括温度因素。但只考虑到碰撞展宽时,温度因素对大局无影响可忽略。因此我们可以从上图中得出结论:当外界压力保持恒定时,待测气体的谱线形状和宽度可在理论认为其是保持稳定不变的。5 光纤气体传感器耦合1光源与探测器的耦合理论上,光源发射光功率从多地汇入到传输的光纤,属于光纤和光源耦合的问题。通常情况下,采取藕合效率对耦合程度进行表示,公式表示如下;(5)表示为耦合输出功率,表示为光源总功率2 气室的耦合在气体传感器中存在一个敏感元件为气室。稳定的气室能帮我们只需简单的更换光源就可以完成对不同气体的浓度检测。气室组成部分包含输出与输入两组透镜。光纤射出光经输入透镜变成平行光,经气室耦合至输出的透镜,下面给出了三类气室设计的模型图。图3-5气室设计图上面三组设计图分别是(a)投射式气室;(b)反射式气室;(c)渐变折射式气室。6本章小结本章主要介绍了气体传感器的特性概述,首先简单介绍了气体分子光谱理论,然后粗略的介绍了光谱吸收定律和气体分子的吸收线,最后描述了一下气体传感器耦合问题为下一章节介绍总体设计做好铺垫。 系统总体设计1引言在光纤气体传感系统当中,总是会存在很多影响测试结果的不利因素,比如光源光功率的波动、气室对光路的干扰、PIN管的噪声等等,我们可以通过利用差分吸收检测方法和波长调制谐波检测方法来减弱不利因素对结果的影响来保证测试的准确性2谐波检测原理当电路上施加了正弦波的电压时,所通过的电流将会变成非正弦波形式,非正弦波电流在电网阻抗上将会产生压降,使得电压波形也变为非正弦波形式。非正弦波可分解为傅里叶级数,频率与工频相同的分量称为基波,频率大于基波的分量称为谐波;如变频器、电磁炉、电动机、整流器、电子用品等都会产生谐波。谐波检测方法最开始提出来的时候是作为一种检测微弱信号的方法。在电子光谱,声光光谱以及Zeeman及Stark光谱的研究中均有涉及。谐波检测的基本原理是把一个高频调制过的信号(依赖于某频率),使其“检索”待测的特征信号[ix]。之后在信号处理过程中,通过调制频率或调制频率的倍频以此依据来作为参考信号,用锁相放大器记录下所有已得到的特征信息,这里得到的特征信息便是由调制信号产生的谐波信息。如果调制出来的谐波信号不满足规律的数学关系比例就会导致出现极大的偏差。虽然存在一定的弊端,但是谐波检测技术仍适用于上述各种光谱的微弱信号检测。图4-2谐波检测原理图在图4-2 (a)中,发射器的波长被正弦信号的调制,输出的光信号是含有一次和二次谐波的强度信号。如图4-2(b)所示通过把发射器固定在光谱气体吸收峰上,或者让照射光扫过气体的吸收谱,最后用锁相放大器检测二次谐波的最大值,就可测量气体的浓度。3差分吸收原理由Lambert -Beer定律我们可知:(式4-3)在4-3式中,和分别是初始和入射光强; 是某波长下的单位浓度、单位长度介质的吸收系数; 是米氏散射系数; 是瑞利散射系数;是表征气体密度波动造成的吸收和散射总的变化量;0是待测气体与光相互作用的长度;c是待测气体的浓度。如图4-3所示宽带光源LED的谱宽比气体吸收线宽大的多,使用不同中心波长的干涉光栅滤光片就可以提取需要的波长和。为测量气体的吸收谱线中心波长,为偏离吸收谱线某一气体的波长的吸收谷,通过上图结构我们可以依次实现差分吸收法。4系统理论设计图4-4为本文设计的光纤气体传感系统结构,光源LED与传输光纤藕合进入气室,再由气室由藕合器通过光纤到达法布里-珀罗干涉腔。频率调节后进入光检测器PIN由光信号转化为电信号。经电压调制方式,继而调控布里-珀罗干涉腔长,继而有效控制光波长。经由电脑模拟软件处理后,就可以检测出待测气体的浓度。图4-4光纤传感器系统

