首页 > 论文期刊知识库 > 植物遗传育种相关论文题目

植物遗传育种相关论文题目

发布时间:

植物遗传育种相关论文题目

(1)单倍体育种单倍体植株往往不能结实,在培养中用秋水仙素处理,可使染色体加倍,成为纯合二倍体植株,这种培养技术在育种上的应用称为单倍体育种。单倍体育种具有高速、高效率、基因型一次纯合等优点,因此,通过花药或花粉培养的单倍体育种,已经作为一种崭新的育种手段问世,并已开始育成大面积种植的作物新品种。在单倍体育种方面,我国科学家做出了突出贡献。1974年就育成了世界上第一个作物新品种--单育1号烟草品种。随后又育成了中花8号水稻和京花1号、京单92-2097小麦等面积栽培的作物新品种,还获得了多种作物的大量花培新品系。河南省在花培育种方面卓有成效,培育出了花培28、花配 2321、峡麦1号、豫麦1号、豫麦37号、花9、花特早、豫麦60号等优良品种(系),已累计推广700多万亩,在全国名列前茅。   (2)胚胎培养在植物种间杂交或远缘杂交中,杂交不孕给远缘杂交带来了许多困难。而采用胚的早期离体培养可以使胚正常发育并成功地培养出杂交后代,可以通过无性系繁殖获得数量较多、性状一致的群体,胚培养已在50多个科属中获得成功。远缘杂交中,可把未受精的胚珠分离出来,在试管内用异种花粉在胚珠上萌发受精,产生的杂种胚在试管中发育成完整植株,此法称为“试管受精”。用胚乳培养可以获得三倍体植株,为诱导形成三倍体植物开辟了一条新途径。三倍体加倍后可得到六倍体,可育成多倍体新品种。  (3)细胞融合通过原生质体融合,可部分克服有性杂交不亲和性,而获得体细胞杂种,从而创造新种或育成优良品种,这是组织培养应用最诱人的一个方面,目前已获得40余个种间、属间、甚至科间的体细胞杂种、愈伤组织,有些还进而分化成苗。目前,采用原生质体融合技术已经能从不杂交的植物中如番茄和马铃薯、烟草和龙葵、芥菜等获得属间杂种,但这些杂种尚无实际应用价值。随着原生质体融合、选择、培养技术的不断成熟和发展,今后可望获得更多有一定应用价值的经济作物体细胞杂种及新品种。  (4)基因工程用基因工程的方法,把目标基因切割下来并通过载体使外来基因整合进植物的基因组是完全有可能的,这项研究如果获得成功,将克服作物育种中的盲目性,而变成按人们的需要操纵作物的遗传变异,育成优良品种,目前这项研究刚刚起步,加上植物的遗传背景比原核生物更为复杂,因此,要用基因工程实现作物改良,以增加产量和改善品质,将是21世纪需要解决的一个问题。  (5)培养细胞突变体无论是愈伤组织培养还是细胞培养,培养细胞均处在不断分生状态,容易受培养条件和外界压力(如射线、化学物质等)的影响而产生诱变,从中可以筛选出对人们有用的突变体,从而育成新品种。尤其对原来诱发突变较为困难、突变率较低的一些性状,用细胞培养进行诱发、筛选和鉴定时,处理细胞数远远多于处理个体数,因此一些突变率极低的性状有可能从中选择出来。例如植物抗病虫性、抗寒、耐盐、抗除草剂毒性、生理生化变异等的诱发,为进一步筛选和选育提供了丰富的变异材料。目前,用这种方法已筛选到抗病、抗盐、高赖氨酸、高蛋白、矮秆高产的突变体,有些已用于生产。

利用生物技术向小麦导入冰草优异基因的研究 摘 要 小麦是世界上种植面积最大和最重要的粮食作物。利用生物技术向栽培作物转移向外源优异基因来拓宽小麦育种的遗传基础,是现代作物遗传育种学科中的一个非常重要的研究领域。 栽培小麦(Triticum aestivum L, 2n=4x-42, AABBDD)与冰草属(Agropyron G, P genome )(这儿所说的冰草属是现代小麦族植物分类学上的概念,而非传统的广义冰草属概念,即与一些小麦遗传育种学家将长穗偃麦草(Elytrigia elongata)和中间偃麦草(Elytrigia intermedia)等偃麦草属种也称为冰草的传统概念截然不同)植物间的杂交,可追溯到本世纪30年代(White, 1940; Smith, 1942; Dewey , 1984), 但直到90年代一些学者才先后报道了小麦与冰草属植物间的成功杂交(李立会等, 1990, 1995;Li & Dong, 1991; Chen et , 1990; Limin & Fowler, 1990; Ahmad & Comeau , 1992; Jauhar, 1992)。 尽管这儿所列出的国外一些科学家也曾获得了小麦与冰草属植物间的杂种,但由于外源种选择的盲然性,即对要从冰草属植物向小麦转移哪些基因不明确(Chen et , 1990; Jauhar, 1992), 或杂种F1的高度不育性(Ahmad & Comear, 1992), 或要转移的目标基因难以在小麦背景下表达(Limin & Fowler, 1990 )等原因,未见进一步的报道,而是基本上放弃了该领域的研究工作(私人通信,1997)。 在本项研究工作中,我们以普通小麦品种Fukuho (春性,具3对可杂交性基因,农艺性状良好,原产于日本)为母本,以分别采自新疆和内蒙古的3份冰草(Agropyron cristatum G, 2n=4x=28, PPPP)为父本进行杂交,并对杂种后代进行了研究。主要结果包括: 1、科学选择远缘杂交亲本,为杂交和外源优异基因转移的成功奠定了坚实的基础。