首页 > 论文期刊知识库 > 航天系统的核心是哪个

航天系统的核心是哪个

发布时间:

航天系统的核心是哪个

航天系统  航天系统(space system):又称航天工程系统。由航天器、航天运输系统、航天器发射场、航天测控网、应用系统组成、完成特定航天任务的工程系统,是现代典型的复杂大系统。  航天系统执行的特定任务和获取信息的方式,决定它的工作原理、组成和结构。获取来自太空信息的方式有两种,一是通过无线电信道传输到地面接收站点,二是通过专用的返回舱采集信息。  航天器载人的航天系统,称为载人航天系统;航天器不载人的航天系统,称为无人航天系统。执行军用航天任务的航天系统,称为军用航天系统;执行民用航天任务的航天系统,称为民用航天系统。民用航天系统包括用于科学研究的航天系统和直接为国民经济服务的航天系统。军用航天系统和直接为国民经济服务的航天系统属于应用航天系统。应用航天系统种类繁多,如:卫星通信系统、卫星导航定位系统、卫星气象观测系统、卫星侦察系统等。

有可能是指令舱,也有可能是服务舱。指令舱不必多说,航天员都在这里。服务舱的话,经常是机载电脑的所在地,而且经常附带动力系统,所以也可以说是核心舱段和控制中心。载人飞船是一种能保障宇航员在太空生活和工作以执行航天任务并安全返回地面的航天器。特点载人飞船可以独立进行航天活动,也可以作为往返于地面和空间站之间的“渡船”,还能与空间站或其它航天器对接后进行联合飞行。载人飞船容积较小,受到所载消耗性物资数量限制,不具备再补给的能力,而且不能重复使用。载人飞船又称载人航天飞船,它借助于运载火箭发射进入太空,绕地球轨道运行或进行轨道机动飞行;飞船内有适合人工作和生活的人造环境;完成任务后,飞船的一部分返回大气层,用降落伞和缓冲装置实现软着陆。

航天系统的核心是航天器

航天系统  航天系统(space system):又称航天工程系统。由航天器、航天运输系统、航天器发射场、航天测控网、应用系统组成、完成特定航天任务的工程系统,是现代典型的复杂大系统。  航天系统执行的特定任务和获取信息的方式,决定它的工作原理、组成和结构。获取来自太空信息的方式有两种,一是通过无线电信道传输到地面接收站点,二是通过专用的返回舱采集信息。  航天器载人的航天系统,称为载人航天系统;航天器不载人的航天系统,称为无人航天系统。执行军用航天任务的航天系统,称为军用航天系统;执行民用航天任务的航天系统,称为民用航天系统。民用航天系统包括用于科学研究的航天系统和直接为国民经济服务的航天系统。军用航天系统和直接为国民经济服务的航天系统属于应用航天系统。应用航天系统种类繁多,如:卫星通信系统、卫星导航定位系统、卫星气象观测系统、卫星侦察系统等。