楼上的人真没意思。建议去科技论文网去查,你去你们学校图书馆问问,有没有买什么数据库,一般学校都有的。然后输入你的关键字去查都能查到。

1、半导体式气体传感器 2、催化燃烧式气体传感器3、热导池式气体传感器4、电化学式气体传感器

传感器原理及应用论文液位传感器

投入式液位变送器是一种测量液位的压力传感器,基于所测液体静压与该液体的高度成比例的原理,采用高纯度进口单晶硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和线性修正,转化成标准电信号,一般适用于石油化工、冶金、电力、制药、供排水、环保等系统和行业的各种介质的液位测量。想要了解更多产品信息,欢迎咨询【麦克传感器股份有限公司】!

工作原理:  用静压测量原理:当液位变送器投入到被测液体中某一深度时,传感器迎液面受到的压力公式为:Ρ=ρH+Po式中:  P:变送器迎液面所受压力  ρ:被测液体密度  g:当地重力加速度  Po:液面上大气压  H:变送器投入液体的深度  同时,通过导气不锈钢将液体的压力引入到传感器的正压腔,再将液面上的大气压Po与传感器的负压腔相连,以抵消传感器背面的Po,  使传感器测得压力为:ρH,显然,通过测取压力P,可以得到液位深度。  功能特点:  ◆稳定性好,满度、零位长期稳定性可达1%FS/年。在补偿温度0~70℃范围内,温度飘移低于1%FS,在整个允许工作温度范围内低于3%FS。  ◆具有反向保护、限流保护电路,在安装时正负极接反不会损坏变送器,异常时送器会自动限流在35MA以内。  ◆固态结构,无可动部件,高可靠性,使用寿命长。  ◆安装方便、结构简单、经济耐用。  主要技术参数:  工艺:扩散硅陶瓷电容蓝宝石电容任选。分体式一体式可选,量程:0---5---200米,输出:4---20mA(2线制)供电:5---36VDC推荐24VDCCBM-2100/CBM-2700投入式静压液位计可靠防腐并带有陶瓷测量单元的探头,用于净水、污水及盐水的物位测量。

晕,误人子弟,液位传感器不光是有压力传感器,应用最多的只是测液位高低的那种,压力传感器,随便找个做液位计的公司里面都有讲解的,各种传感器_K0gsDSzLcMpgXt75gps6w3J

液位传感器(静压液位计/液位变送器/液位传感器/水位传感器)是一种测量液位的压力传感器.静压投入式液位变送器(液位计)是基于所测液体静压与该液体的高度成比例的原理,采用国外先进的隔离型扩散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和线性修正,转化成标准电信号(一般为4~20ma/1~5vdc)。

传感器技术及应用论文

室内空气质量检测与传感器的应用    [摘要]室内空气品质对人的影响至关重要,利用传感器检测空气质量是当今流行的一种方法,本文介绍了传感器在空气质量检测方面的原理应用,分析了当前气体传感器的优点和不足,以及气体传感器的发展趋势和前景。   [关键词]空气质量 气体传感器 室内环境污染      一、空气对于人的重要性   人们每时每刻都离不开氧,并通过吸入空气而获得氧。一个成年人每天需要吸入空气达6500升以获得足够的氧气,因此,被污染了的空气对人体健康有直接的影响。人的一生中有90%以上时间在室内度过,可见,室内空气品质对人的影响更是至关重要。   二、室内环境污染背景   当今,人类正面临“煤烟污染”、“光化学烟雾污染”之后,又出现了“室内空气污染”为主的第三次环境污染。美国专家检测发现,在室内空气中存在500多种挥发性有机物,其中致癌物质就有 20多种,致病病毒 200多种。危害较大的主要有:氡、甲醛、苯、氨以及酯、三氯乙烯等。大量触目惊心的事实证实,室内空气污染已成为危害人类健康的“隐形杀手”,也成为全世界各国共同关注的问题。据统计,全球近一半的人处于室内空气污染中,室内环境污染已经引起7%的呼吸道疾病,22%的慢性肺病和15%的气管炎、支气管炎和肺癌。   三、关于开展室内空气质量服务的几点设想   着手调查国内家庭和办公室内空气质量的基本情况。   了解并着手引进室内空气质量检测设备。   进行规模较大的宣传活动,首先应由气象主管部门与环保主管部门联合建立室内空气质量问题的管理机制。   对国际环保部门有关室内空气质量的法规、技术标准、室内污染测定方法及对测定仪器等问题进行专门的调查和研究。   四、空气检测仪的强力武器——传感器   检测技术是人们认识和改造世界的一种必不可少的重要技术手段。而传感器是科学实验和工业生产等活动中对信息资源的开发获取、传输与处理的一种重要工具。下面将介绍六种在空气质量检测方面发挥重要作用的传感器。   金属氧化物半导体式传感器。金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。   催化燃烧式传感器。催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,是温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。   定电位电解式传感器。定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。   迦伐尼电池式氧气传感器。迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10-30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器  红外式传感器。红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。   PID光离子化气体传感器。PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。   五、气体检测仪器仪表产业发展现状深度分析   近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元;2007年仪器仪表行业总产值达3078亿元,增长率高达5%;据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 9亿元,同比增长8%,其中分析仪器、环境监测仪器仪表增长率高达32%。   科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。   从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。   六、对未来空气质量检测的展望   随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。      参考文献:   [1]陈艾敏感材料与传感器[M]北京:高等教育出版社   [2]高晓蓉传感器技术[M]成都:西安交通大学出版社   [3]彭军传感器与检测技术[M]北京:高等教育出版社   [4]王元庆新型传感器原理及应用[M]北京:机械工业出版社   [5]赵茂泰智能仪器原理及应用[M]北京:电子工业出版社