在选择外源供体种的过程中,本项研究首先由中国农业科学院作物品种资源研究所和植物保护研究所、澳大利亚Division of Plant Industry, CSIRO, 加拿大Cytogenetics Section, Ottawa Research Station, Agriculture Canada 等单位对上千份小麦野生近缘植物的农艺性状、抗逆性和抗病性进行了联合鉴定,然后根据综合鉴定结果才精选出本项研究所利用的3份冰草-最佳外源供体种。因为这3份冰草不仅具有其它外源种难以比拟的众多优异基因(性状),包括小麦超高产育种所需的合理株型结构(株高小于60cm且穗下茎长度约占株高的2/3、有效分蘖>50、叶片窄短上挺)、大穗多粒(每穗结实在150粒以上)、黑粒且蛋白质含量极高、极强的抗旱和抗寒性、适度的耐盐性、对三种锈病、白粉病和黄矮病免疫、高抗赤霉病等,而且更为重要的是上述优异基因都是当前小麦育种迫切需要的。 2、利用现代远缘杂交方法和幼胚拯救技术,在国际上首次获得了具部分自交可育性的普通小麦与冰草间的杂种,并发现以不同来源的冰草为父本,不仅杂交结实率不同,而且杂种F1的表现型亦不同。这一结果,一方面突破了前人(Dewey, 1984)所认为的“冰草属P染色体组在小麦族中具有独立的遗传地位,与小麦之间不可能杂交”的论断;另一方面杂种F1具部分自交可育性,为实现外源基因的成功转移 奠定了坚实的物质基础。 3、以杂种F1幼穗为外植体,通过诱导愈伤组织产生体细胞无性系变异,首次发现杂种F1在无染色体数量变异情况下,其自交可育性或从无到有(0Õ 032%),或显著提高(10倍)。这一发现之所以重要,是因为它向人们展示了通过这一技术有可能在杂种F1就实现外源基因转移的美好前景。 4、通过精细分析,首次阐明了一些遗传学机理:一是杂种F1自交可育性是由于2条P染色体含有控制减数分裂过程中染色体分离的基因,从而能够形成有功能的近等2n或未减数配子;二是另外1条P染色体上具有抑制小麦Ph基因的遗传因子,能够诱发冰草P染色体组和小麦A、B、D染色体组间的染色体相互配对;三是证实了通过染色体间的自发易位可实现小麦-冰草间的基因交流。这些发现,一方面彻底突破了国际权威所认为的“小麦-冰草间不可能进行基因交流”的论断,另一方面为更加有目的、更加高效率地转移冰草优异基因提供了重要的理论指导。 5、利用回交、选择和形态学、细胞学、等位酶以及基因组原位杂交检测等综合技术,首次育成了11个遗传稳定的小麦-冰草异源二体附加系,并提出了有效产生异源二体附加系(列)的可行做法。异源二体附加系的产生,是研究每条P染色体上的基因在小麦背景下的遗传效应及其有效利用的重要工具。 6、首次创造了一批携带冰草优异基因、遗传稳定(2n=42, 21II ,异源易位系或代换系)且能为育种和生产利用的新种质。其普遍的特点是:有效分蘖多(15~82穗/株);株高70~95cm且穗下茎约占株高的1/2;旗叶上挺;大穗(55~112粒/穗);籽粒外观白色或黑色、蛋白质含量高(1~7%); 千粒重>38g; 综合抗病性(白粉病、条锈病、黄矮病和赤霉病)、抗寒性和抗旱性良好,特别是一些新种质具超高产潜力(理论产量高于600 kg/亩)。目前,这批新种质已为我国小麦主产区的9省15家育种单位利用,其中在陕西、山西有5个新种质正参加产量比较试验。 7、对获得的遗传稳定(2n=42, 21II ,异源易位系)的黑色籽粒和对白粉病免疫新种质中的黑色籽粒基因和抗白粉病基因(均来自冰草)进行了初步遗传分析,证明二者皆为显性单基因遗传。关键词:普通小麦(Triticum aestivum, L, 2n=6x=42, AABBDD); 冰草(Agropyron cristatum G, 2n=4x=28, PPPP);属间杂种;自交可育性;异源二体附加系;遗传分析;新种质Introduction of Desirable Genes from Agropyron cristatum (L) G to Triticum aestivum L Using BiotechnologyDoctoral student : Li-Hui LiSupervisor: Professor Yu-Shen Dong (Institute of Crop Germplasm Resources, Chinese Academy of Agriculture Sciences, Beijing, 100081)AbstractAs in most other crops, the genetic variation of cultivated wheat has been greatly eroded under modern agricultural Genetic erosion not only limits the further improvement of yield and quality but also makes wheat increasingly vulnerable to biological and environmental A large amount of genetic variation exists in the wild relatives of cultivated The introduction of genetic variation from alien species has been a valuable method for increasing the amount of genetic diversity available to wheat In this experiment, intergeneric hybrids of Triticum