首页 > 论文期刊知识库 > 高性能纤维复合材料的研究进展论文题目

高性能纤维复合材料的研究进展论文题目

发布时间:

高性能纤维复合材料的研究进展论文题目

高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 2GPa,断 裂伸长率为 5%。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 97g/cm , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 5N/tex 以上的强度 和 84N/tex 以上弹性模量, 经热处理后可得到强度不变、 模量达 4N/tex 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 54 56 抗拉强度(GPa) 8 8 拉伸模量(GPa) 180 280 断裂延伸率(%) 5 5 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 56 24 8 280 5 45 12 2 115 0 80 6 58 230 5 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 7GPa。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 58 5 230 10 90 80 0 一 43 0 0 一 一 97 一 一 2 0 115 58 50 45 5 29 8 5 280 40 15 56 6 68 0 5 330 70 50 70 0 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好文中还展望了M5纤维的应用前景前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2]通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3]由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能1高性能纤维M1 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构1 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键因此,其压缩和扭曲性能为目前所有聚合物纤维之最M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5]图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5]图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图2 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能表2和表3所列出的实验结果也证实了这一结论[16,19]如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16]从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示)单斜和三斜的晶胞参数分别为:单斜结晶: a=49 ,b=48 ,c=01 ,=90°,=107°,=90°三斜结晶:a=68 ,b=48 ,c=02 ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a=33 ,b=462 ,c=16 ,=84°,=4°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16]1 M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为0×104~5×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥图7 M5纤维的热处理示意图2 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的因此,热处理温度与热处理时间对M5纤维的模量影响很大4 M5纤维的性能1 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的7Gpa提高到7Gpa,而经过400℃热处理的初生纤维压缩强度由原来的7Gpa提高到1G显然对于PIPD的初生纤维来讲,并非热处理温度越高越好通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为4%;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17]表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/(-3)回潮率/%Twaron-HM5C-HS0PBO6M0纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和6GPa,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11]如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多2 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)PIPD-AS76061PIPD-HT89062PBO-HM17072T09811N08724PVC05515注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值纤维试样放在一块1cm2的线网上试样原始重量在3g-5g之间从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为7kWm-2,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为76sm2kW-从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7]3 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8]4 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为MGNoRTHoLIT[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图研究发现将1g试样材料放在一个开放的测试槽内,以2℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用

pvcpp材料多,相对容易。

高分子材料范围大了,如果想要简单的话,就在网上下载一篇,你得给一个题目才行!