题 目:传感器在机电一体化系统中的应用及发展的研究论文要求:1、了解传感器在机电一体化系统中的作用及地位2、机电一体化系统中常用传感器的类型、特点、结构及用途等3、如何为机电一体化系统选择传感器(举例说明)4、机电一体化系统中常用传感器的发展与思考相关知识:本课题要求学生综合《传感器技术》《机电一体化技术》《控制电机》等相关知识进行编写。字数6000以上。

CMOS模拟集成温度传感器的设计

传感器原理及应用论文

生物传感器的研究现状及应用摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。 关键词:生物传感器;发酵工业;环境监测。中图分类号:3 文献标识码:a 文章编号:1006-883x(2002)10-0001-06一、 引言 从1962年,clark和lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(pcr)的发展,应用pcr的dna生物传感器也越来越多。二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1) 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌(li)组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌―胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2) 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3) 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1) 生化需氧量的测定生化需氧量(biochemical oxygen demand ?bod)的测定是监测水体被有机物污染状况的最常用指标。常规的bod测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种spt1和spt2,并将其固定在玻璃碳极上以构成微生物传感器用于测量bod,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中bod的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中bod的测定提供了快捷简便的方法[4]。 除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的bod值。该传感器的反应时间是15min,最适工作条件为30°c,ph=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(fe3+、cu2+、mn2+、cr3+、zn2+)所影响。该传感器已经应用于河水bod的测定,并且获得了较好的结果[4]。现在有一种将bod生物传感器经过光处理(即以tio2作为半导体,用6 w灯照射约4min)后,灵敏度大大提高,很适用于河水中较低bod的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的bod值。它使用三对发光二极管和硅光电二极管,假单胞细菌(pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2) 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(nox-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的nox-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在ph=5、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是sp,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌(li)中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:ph=4、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸gf/a,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶g,与自动系统cl-fia台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°c下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --np-80e)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围5~0mg/l内,电信号与np-80e浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(alcaligenes eutrophus (ae1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母cup1基因上的铜离子诱导启动子与大肠杆菌lacz基因的融合体。其工作原理,首先是cup1启动子被cu2+诱导,随后乳糖被用作底物进行测量。如果cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围(5~2)´10-3mol范围内测定cuso4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(pcr)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用pcr技术的dna压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的dna样品进行同样的杂交反应并由pcr放大,产物为气单胞菌属(aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的psp毒素[20]。dna传感器也在迅速的得到应用,目前有一种小型化dna生物传感器,能将dna识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 ´10-6g/l[22]。 一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器―对ph敏感的电子晶体管和热敏性的薄膜电极,以及三种酶―尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的harold weetal指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。 总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。--------------------------------------------------------------------------------参考文献[1]韩树波,郭光美,李新等伏安型细菌总数生物传感器的研究与应用[j]华夏医学,2000,63(2):49-52 [2]蔡豪斌微生物活细胞检测生物传感器的研究[j] 华夏医学,2000,13(3):252-256[3] trosok sp, driscoll bt, luong jht mediated microbial biosensor using a novel yeast strain for wastewater bod measurement[j] applied micreobiology and biotechnology,2001, 56 (3-4): 550-554 [4] 张悦,王建龙,李花子等生物传感器快速测定bod在海洋监测中的应用[j]海洋环境科学,2001,20(1):50-54[5] yoshida n, mcniven sj, yoshida a,a compact optical system for multi-determination of biochemical oxygen demand using disposable strips[j] field analytical chemistry and technology,2001,5 (5): 222-227[6] meyer rl, kjaer t, revsbech use of nox- microsensors to estimate the activity of sediment nitrification and