aestivum cv Fukuho (2n=6x=42, AABBDD) with three accessions of tetraploid A cristatum (2n=4x=28, PPPP) were synthesized through immature embryo rescued in artificial These hybrids can be used to: (1) transfer the desirable traits from A cristatum into common wheat; (2) identify the effects of the P genome on self-fertility in intergeneric hybrids; and (3) produce disomic addition lines of wheat-A Through study of the intergeneric hybrids and their derivatives, the following results were obtained: A cristatum may be one of the best potential alien donors in the Triticeae for wheat Agropyron G is a small genus of no more than ten species, which constitute what is known as the “crested wheatgrass complex” with the P genome, in accordance with the terminology of many modern A cristatum (L) G is the type species of this All species of the genus are very valuable; they are cultivated as predominantly pasture-fodder plants, distinguished by their high level of drought and cold tolerance; some species have be successfully used for fixing drifting In addition, A cristatum has also been found to possess the other desirable traits that are potentially valuable for wheat improvement through evaluation of all Triticeae collections from the northern part of China; these include shorter stem (usually less than 60 cm), more tillers and florets, immunity to wheat diseases such as rusts, powdery mildew, and barley yellow dwarf virus (BYDV) as well as resistance to wheat In the three hybridization combinations, seed set (22%~63%) and plant development were Each one plant obtained from Fukuho with A cristatum accession N Z540 and Z602 respective developed The former died before Although the later produced two spikes, neither selfed nor backcross seed was obtained from these two The two plants obtained from the Fukuho×A cristatum Z559 showed vigorous This result indicated that the three accessions of A cristatum used in this experiment are different in crossability with the F The root-tips of all hybrid seedlings were observed, and revealed that somatic chromosome number of each was 2n=35 as A self-fertile intergeneric hybrids between Triticum aestivum cv Fukuho (2n=6x=42, AABBDD) and tetraploid A cristatum (2n=4x=28, PPPP) were obtained for the first In contrast with the reports that either no BC1 derivatives from wheat-Agropyron