尽管新冠疫情持续蔓延,令行业面临诸多挑战,但到去年年底,有迹象表明,与复合材料行业相关的汽车和交通等众多领域开始复苏。运输业在虽然结构转型还远未完成,但目前行业已经开始正视挑战。然而,航空业目前还未恢复到以前水平,如今,航空航天的未来比以往任何时候都更依赖于其创新能力。 汽车工业:在未来几年内突破2017年的高水位线 与新冠疫情相关的停产对2020年的轻型汽车供需产生了极大的负面影响。2020年初的制造业停产使对材料的需求骤然停止,新冠疫情流行对经济影响进一步降低了全球对新型乘用车的需求。尽管到夏季恢复生产并且需求恢复高于预期,但2020年全球产量比上年依然下降20%。汽车用复合材料的销售量也相应下降,降至约35亿磅。 轻型汽车生产的恢复将是渐进的,并具有明显的地区差异。中国是首先受到冠状病毒影响的大市场,预计到2022年将完全恢复到2017年的水平。欧盟和北美等成熟市场的汽车需求在新冠疫情大流行之前有所放缓,并且在2025年之前恐怕难以恢复到2017年的水平。对于随市场涨跌的汽车商品供应商来说,复苏之路将是漫长而缓慢的。 幸运的是,许多复合材料不是商品,由于它们在成本、重量和性能方面与竞争材料相比具有明显优势,因此市场份额正在增加。由于二氧化碳排放和燃油经济性的法规监管,对轻质材料的需求超过了市场的增长。在2021年至2030年之间,欧洲二氧化碳排放限制将收紧60%以上。美国可能会重新考虑暂停奥巴马时代的燃油经济性标准,这可能需要在2020年至2025年之间将车队燃油经济性提高23%。 使用轻质材料(包括复合材料)可以帮助原始设备制造商OEM满足法规要求,保持消费者的吸引力。从2008年到2018年,先前的效率法规帮助复合材料在汽车应用中每年增加2%,鉴于当前的法规环境,这种趋势可能会持续下去。 然而,仅靠轻质材料并不能使OEM满足较高的燃油经济性要求。因此,汽车制造商计划在未来几年内部署一种新的混合电动汽车动力系统。这将包括大量增加混合动力、电池电动和燃料电池汽车,以补充内燃机。电动汽车的兴起为电池盒、氢燃料箱和其他要求轻量化和耐腐蚀的部件中的复合材料创造了机会。 此外,在设计这些新车时,可以利用零件整合的机会。这些因素可能使复合材料在未来十年中占据更多的汽车材料用量份额,并将有助于推动汽车复合材料的总销量在2023年之前超过2017年的水平。 复合材料行业的增长潜力可通过将汽车产量和汽车复合材料的销量指数化以2017年为基准年并预测到2025年的需求来进行说明。如果复合材料继续像过去十年那样以每年高于市场2%的速度增长,到2023年,汽车复合材料的产量将超过基准年的2017年,但全球汽车产量预计不会在2025年之前恢复到2017年的水平。 尽管2020年对于汽车行业和复合材料制造商来说是艰难的一年,但汽车复合材料的长期前景是光明的。根据成本、重量和性能方面的价值,该行业将在未来几年内突破2017年的高水位线。 2020年新冠疫情给许多行业和生活方方面面带来了重大影响和破坏,汽车和复合材料行业也不例外,两者都受到了新冠疫情的巨大影响,其影响将在未来几年内显现出来。然而,对于复合材料制造商而言,有一个好消息是,预期的汽车行业复苏、全球环境监督和电动汽车的激增将为复合材料和轻质汽车材料提供很有前途的前景。 航空航天:以创新为基础的技术解决方案对于其成功至关重要 在过去的几年里,航空航天业受到了一系列事件的巨大影响,最显著的是波音737 Max的停飞和新冠疫情流行。2020年11月18日,美国联邦航空局局长Steve Dickson取消了2019年3月13日发布的波音737 Max停飞令。但是期间的18个月给整个行业带来了巨大损失。 此外,在新冠疫情大流行期间,波音公司和空中客车公司都不得不暂时关闭其设施。正如预期的那样,波音和空中客车公司都在为大幅降低生产率和降低订单而苦苦挣扎。 随着航空航天工业的复苏,以创新为基础的技术解决方案对于其成功至关重要。利用计算机功能的项目继续推动复合材料制造业在航空航天领域的发展,其中包括集成计算材料工程(integrated computational materials engineering,ICME),它可以利用不同模型框架之间的数据流进行数字制造,3D打印部件及其完整性认证验证的差距越来越大,而通过使用分析学可以弥补这一差距。 借助ICME,航空航天制造商可以在涵盖整个组织的框架中看到敏捷性的显著优势。复合材料是理想的材料系统,可以驱动建模、分析或数字孪生方法增加价值,在这种方法中,复合材料成分、添加剂及其形态的复杂性不仅在成分选择方面而且在制造工艺方面都带来无数的性能差异。当通过计算可以显著减少客户要求与FAA认证之间的时间时,这就显得格外重要。 美国现代化新型技术和优先考虑事项的交叉点一直集中在高超音速、太空和网络安全领域,后者给整个航空航天供应链带来了巨大挑战,尤其是对保护信息的需求。