航天飞机实际上是一个由轨道器、外贮箱和固体助推火箭助推器器组成的往返航天器系统,但人们通常把其中的轨道器称作为航天飞机。(1)轨道器:轨道器是航天飞机的核心部分,是整个航天飞机系统中唯一可载人、可重复使用的部分。(2)固体助推器:固体助推器的作用是助推,用于补充主发动机推力的不足。以供再用。(3)外贮箱:航天飞机的主发动机是液体火箭发动机,推进剂是液体燃料液态氧和液态氢。液体推进剂不装在航天飞机上,而是装在一个独立的可以抛弃的外贮箱里面。采用这种结构形式,可以减少航天飞机轨道器的尺寸和重量,否则航天飞机的轨道器非常庞大。美国研制过5种型号的航天飞机:哥伦比亚号航天飞机、挑战者号航天飞机、发现号航天飞机、亚特兰蒂斯号航天飞机和奋进号航天飞机。苏联研制过暴风雪号航天飞机,1988年对暴风雪号航天飞机成功地进行了无人轨道试飞,其后,由于苏联1991年解体,计划终止。[1] 即航天飞机本身,它是整个系统的核心部分。轨道器是整个系统中惟一可以载人的、真正在地球轨道上飞行的部件,它很像一架大型的三角翼飞机。它的全长24m,起落架放下时高27m;三角形后掠机翼的最大翼展97m;不带有效载荷时质量68t,飞行结束后,携带有效载荷着陆的轨道器质量可达87t 。它所经历的飞行过程及其环境比现代飞机要恶劣得多,它既要有适于在大气层中作高超音速、超音速、亚音速和水平着陆的气动外形,又要有承受载人大气层时高温气动加热的防热系统。因此,它是整个航天飞机系统中,设计最困难,结构最复杂,遇到的问题最多的部分。轨道器由前、中、尾三段机身组成。前段结构可分为头锥和乘员舱两部分,头锥处于航天飞机的最前端,具有良好的气动外形和防热系统,前段的核心部分是处于正常气 压下的乘员舱。这个乘员舱又可分为三层:最上层是驾驶台,有4个座位,中层是生活舱,下层是仪器设备舱。乘员舱为航天员提供宽敞的空间,航天员在舱内可穿普通地面服装工作和生活。一般情况下舱内可容纳4~7人,紧急情况下也可容纳10人。航天飞机的中段主要是有效载荷舱。这是一个长18m ,直径5m,容积300m3的大型货舱,一次可携带质量达29t 多的有效载荷,舱内可以装载各种卫星、空间实验室、大型天文望远镜和各种深空探测器等。为了在轨道上施放所携带的有效载荷或回收轨道上运行的有效载荷,舱内设有一或二个自动操作的遥控机械手和电视装置。机械手是一根很细的长杆,在地面上它几乎不能承受自身的重量,但是在失重条件下的宇宙空间,却可以迅速而灵活地载卸10t多的有效载荷。航天飞机中段机身除了提供货舱结构之外,也是前、后段机身的承载结构。航天飞机的后段比较复杂,主要装有三台主发动机,尾段还装有两台轨道机动发动机和反作用控制系统。在主发动机熄火后,轨道机动发动机为航天飞机提供进入轨道、进行变轨机动和对接机动飞行以及返回时脱离轨道所需要的推力。反作用控制系统用来保持航天飞机的飞行稳定和姿态变换。除了动力装置系统之外,尾段还有升降副翼、襟翼、垂直尾翼、方向舵和减速板等气动控制部件。航天飞机是一种为穿越大气层和太空的界线(高度100公里的卡门线)而设计的火箭动力航天器。它是一种有翼、可重复使用的航天器,由辅助的运载火箭发射脱离大气层,作为往返于地球与外层空间的交通工具,航天飞机结合了飞机与航天器的性质,像有固定机翼的太空船,外形像飞机。航天飞机的翼在回到地球时提供空气刹车作用,以及在降跑道时提供升力。航天飞机升入太空时跟其他单次使用的载具一样,是用火箭动力垂直升入。因为机翼的关系,航天飞机的有效载荷比例较低。设计者希望以重复使用性来弥补这个缺点。航天飞机除了可以在天地间运载人员和货物之外,凭着它本身的容积大、可多人乘载和有效载荷量大的特点,还能在太空进行大量的科学实验和空间研究工作。它可以把人造卫星从地面带到太空去释放,或把在太空失效的或毁坏的无人航天器,如低轨道卫星等人造天体修好,再投入使用,甚至可以把欧空局研制的“空间实验室”装进舱内,进行各项科研工作。航天飞机的飞行过程大致有上升、轨道飞行、返回三个阶段。起飞命令下达后,航天飞机在助推火箭的推动下垂直上升,直至进入预定轨道,完成上升。进入轨道后,航天飞机的主发动机熄火,由两台小型火箭发动机控制飞行。到达预定地点后,航天飞机开始工作。航天飞机完成任务后,便开始重新启动发动机,向着地球飞行。进入大气层后,航天飞机速度开始放慢,并像普通滑翔机一样滑翔着陆。

航天系统的核心是()

航天遥感系统由遥感器、信息传输设备以及图像处理设备等组成。装在航天器上的遥感器是航天遥感系统的核心,它可以是照相机、多谱段扫描仪、微波辐射计或合成孔径雷达。航天遥感可分为可见光遥感、红外遥感、多谱段遥感、紫外遥感和微波遥感。信息传输设备是航天器内的遥感器向地面传递信息的工具,遥感器获得的图像信息也可记录在胶卷上直接带回地面。图像处理设备对接收到的遥感图像信息进行处理(几何校正、辐射校正、滤波等)以获取反映地物性质和状态的信息。判读和成图设备是把经过处理的图像信息提供给判读、解译人员直接使用,或进一步用光学仪器或计算机进行分析,找出特征并与典型地物特征作比较,以识别目标。地面目标特征测试设备测试典型地物的波谱特征,为判读目标提供依据。

我认为是发动机和体系

航天系统的核心是?

我认为是发动机和体系

工程由卫星系统、运载火箭系统、测控系统、发射场系统地面应用系统五大系统

航天系统的核心是啥

工程由卫星系统、运载火箭系统、测控系统、发射场系统地面应用系统五大系统

我认为是发动机和体系

  • 索引序列
  • 航天系统的核心是哪个
  • 航天系统的核心是航天器
  • 航天系统的核心是()
  • 航天系统的核心是?
  • 航天系统的核心是啥
  • 返回顶部