hybrids was obtained or BC1 derivatives obtained were very difficult, in the Fukuho×A cristatum Z559 hybrids, however, they not only had a high seed set (1%) of backcrossing with common wheat, but also were partially self- The mean configurations at meiotic metaphase I of the hybrids were 47 I + 32 rod Ⅱ + 71 ring Ⅱ + 14 Ⅲ + 01 Ⅳ Some of bivalents per cell were clearly heteromorphic on the basis of various chromosome size, indicating that these bivalents were heterogenetic At anaphase I, chromosome separation was mainly the most (16~30 chromosomes) of 35 chromosomes to assemble at one pole, resulting in that the bigger daughter cells receiving most of 35 chromosomes might develop the functional In order to induce somaclonal variation, the immature inflorescences of the hybrids between Triticum aestivum cv Fukuho and A cristatum Z559 were Although the regenerants did not exhibit variation in chromosome number, they did show a higher degree of meiotic instability than the initial Especially, the selfed seed set could be increased greatly in the regenerated plants, being from 034% to 33% As a result, a total of 61 selfed seeds were Obtaining of so more selfed seeds from the Fukuho×A cristatum Z559 is rare in the intergeneric hybrids involving wheat, and makes a substantial foundation for transferring the desirable genes from A cristatum into common Using methods such as morphology, cytology, isozymes and genomic in situ hybridization, the selfed and backcross derivatives were The results showed that all plants with the alien characters carried the genetic materials of the P Meanwhile, a total of 11 disomic alien addtion lines were After all cytological data obtained from this experiment were summed up and analysed, some conclusions could be They were: (1) the A cristatum Z559 used in this experiment carried a genetic system suppressing Ph activity, and this genetic system might be mainly involved one of the P genome; (2) the P genome contained genes controlling chromosomes segregation at meiotic anaphase, and the genes might be mainly involved two of the P chromosomes; and (3) the spontaneous wheat-A cristatum translocations can occur in the selfed and backcross In this experiment, the other very important result is that some new germplasm with the desirable alien genes were They showed more