从2020年11月30日开始,美国国防部(DOD)引入了一种自我评估方法,要求DOD供应链量化并报告其当前的网络安全合规性。在创新方面,政府机构继续促进初创技术开发商与一级航空航天公司之间的合作。空军AFWERX计划就是一个例子,该计划促进了整个行业、学术界和军队之间的联系。 对这些新兴技术至关重要的是材料的进步,基于马赫数5到马赫数20之间最恶劣的空间环境中生存的材料的需求,导致对增材制造用陶瓷基复合材料的研究和投资有所增加。为了在航空航天领域站稳脚跟,复合材料行业可以借鉴在聚合物基复合材料和金属基复合材料中获得的经验教训,利用ICME工作流程为陶瓷基复合材料的模型驱动设计提供依据。此外,将专家知识转换为基本的2×2正交实验设计,在同一试验中比较传统材料,将为使用新的复合材料和制造方法建立信心。 尽管基础指标历来包括高强度重量比、耐腐蚀和耐化学腐蚀性能,但新的行星外空间要求在极端高温和低温下都具有长周期服役能力。如美国航空航天学会(AIAA)标准指导委员会(SSC)等机构资源服务为标准制定做出了贡献,这将有助于使航空航天利益相关者之间的测试和其他活动标准化。 总之,航空航天的未来比以往任何时候都更依赖于其创新能力。这将需要政府、主要机构、供应链和初创公司利益相关者之间的综合发展。每个利益相关者在平衡合规性和业务模式中断以确保反弹方面将发挥重要作用。 玻璃纤维:2021年的前景更加光明 由于新冠疫情影响,2020年是复合材料行业的危机年,因为疫情引发了现金流和需求危机、供应链中断和工人安全问题。虽然2020年充满挑战,但2021年的前景似乎更加光明。 2020年初,美国复合材料行业起步相当不错,并显示出与2019年相似的良好增长迹象。到3月底,新订单推迟甚至被取消。在第二季度,特别是在4月和5月,疫情流行影响最大,导致了自大萧条以来最严重、最剧烈的经济收缩。夏季有超过2000万人失业,各行各业的工厂也被关闭。运输、建筑和海运业受到的打击最大,导致2020年第二季度美国玻璃纤维的需求与2020年第一季度相比减少了20%。 但是,2020年下半年成为经济和复合材料行业复苏最快的时期。自2020年7月以来,在刺激计划和工厂重新开张的推动下,美国复合材料行业的各种最终用途行业的需求开始增长,包括汽车、船舶和建筑行业。因此,与2020年第二季度相比,美国玻璃纤维市场在2020年第三季度增长了约23%。 在2020年第四季度,美国玻璃纤维市场保持强劲,11月的增长率与2019年11月相比约为5%。到2020年底,玻璃纤维市场无法从大流行中完全恢复过来,预计将下降约6%,需求降至4亿磅,而2019年为9亿磅。冠状病毒对整个价值链的影响都是不规律的,汽车、管道和储罐、航空航天和海洋应用呈显著下降趋势,而风能、电气和电子以及建筑业仍保持良好发展态势。 风电行业是2020年的一个亮点,尽管由于供应链瓶颈、跨境运输问题和政府的限制在3月和4月暂时放缓,但风能产业仍实现了两位数的增长。总体而言,市场增长是因为风电场开发商急于在年底预期到期之前及时开工,以获得生产税抵免资格。 COVID-19迫使高管们重新思考复合材料行业的未来。在某些细分市场中,过剩的产能加剧了缓慢的复苏,如航空航天业。波音公司首席执行官Dave Calhoun估计,航空旅行需要2至3年时间才能恢复到COVID之前的水平。 消费者对可持续性的意识也越来越高,这促使行业参与者在材料和复合材料零件的生产中探索绿色材料、可再生能源和回收技术。此外,大多数部门越来越多地使用数字技术来改变工作和劳动力。 在去年12月批准的新刺激方案和冠状病毒疫苗的帮助下,Lucintel预计2021年第1季度和第2季度在美国玻璃纤维行业中将有良好的复苏。汽车、住房、管道和储罐、电气和电子产品、消费品和海洋的有利趋势将导致2021年玻璃纤维市场以8%至10%的速度增长,达到或超过2019年的需求水平。 碳纤维:所有细分市场都具有巨大增长潜力 自2010年以来,全球碳纤维市场已从不到4万吨增长到2019年的10万吨以上。在此期间,碳纤维增长平稳且不间断,每年增长速度达到10%到12%。 但是2020年,随着COVID-19大流行来袭,全球碳纤维几乎在一夜之间发生了变化。2020年,全球对碳纤维的需求总计约为5万吨,仅比2019年增长1%,预计在2021年,增长幅度也仅为1%。 碳纤维市场受到许多领域应用增长的推动,例如航空航天、风能、体育用品、船舶、汽车、压力容器等。在2020年之前,所有这些细分市场的增长率以及整个行业的增长率都在稳步上升。 但是随着2020年初边境的关闭,国际航空旅行停止,飞机停飞,飞机制造商大幅削减了生产率,碳纤维行业似乎在瞬间失去了动力。碳纤维在航空航天领域的应用占工业总量的20%以上,占行业价值的40%。商业航空业的放缓严重影响了碳纤维行业,要恢复到疫情之前的水平可能要花费数年的时间。 尽管航空航天方面的消息令人沮丧,但2020年并非所有的都是坏消息。