nox- consumption along an estuarine salinity, nitrate, and light gradient[j] aquatic microbial ecology, 2001,26 (2): 181-193[7]王晓辉,白志辉,孙裕生等硫化物微生物传感器的研制与应用[j] 分析试验室,2000,19(3):83-86[8] alexander d c,costanzo m a, guzzo j, cai j, blazing towards the next millennium: luciferase fusions to identify genes responsive to environmental stress[j]water, air and soil pollution, 2000,123(1-4):81-94[9] makarenko aa, bezverbnaya ip, kosheleva ia, development of biosensors for phenol determination from bacteria found in petroleum fields of west siberia[j]applied biochemistry and microbiology, 2002,38 (1): 23-27[10]semenchuk in, taranova la, kalenyuk aa, effect of various methods of immobilization on the stability of a microbial biosensor for surfactants based on pseudomonas rathonis t[j] applied biochemistry and microbiology, 2000, 36 (1): 69-72[11]yamazaki t, meng z, mosbach k, a novel amperometric sensor for organophosphotriester insecticides detection employing catalytic polymer mimicking phosphotriesterase catalytic center[j] electrochemistry,2001,69 (12): 969-97[12] nakamura phosphate ion determination in water for drinking using biosensors[j] bunseki kagaku,2001,50 (8): 581-582[13] a, lucaciu i, fleschin s, magearu microbial biosensor for nonyl-phenol etoxylate (np-80e) [j]south african jounal of chemistry-suid-afrikaanse tydskrif vir chemie , 2000,53 (1): 14-17[14] leth s, maltoni s, simkus r, engineered bacteria based biosensors for monitoring bioavailable heavy metal[j]lectroanalysis, 2002,14 (1): 35-42 [15] lehmann m, riedel k, adler k, amperometric measurement of copper ions with a deputy substrate using a novel saccharomyces cerevisiae sensor[j] biosensors and bioelectronics, 2000, 15 (3-4): 211-219[16] riether kb, dollard ma, billard assessment of heavy metal bioavailability using escherichia coli zntap lux and copap lux-based biosensors[j] applied microbiology and biotechnology,2001,57 (5-6): 712-716[17] karlen c, wallinder io, heijerick d, runoff rates and ecotoxicity of zinc induced by atmospheric corrosion[j] science of the total environment,2001,277 (1-3): 169-180[18] campanella l,cubadda f,sammartino m p,an algal biosensor for the monitoring of water toxicity in estuarine enviraonments[j]wate research, 2001,35(1):69-76[19] tombelli sara,mascini marco,soca cristiana,a dna piezoelectric biosensor assay coupled with a polyerase chain reaction for bacterial toxicity determination in environmental samples[j] analytica chimica acta,2000,418(1):1-9[20] lee hae-ok,cheun byeung soo,yoo jong su,application of a channel biosensor for toxicity measurements in cultured alexandrium tamarense[j] journal of natural toxins,2000, 9(4):341-348[21] wang,iniaturized dna biosensor for detecting cryptosporidium in water technical comletion-311, 2000(3), 26p [22]nakamura c, kobayashi t, miyake m, usage of a dna aptamer as a ligand targeting microcystin[j] molecular crystals and liquid crystals, 2001, 371: 369-374 [23]arkhypova vn, dzyadevych sv, soldatkin ap, multibiosensor based on enzyme inhibition analysis for determination of different toxic substances[j] talanta,2001, 55 (5): 919-927the recent research and application of biosensorabstract: in this article, the recent research progress and application of biosensors ,especially the micro- biosensors, are reviewed, and the prospect of biosensors development is also biosensors are made up of bioelectrode , using immobile organism as sensitive material for molecule recognition, together with oxygen-electrode, membrane -eletrode and fuel- biosensors are broadly used in zymosis industry, environment monitor, food monitor and clinic fast, accurate, facilitate as biosensors is,there will be an excellent prospect for biosensors in the marketkeywords:biosensor, zymosis -industry, environment-monitor作者简介:何星月:中国科学技术大学生命科学院,合肥230027刘之景,中国科学技术大学天文与应用物理系教授,合肥230026电话:0551―3601895