effective tillerings (15-82 spikes per plant), plant height ranged from 70 to 95 cm, 55-112 grains per spike, a higher content of protein (1-7%), resistance to wheat diseases such as powdery mildew, stripe rust, BYDV and wheat scab, and tolerance to drought and So far, all new germplasm obtained from this experiment have been utilized by the 15 institutions for wheat breeding in C The new germplasm with black-grain in color and immunity to powdery mildew were Genetic analysis revealed that these two characters were from A cristatum Z559 and were controlled by a dominant gene Key Words: Triticum aestivum L, Agropyron cristatum, Intergeneric hybrids, Self-fertility, Alien addition and translocation lines, Genetic

植物遗传育种相关论文

常见育种方法的研究性论文我帮你按照计划,实现原创内容!

遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础?遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 1遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 2、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 3、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 4、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 5、基因表达的调控(了解操纵子学说) 6、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。

植物遗传育种相关论文选题

园林专业植物方向毕业论文选题选什么课题好你怎么理解谢谢大家的看法,具体问题具体分析

收稿日期:2007-10-25基金项目:深圳市科技和信息局基金资助项目作者简介:王丹(1982-),女,辽宁本溪人,硕士研究生,从事植物生物技术研究。注:雷江丽为通讯作者。大花美人蕉茎尖组织培养技术研究王 丹1,2,雷江丽2,吴燕民3,吕 慧2,郁继华1(甘肃农业大学 农学院,甘肃 兰州 730070;深圳市园林科学研究所,广东 深圳 518003;中国农业科学院 生物技术研究所,北京 100081)摘 要:以大花美人蕉(Canna×generalis)根茎茎尖为外植体进行组织培养技术研究,筛选出芽诱导适宜的培养基为MS + 6-BA 0mg/L(单位下同)+ TDZ 03;MS + 6-BA 0 + TDZ 03 + NAA 1 培养基能较好地诱导分化出丛生芽, 继代增殖培养中与MS + 6-BA 0 + TDZ 03 + NAA 1 培养基交替使用可减少畸形芽,增殖系数达67;适宜的生根培养基为MS + 6-BA 0 + NAA 5,生根率达67%,且植株生长健壮,移栽易成活。关键词:大花美人蕉;茎尖;组织培养中图分类号:Q1 文献标识码:A 文章编号:1009-7791(2008)01-0033-04Research on Shoot-tip Culture of Canna×generalisWANG Dan1,2, LEI Jiang-li2, WU Yan-min3, LÜ Hui2, YU Ji-hua1(College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu China; Shenzhen Institute of LandscapeGardening, Shenzhen 518003, Guangdong China; Biotechnology Research Institute, Chinese Academy of AgriculturalSciences, Beijing 100081, China)Abstract: The paper mainly studied on tissue culture of Canna×generalis with the stem tips The results showed that the bud inoculation medium was MS + 6-BA 0mg/L+ TDZ03mg/L; the best of clump shoot induction and differentiation medium was MS + 6-BA 0mg/L +TDZ 03mg/L + NAA 1mg/L; using MS + 6-BA 0mg/L + TDZ 03mg/L + NAA 1mg/L asproliferation medium, an optimal proliferation rate was When the two kinds of mediumused alternatively, the effect was The optimum rooting medium was MS + 6-BA 0mg/L +NAA 5mg/L, the rate of rooting could reach 67%, and cultured in this medium, the plant grewwell and easy to Key words: Canna×generalis; shoot-tip; tissue culture大花美人蕉(Canna×generalis)属美人蕉科(Cannaceae)美人蕉属(Canna)的园艺杂交种[1],是多年生喜光宿根草本花卉,原产美洲热带和非洲等地。其枝叶茂盛、花朵艳丽、姿态优美、花期长,在深圳地区几乎全年开花,是配置大型花坛的优良品种。大花美人蕉不仅观赏价值高,而且能吸收硫、氯、氟、汞等有害物质,具有净化空气、保护环境的作用,因此,世界许多城市的园林绿化中都广泛应用。美人蕉传统的繁殖方式主要采用分切地下根茎的方法,繁殖速度慢、增殖效率低,而且连续营养繁殖造成病毒积累致使病毒病在各地相当普遍,严重影响其观赏价值。利用茎尖组织培养进行脱毒试管苗快繁,是目前大力繁殖与推广美人蕉的主要手段。关于美人蕉组织培养的研究报道较少[2,3],本研究探索其组织培养高效的再生体系,以期为品种提纯复壮及遗传转化、性状改良奠定基础。2008,37(1):33-Subtropical Plant Science第·34· 37 卷1 材料与方法1 材料供试材料为目前城市绿化中普遍应用的大花美人蕉‘President’品种。2 外植体选择与处理选择生长健壮、无病虫害的优良母株,挖取带芽胞的根茎,去除表面老皮并用肥皂水清洗。用75%乙醇棉擦拭,然后采用不同的消毒剂及处理时间(1%升汞10min、2%次氯酸钠10min、2%次氯酸钠20min、2%次氯酸钠 + 1%升汞5min、2%次氯酸钠 + 1%升汞10min),封闭式振摇灭菌。无菌水冲洗5 次,置于超净工作台上备用。接种前,剥去外部叶片,露出生长点,立即切取茎尖进行接种。3 培养方法及培养条件试验于2006 年10 月在深圳市园林科学研究所组培室进行。诱导、增殖和生根培养基均选用MS为基本培养基,在不同培养阶段附加不同种类、不同浓度配比的植物生长调节剂(表2~表4),蔗糖3%,pH 8。培养温度(28±2)℃,光照强度2 500 lx,光照周期为14h/d,相对湿度70%~80%。每处理接种30 瓶。定期观察试管苗生长与分化情况。2 结果与分析1 不同消毒处理方式对外植体无菌化的影响因供试外植体取自美人蕉地下根茎,表面污染物较多,不易消毒,且不同植物及外植体的成熟度对消毒剂的反应不同,故本试验选用升汞和次氯酸钠进行灭菌效果比较,以筛选合适的消毒剂及消毒处理时间。由表1 可知,2%次氯酸钠20min 处理的无菌化效果较好,但茎尖褐化较严重,说明灭菌时间过长对去老皮后的幼嫩根茎影响较大。1%升汞10min 处理与2%次氯酸钠 + 1%升汞 10min处理,无菌化效果差异不大,但2%次氯酸钠 + 1%升汞 10min 处理有轻微药害。因此,后续实验选用1%升汞处理10min 进行外植体消毒。2 不同生长调节剂配比对芽诱导的影响以MS 为基本培养基,附加不同浓度6-BA、NAA、2,4-D、KT、TDZ 等(表2),以筛选出较适宜美人蕉茎尖诱导分化的配方。因美人蕉根茎具有休眠特性,芽诱导分化较难。TDZ 具有很强的促进细胞分裂活性,05~0μmol/L 即可有效促进分化[4],因此,本实验对TDZ 的诱导效果进行初步探索。试验表明,在不添加任何生长调节剂的MS 基本培养基(1 号)上,茎尖接种10d 后开始生长,叶片展开后,生长停止;15d 后转接到新的MS 培养基上无明显生长,随后叶片逐渐变黄、萎蔫,说明基本培养基中添加生长调节剂是美人蕉离体培养的必要条件。在仅添加6-BA 的2、3、4 号培养基中,高浓度的2 号培养基分化率为33%,明显好于3、4号培养基,说明美人蕉启动芽诱导分化需要高浓度的细胞分裂素(表2)。11~16 号培养基添加物为不同生长调节剂与TDZ 组合(表2)。仅添加TDZ 的培养基分化率为0,而多种生长调节剂配合使用分化效果更好[5]。其中15 号培养基的侧芽分化率最高,达33%,且每个茎尖可增殖2~3 个侧芽,但个别茎尖经多次转接后有畸形芽;与2 号培养基相比,分化率明显提高,说明添加低浓度TDZ 可促进芽诱导分化(表2)(图版-a)。5、6、7 号培养基为生根培养基,探讨NAA 对美人蕉茎尖生长和生根的影响。试验结果初步说明美人蕉在6-BA/NAA 小于2/5 时生根率可达50%以上(表2)。8、9、10 号培养基,探讨美人蕉脱分化,诱导愈伤组织,但结果均不理想。因此,建立高效的美表1 不同消毒剂及处理时间对外植体无菌化的影响处 理 接种数污染数污染率(%) 药害情况1%升汞10min 30 5 67 基本无药害2%次氯酸钠10min 30 12 00 无药害2%次氯酸钠20min 30 4 33 20%有轻微药害2%次氯酸钠+1%升汞5min 30 10 33 3%有轻微药害2%次氯酸钠+1%升汞10min 30 5 67 7%有药害第1 期 王丹,等:大花美人蕉茎尖组织培养技术研究 ·35·人蕉遗传转化再生体系还需进一步探索愈伤组织诱导途径。