当人们学会了居家工作和在家附近度假时,一些市场表现良好,如在2020年,体育用品的需求跃升了30%至40%,风力涡轮机的安装按计划继续比上一年增加了20%。按照最终用途市场划分,2020年碳纤维应用市场细分大致如下:风能—23%;航空航天—20%;体育用品—12%;汽车—10%;压力容器—10%;用于注塑塑料和其他短纤维应用的复合材料—8%;建筑和基础设施—8%;其他细分市场—9% 正如疫情之前的时期一样,随着新应用和项目的投产,碳纤维的所有细分市场都具有巨大的增长潜力。在新冠疫情暴发之前,碳纤维具有吸引力的潜在长期大趋势保持不变。碳纤维的优点——刚度、高强度重量比、耐腐蚀性、导电性等——至今仍然有效。为了实现增长,碳纤维和CFRP零件必须同时具有技术和经济效益。 因此,人们对推动碳纤维整体需求的各个行业和应用有着不同的看法,有些行业下滑,有些行业则会上涨。那些已经收缩的领域尤其是航空航天领域,导致碳纤维行业的总量在2020年看起来相对平稳,预计2021年只会有非常温和的增长。但是,长期前景更为乐观。在未来几年内,可以合理预期碳纤维行业将再次恢复较强劲的同比增长。 至于碳纤维行业的产能,全球碳纤维生产商的铭牌产能合计约为16万吨,足以满足当前需求。一些生产商正在计划增加新的工厂和产能,以满足日益增长的未来需求。最后,必须牢记,碳纤维仍处于早期发展阶段。飞机是通过手工制造的,每天只有一两架;其他应用稍高一些,但仍然没有自动化。与之相比,汽车的批量生产速度超过每分钟一辆。如今,碳纤维仍主要用于小批量应用,尚未实现“大量生产”。 总而言之,新冠疫情给碳纤维行业带来了一定的打击,但这只是暂时的。尽管在这不平凡的一年里发生了很多事情,但碳纤维的未来还是充满希望的,未来几年的发展也将会十分有趣。 建筑与基础设施:建设有所缩减,可能是行业的转折点 当人们在谈论复合材料主要应用领域时,建筑工业往往不是位居榜首,但它却一直在发展。全球建筑经济是世界上最大的建筑经济体之一,也是最大的资源和能源消费领域之一,它同样也是最大的污染源之一,这些因素共同推动了对可持续发展的全面需求,复合材料在其中可以发挥作用。 根据《全球建筑展望》和牛津经济研究院发布的《2030年全球建筑》,预计到2030年,全球建筑业产值将增长85%,达到5万亿美元,其中大部分增长将集中在美国、中国和印度。麦肯锡全球研究所报告称,到2025年,全球20个最大的城市将需要3600万套新住房。 建筑业的其他研究表明,美国23%的空气污染、40%的水污染和50%的垃圾填埋场垃圾都是建筑业造成的。此外,美国绿色建筑委员会说,建筑物和建筑项目每年约占全球能源消耗的40%。 复合材料在建筑中的作用是多种多样的,从窗框和木材增强到复合材料钢筋和纤维增强混凝土。无论使用哪种材料,复合材料的轻量化、设计灵活性和耐用性优势都有助于加快施工速度,提高建筑的可持续性得分。 以阿拉伯联合酋长国(UAE)迪拜正在建设的未来博物馆为例,这座78米高的建筑有七层楼,里面有一个环形外壳,位于三层裙楼顶上。圆环的外立面包括1024块阻燃复合材料板,每个面板均覆盖有不锈钢,具有独特的3D形状,并融合了模制的阿拉伯文字。 在美国纽约州布鲁克林,增材制造复合材料帮助加快了45层高的One South First和相连的10 Grand的建设速度,这些建筑位于Domino Park内。这些建筑物包括一个复杂的混凝土立面,需要通过浇口预制数百个混凝土框架。Gate聘请了添加剂工程解决方案公司(AES)来帮助制造用于塑造混凝土框架的模具。在部分生产中,AES选择了LNP Thermomp AM复合材料,一种高模量、低翘曲的材料,由SABIC提供的短切碳纤维增强ABS树脂材料。 由于新冠疫情的到来,2021年的住宅建设和公共建设都会有所委缩。大多数基础设施和公共建筑的建设将受到政府实体的预算平衡、税收和收费收入的下降以及与大流行相关的未预算支出的限制。在短期内,只有少数非住宅利基市场看起来很有希望。其中包括对许多类型的现有设施进行翻新,以适应与冠状病毒相关的要求。此外,在医院和疗养院之外需要更多的设施来提供医疗、筛查和测试。学校建设可能是部分例外。随着更多家庭的搬迁,对新建和改建或扩建学校的需求将不断增长。 新冠疫情的流行增加了对替代稀缺的现场熟练工人的方式的需求。在某种程度上,复合材料和产品可以替代现场制造,或者由经验较少或技能水平较低的工作人员更快地安装,即使产品本身成本更高,对复合材料的需求也将不断增长。 因此,对于承包商而言,2021年可能是充满挑战的一年。但这可能标志着希望打入建筑市场的复合材料制造商的转折点。(广东博皓复合材料有限公司成立于2004年,有着近二十年复合材料行业服务经验,是一家复合材料行业整体解决方案服务商。我们致力于为客户提供完善的顾问式采购服务,先进的复合材料产品解决方案,顶尖的复合材料工艺及技术服务,高品质的复合材料模具设计与制造。)