室内空气质量检测与传感器的应用    [摘要]室内空气品质对人的影响至关重要,利用传感器检测空气质量是当今流行的一种方法,本文介绍了传感器在空气质量检测方面的原理应用,分析了当前气体传感器的优点和不足,以及气体传感器的发展趋势和前景。   [关键词]空气质量 气体传感器 室内环境污染      一、空气对于人的重要性   人们每时每刻都离不开氧,并通过吸入空气而获得氧。一个成年人每天需要吸入空气达6500升以获得足够的氧气,因此,被污染了的空气对人体健康有直接的影响。人的一生中有90%以上时间在室内度过,可见,室内空气品质对人的影响更是至关重要。   二、室内环境污染背景   当今,人类正面临“煤烟污染”、“光化学烟雾污染”之后,又出现了“室内空气污染”为主的第三次环境污染。美国专家检测发现,在室内空气中存在500多种挥发性有机物,其中致癌物质就有 20多种,致病病毒 200多种。危害较大的主要有:氡、甲醛、苯、氨以及酯、三氯乙烯等。大量触目惊心的事实证实,室内空气污染已成为危害人类健康的“隐形杀手”,也成为全世界各国共同关注的问题。据统计,全球近一半的人处于室内空气污染中,室内环境污染已经引起7%的呼吸道疾病,22%的慢性肺病和15%的气管炎、支气管炎和肺癌。   三、关于开展室内空气质量服务的几点设想   着手调查国内家庭和办公室内空气质量的基本情况。   了解并着手引进室内空气质量检测设备。   进行规模较大的宣传活动,首先应由气象主管部门与环保主管部门联合建立室内空气质量问题的管理机制。   对国际环保部门有关室内空气质量的法规、技术标准、室内污染测定方法及对测定仪器等问题进行专门的调查和研究。   四、空气检测仪的强力武器——传感器   检测技术是人们认识和改造世界的一种必不可少的重要技术手段。而传感器是科学实验和工业生产等活动中对信息资源的开发获取、传输与处理的一种重要工具。下面将介绍六种在空气质量检测方面发挥重要作用的传感器。   金属氧化物半导体式传感器。金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。   催化燃烧式传感器。催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,是温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。   定电位电解式传感器。定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。   迦伐尼电池式氧气传感器。迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10-30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器  红外式传感器。红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。   PID光离子化气体传感器。PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。   五、气体检测仪器仪表产业发展现状深度分析   近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元;2007年仪器仪表行业总产值达3078亿元,增长率高达5%;据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 9亿元,同比增长8%,其中分析仪器、环境监测仪器仪表增长率高达32%。   科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。   从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。   六、对未来空气质量检测的展望   随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。      参考文献:   [1]陈艾敏感材料与传感器[M]北京:高等教育出版社   [2]高晓蓉传感器技术[M]成都:西安交通大学出版社   [3]彭军传感器与检测技术[M]北京:高等教育出版社   [4]王元庆新型传感器原理及应用[M]北京:机械工业出版社   [5]赵茂泰智能仪器原理及应用[M]北京:电子工业出版社

喜望在眼前

  • 索引序列
  • 传感器的分类及应用论文
  • 传感器的种类及应用论文
  • 传感器原理及应用论文液位传感器
  • 传感器技术及应用论文
  • 传感器原理及应用论文
  • 返回顶部