3 芽继代增殖为了探讨优化的芽继代增殖培养基配方,按表3 设计6-BA、NAA、TDZ 的正交实验,以15 号培养基上分化出的丛生芽为接种材料,进行继代增殖培养(图版-b)。由表3 可见,除17、18 号培养基外,低浓度TDZ(03mg/L)的分化促进作用较高浓度(3mg/L)的效果好,说明高活性的TDZ 浓度过高反而抑制分化。当TDZ03mg/L 时, NAA 1mg/L 促分化作用显著优于NAA5mg/L。在TDZ、NAA 浓度相同的情况下,随着6-BA 浓度的升高,分化率提高。但随着继代次数的增多,含高浓度6-BA的27 号培养基分化率略有下降,甚至有个别畸形芽产生,说明高浓度细胞分裂素对短期的分化有促进作用[9],但继代数次后,芽已经萌动,自身具有分化能力,需适当降低6-BA 浓度进行壮苗,以避免畸形芽产生。因此,在增殖过程中交替使用分化增殖系数较高的19 号培养基和27 号培养基,既可保证较高的芽分化率,又可使继代苗生长健壮,减少畸形芽。4 生根诱导增殖芽3~5cm 长时,转接到生根培养基上培养约10d 后,可见到根生成(图版-c)。接种20d 后统计生根结果(表4)。从表4可见,所用培养基上都有根生成,说明美人蕉生根较容易;结合生根率和生长势,我们认为MS + 6-BA 0 + NAA 5培养基较适宜美人蕉生根。表2 不同植物生长调节剂组合的比较植物生长调节剂(mg/L) 编号6-BA NAA 2,4-D KT TDZ分化率(%) 生根率(%) 备注1 0 0 0 0 02 9 0 0 0 0 33 参考[2]3 5 0 0 0 0 33 参考[3]4 3 0 0 0 0 675 2 1 0 0 0 006 2 5 0 0 0 677 2 2 0 0 0 08 0 0 4 0 09 0 0 2 1 0 参考[6]10 0 2 0 2 0 参考[7]11 0 0 0 0 2 012 0 1 0 0 2 33 参考[8]13 0 0 5 0 1 3314 0 0 1 0 1 6715 8 0 0 0 03 3316 5 0 5 0 03 00表3 不同生长调节剂配比对芽继代繁殖的影响生长调节剂(mg/L) 编号6-BA NAA TDZ接种数分化率(%)增值系数 生长势17 0 5 03 30 00d 20d ++18 0 5 30 30 67cd 50bc ++19 0 1 03 30 67a 67a ++20 0 1 30 30 33cd 46bc ++21 0 5 03 30 33c 60ab ++22 0 5 30 30 67d 33c ++23 0 1 03 30 67a 60ab ++24 0 1 30 30 33ab 57b +25 0 5 03 30 00b 53b ++26 0 5 30 30 67d 37c +27 0 1 03 30 00a 73a ++28 0 1 30 30 67d 37c +注:++ 表示生长势强;+表示生长势弱。同列中不同字母表示差异显著(P<05=,表4 同。表4 不同的生长调节剂配比对组培苗生根的影响生长调节剂(mg/L) 编号6-BA NAA接种数生根苗数生根率(%)植株生长势29 0 5 30 19 33b +30 0 0 30 21 00a ++31 0 5 30 20 67ab +++32 0 0 30 16 33c ++注:+++ 表示生长势强;++表示生长势中等;+表示生长势弱。第·36· 37 卷3 结 论美人蕉根茎生长在土壤中,无菌化操作较困难。灭菌试验表明,1%升汞震荡灭菌10min 效果较好,采回的外植体应尽快处理接种,放置时间过长伤口处易染菌,导致接种后褐化较严重。MS + 6-BA 0 + ZDT 03 + NAA 1 培养基能较好地诱导分化丛生芽,MS + 6-BA 0 + TDZ 03+ NAA 1 为较好的增殖培养基,在增殖培养过程中这两种配方交替使用效果更好;短时间使用高浓度生长调节剂对增殖有促进作用,但长时间使用高浓度生长调节剂会使组培苗质量下降。在试验中还发现,转接次数多的茎尖较转接次数少的分化率大,建议在接种后的10~20d 内及时转接。选用MS + 6-BA 0 + NAA 5 为生根培养基,生根率较高,根系粗壮、根毛密集,植株生长健壮(图版-d),且移栽成活率较高。参考文献:[1] Segeren W, et The genus Canna in Northern South America[J] Acta Bot N, 1971,20(6): 663-[2] 刘文萍,等 美人蕉茎尖组织培养及快繁技术[J] 北方园艺, 2001(6): [3] 丁爱萍,等 美人蕉组织培养及快速繁殖技术[J] 园林科技, 2006(1): 11-[4] Singh N D, et The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L Millsp)[J]Plant Science, 2003,164(3): 341-[5] 王关林,等 高活性细胞激动素TDZ 在植物组织培养中的应用[J] 植物学通报, 1997,14(3): 47-[6] 宣朴,等 生姜茎尖组培快繁技术研究[J] 西南农业学报, 2004,17(4): 484-[7] Kromer K, et In vitro cultures of meristem tips of Canna indica L[J] Acta Horticulturace, 1985,167: 279-[8] Vendrame W A, et In vitro propagation and plantlet regeneration from Doritaenopsis Purple Gem 'Ching Hua' flowerexplants[J] HortScience, 2007,42(5): 1 256-1 [9] 刘敏 花卉组织培养与工厂化生产[M] 北京: 地质出版社, 2002: 101-