高性能纤维复合材料的研究进展论文

你碳纤维的碳字写成炭,差距很大的哦

高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 2GPa,断 裂伸长率为 5%。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 97g/cm , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 5N/tex 以上的强度 和 84N/tex 以上弹性模量, 经热处理后可得到强度不变、 模量达 4N/tex 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 54 56 抗拉强度(GPa) 8 8 拉伸模量(GPa) 180 280 断裂延伸率(%) 5 5 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 56 24 8 280 5 45 12 2 115 0 80 6 58 230 5 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 7GPa。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 58 5 230 10 90 80 0 一 43 0 0 一 一 97 一 一 2 0 115 58 50 45 5 29 8 5 280 40 15 56 6 68 0 5 330 70 50 70 0 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好文中还展望了M5纤维的应用前景前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2]通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3]由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能1高性能纤维M1 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构1 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键因此,其压缩和扭曲性能为目前所有聚合物纤维之最M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5]图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5]图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图2 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能表2和表3所列出的实验结果也证实了这一结论[16,19]如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16]从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示)单斜和三斜的晶胞参数分别为:单斜结晶: a=49 ,b=48 ,c=01 ,=90°,=107°,=90°三斜结晶:a=68 ,b=48 ,c=02 ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a=33 ,b=462 ,c=16 ,=84°,=4°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16]1 M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为0×104~5×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥图7 M5纤维的热处理示意图2 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的因此,热处理温度与热处理时间对M5纤维的模量影响很大4 M5纤维的性能1 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的7Gpa提高到7Gpa,而经过400℃热处理的初生纤维压缩强度由原来的7Gpa提高到1G显然对于PIPD的初生纤维来讲,并非热处理温度越高越好通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为4%;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17]表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/(-3)回潮率/%Twaron-HM5C-HS0PBO6M0纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和6GPa,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11]如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多2 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)PIPD-AS76061PIPD-HT89062PBO-HM17072T09811N08724PVC05515注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值纤维试样放在一块1cm2的线网上试样原始重量在3g-5g之间从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为7kWm-2,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为76sm2kW-从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7]3 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8]4 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为MGNoRTHoLIT[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图研究发现将1g试样材料放在一个开放的测试槽内,以2℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用

前瞻网摘要 纤维增强复合材料已成为先进国防装备特别是飞行器结构的首选材料,对于减轻结构重量、提高结构效率、改善结构可靠性、延长结构寿命,具有其他材料无法比拟的优势,其用量已成为衡量飞行器结构先进性的重要标志。国内纤维增强结构复合材料经过20多年的研究和积累,基本形成了可在80~300℃温度范围使用的树脂体系和复合材料,建立了复合材料预浸料、蜂窝生产线,形成了以热压罐和缠绕成型技术为主的高性能复合材料构件研发和生产技术。但国内纤维增强复合材料的应用和研制水平与武器装备自主保障生产和发展的需求仍然存在着很大差距。 前瞻产业研究院发布的 数据表明 当前,国内纤维增强复合材料总的发展趋势是必须优先解决国产炭纤维研制与国产炭纤维复合材料应用,同时开展先进高效设计与制造方法研究,提高复合材料结构应用效益,进一步扩大装备复合材料用量;放眼国际,19世纪80年代纤维增强复合材料经历了从玻璃钢到以炭纤维增强复合材料为代表的先进复合材料的跨越,随着本世纪纳米技术的突飞猛进,以纳米复合材料为代表的新一代高性能复合材料己经初见端倪,必将成为复合材料的主要研发方向。本文从纤维增强复合材料发展沿革出发,重点阐述国产炭纤维复合材料应用基础研究、复合材料飞行器结构高效设计方法和纳米复合材料技术研发趋势,力图在国内外复合材料领域学术创新探索研究与我国未来飞行器结构工程应用之间建立内在关联。发展前景广阔!希望可以帮到你 望采纳谢谢

高性能纤维复合材料的研究进展论文英文

高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 2GPa,断 裂伸长率为 5%。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 97g/cm , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 5N/tex 以上的强度 和 84N/tex 以上弹性模量, 经热处理后可得到强度不变、 模量达 4N/tex 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 54 56 抗拉强度(GPa) 8 8 拉伸模量(GPa) 180 280 断裂延伸率(%) 5 5 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 56 24 8 280 5 45 12 2 115 0 80 6 58 230 5 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 7GPa。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 58 5 230 10 90 80 0 一 43 0 0 一 一 97 一 一 2 0 115 58 50 45 5 29 8 5 280 40 15 56 6 68 0 5 330 70 50 70 0 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好文中还展望了M5纤维的应用前景前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2]通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3]由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能1高性能纤维M1 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构1 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键因此,其压缩和扭曲性能为目前所有聚合物纤维之最M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5]图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5]图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图2 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能表2和表3所列出的实验结果也证实了这一结论[16,19]如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16]从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示)单斜和三斜的晶胞参数分别为:单斜结晶: a=49 ,b=48 ,c=01 ,=90°,=107°,=90°三斜结晶:a=68 ,b=48 ,c=02 ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a=33 ,b=462 ,c=16 ,=84°,=4°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16]1 M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为0×104~5×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥图7 M5纤维的热处理示意图2 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的因此,热处理温度与热处理时间对M5纤维的模量影响很大4 M5纤维的性能1 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的7Gpa提高到7Gpa,而经过400℃热处理的初生纤维压缩强度由原来的7Gpa提高到1G显然对于PIPD的初生纤维来讲,并非热处理温度越高越好通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为4%;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17]表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/(-3)回潮率/%Twaron-HM5C-HS0PBO6M0纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和6GPa,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11]如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多2 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)PIPD-AS76061PIPD-HT89062PBO-HM17072T09811N08724PVC05515注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值纤维试样放在一块1cm2的线网上试样原始重量在3g-5g之间从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为7kWm-2,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为76sm2kW-从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7]3 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8]4 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为MGNoRTHoLIT[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图研究发现将1g试样材料放在一个开放的测试槽内,以2℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用

我真的不懂,不好意识!

Composite Materials (Composite materials), is based on a matrix material (Matrix), a material for the reinforcement (reinforcement) material Performance on a variety of materials in each other, creating synergies, so that the integrated performance of composite materials than the original composition of material to meet a variety of different Matrix material is divided into two major categories of metal and non- Commonly used in metal matrix aluminum, magnesium, copper, titanium and its Mainly non-metallic matrix of synthetic resin, rubber, ceramics, graphite, carbon and so Main reinforcement glass fiber, carbon fiber, boron fiber, aramid fiber, silicon carbide fibers, asbestos fibers, whiskers, wires and other fine-grained and The use of composite materials can be traced back to ancient From ancient times to enhance the use of straw and clay for centuries has been the use of reinforced concrete formed by the two types of composite The 20th century, 40's, due to the needs of the aviation industry, the development of glass fiber reinforced plastic (commonly known as glass fiber reinforced plastic), a composite material from the After the 50's, have developed a carbon fiber, graphite fibers and boron fibers high strength and high modulus 70's a aramid fiber and silicon carbide These high-strength, high modulus fibers with synthetic resin, carbon, graphite, ceramic, rubber and other non-metallic substrate or aluminum, magnesium, titanium and other metal matrix composites, which constitute the composite material [Edit this paragraph] Classification Is a mixture of composite Composite materials into their component metals and metal composites, non-metallic composite materials and metals, non-metallic and non-metallic composite According to their structural characteristics are divided into: ① fiber composite Body will be placed in a variety of fiber-reinforced matrix--《复合材料学报》2004年05期

高性能纤维复合材料的研究进展论文怎么写

前瞻网摘要 纤维增强复合材料已成为先进国防装备特别是飞行器结构的首选材料,对于减轻结构重量、提高结构效率、改善结构可靠性、延长结构寿命,具有其他材料无法比拟的优势,其用量已成为衡量飞行器结构先进性的重要标志。国内纤维增强结构复合材料经过20多年的研究和积累,基本形成了可在80~300℃温度范围使用的树脂体系和复合材料,建立了复合材料预浸料、蜂窝生产线,形成了以热压罐和缠绕成型技术为主的高性能复合材料构件研发和生产技术。但国内纤维增强复合材料的应用和研制水平与武器装备自主保障生产和发展的需求仍然存在着很大差距。 前瞻产业研究院发布的 数据表明 当前,国内纤维增强复合材料总的发展趋势是必须优先解决国产炭纤维研制与国产炭纤维复合材料应用,同时开展先进高效设计与制造方法研究,提高复合材料结构应用效益,进一步扩大装备复合材料用量;放眼国际,19世纪80年代纤维增强复合材料经历了从玻璃钢到以炭纤维增强复合材料为代表的先进复合材料的跨越,随着本世纪纳米技术的突飞猛进,以纳米复合材料为代表的新一代高性能复合材料己经初见端倪,必将成为复合材料的主要研发方向。本文从纤维增强复合材料发展沿革出发,重点阐述国产炭纤维复合材料应用基础研究、复合材料飞行器结构高效设计方法和纳米复合材料技术研发趋势,力图在国内外复合材料领域学术创新探索研究与我国未来飞行器结构工程应用之间建立内在关联。发展前景广阔!希望可以帮到你 望采纳谢谢

找地方抄啊,找些玻璃纤维研究的垫垫底,再抄点碳纤维的,有可能找找高分子纤维或者纳米纤维的。

高分子材料的制品属於最年轻的材料它不仅遍及各个工业领域,另外,(材料科学)里面的资料,让你找找自己的灵感

纤维复合材料论文题目

高分子材料范围大了,如果想要简单的话,就在网上下载一篇,你得给一个题目才行!

目的应该放在熟悉科研过程和基本实验技能上。如果导师不给找题,如下: 1,与师兄师姐们或者身边有这方面经验的人商谈,听一听他们的想法,选一个和他们的实验方法相近的研究。优点在于:这样你将来实验有了问题,还有个人问,并且在他们的经验下,可以少走弯路和节省经费。我当初的硕士课题就是和我们那里的肿瘤研究所的好友商谈定下来的(与他们关联的题),一路非常顺利,那一步不会问好友就是了! 2,尽可能选简单的实验方法,不光是为了省钱和时间,同一个题能用简单方法证明,为什么非得找什么高级方法,可能有人说:越是高级的方法越有水平!这是大错特错!!!我曾经看过98 年发表在 Science 上的一篇原著,作者就是用了一个 ELASA 法,但实验设计的非常完美,而且就150例病人数。至于说我,当初的硕士课题用的是免疫组织化学染色法,很简单!

侵犯知识产权了。可以私下交流。

  • 索引序列
  • 高性能纤维复合材料的研究进展论文题目
  • 高性能纤维复合材料的研究进展论文
  • 高性能纤维复合材料的研究进展论文英文
  • 高性能纤维复合材料的研究进展论文怎么写
  • 纤维复合材料论文题目
  • 返回顶部