植物遗传育种相关论文范文

【生物多样性概念】 生物多样性biodiversity是指一定范围内多种多样活的有机体(动物、植物、微生物) 有规律地结合所构成稳定的生态综合体。 这种多样包括动物、植物、微生物的物种多样性,物种的遗传与变异的多样性及生态系统的多样性。其中,物种的多样性是生物多样性的关键,它既体现了生物之间及环境之间的复杂关系,又体现了生物资源的丰富性。 我们目前已经知道大约有200万种生物,这些形形色色的生物物种就构成了生物物种的多样性。 生物多样性是生物及其与环境形成的生态复合体以及与此相关的各种生态过程的总和,由遗传(基因 )多样性,物种多样性和生态系统多样性等部分组成。遗传(基因)多样性是指生物体内决定性状的遗传因子及其组合的多样性。物种多样性是生物多样性在物种上的表现形式,可分为区域物种多样性和群落物种(生态)多样性。生态系统多样性是指生物圈内生境、生物群落和生态过程的多样性。遗传(基因)多样性和物种多样性是生物多样性研究的基础,生态系统多样性是生物多样性研究的重点。 有人问根据对自然界的研究可以推断造物主的工作有何特点,据说英国科学家约翰·波顿·桑德森·霍尔丹(JBS Haldane)回答:“过于喜爱甲虫。”因为甲虫是地球上最大的动物群。美国史密森学会(Smithsonian Institution)的特里·欧文(Terry Erwin)推断,多数未知的甲虫种类可能生存于我们无法靠近的30米高的热带森林树冠层。 【生物多样性与健康 】 生物多样性同样关系到我们的健康和这个星球的健康。实际上,你的健康和这个星球的健康之间的关系是密不可分的。 当我们生病的时候,我们依赖自然环境去帮助我们恢复健康。多少年以来,人们从自然世界中寻找对于伤病的治疗方法。植物为现代医药提供了有效的成分,比如制作阿斯匹林的成分。顺势疗法的医药也是大量利用植物成分的。从金钱的角度看,入药的植物的价值是无法算清的。世界上这些以植物作为基础的药物的总价值大约是6千亿。 生物多样性的经济价值是多数人并不了解的,但在医药公司的科学家们正在忙着从植物中寻找治疗一些特定疾病的特定药物成分。就在不久以前,专家们在太平洋紫杉树和马达加斯加长春花中发现了用于治疗癌症的植物成分。也许,某一天我们能够从一株植物上发现杀死艾滋病病毒的植物成分。 传统医学的医生依赖植物和药草治疗疾病已经有很长时间了。在现代,人们也十分欣赏传统医学的疗效。比如说,东部非洲的Maasai人以他们的传统方式做肉、牛奶或血制品时,他们会加入一些树皮,这样的方法做出来可以减少胆固醇。 然而,对入药植物和动物的收获也并不都是好事。实际上,对这些植物、动物的需求导致这些物种濒危。传统药物用乌龟入药导致这个物种的极度衰落。 我们反复地从地球的药柜中搜寻药物。我们需要保护生物多样性,以便大自然的药柜能够储有现存医药的成分,和未来我们需要抵制新的疾病时制造新药的所需成分。 【生物多样性与你呼吸的空气 】 在一些城市中,尤其是在夏天,呼吸外面的空气是不健康的。我们知道我们必须减少汽车尾气污染、工厂废气污染、发电厂的空气污染来保证现代生活。是的,我们都知道这些,但是你知道生物多样性对于环境的自动清洁起着什么样的作用吗?你知道生物多样性帮助清洁空气吗? 树和其他绿色植物吸入二氧化碳--这种主要由汽车尾气和工厂排放的产生的温室气体,然后还给自然纯净的氧气。生物多样性是这个世界的空气净化器。 然而,我们持续不断的砍伐树木,把它们切开运往各地。世界上,492种树木物种已经有濒临灭种的危险。我们已经砍伐掉曾经装点着地球的大约一半的树木。我们砍伐但不修复,如此已经伤害了地球的肺。就像一个一天要抽10包烟的瘾君子,一直吸烟,而损坏的肺一块块地被切掉。我们的肺还剩多大一块? 另外,在许多地方,我们引入外来入侵物种。在过去的200年里,我们将一些树种从世界的这一头运到那一头。这种行为有的已经发展到一种产业的规模,像桉树和藤条。也有一些退休人员或旅行者从他们的家乡将土产的植物或是树木带上,随他们旅游。 问题是,这些植物完全适应它们原本的生长地,它们却并不适应新的地点生长。它们也许比当地物种需要更多的水,或者需要杀虫剂来帮助它们不被当地的虫子蛀食。 我们必须尊重自然的安排,不要强迫某些特性的改变。顺其自然。这样,地球的肺能呼吸得更舒服些。 【生物多样性与我们喝的水 】 所有的生命都离不开水,所以,生物多样性也与水资源有关。 因为我们只有有限的水--不是说我们将来什么时候都能从火星上运一船下来--生物多样性、特殊的不同生态系统净化我们的水:森林、土壤和细菌、小溪与云彩一起运作--实际上是过滤,才使我们重新喝到水。没有生物多样性,这个世界就会变得贫瘠与中毒--更像火星--然后我们就不能再生存在地球上了。 所以,问题是,你已经准备好搬到另一个星球上去生活了吗? 【生物多样性、气候和灾难 】 你意识到最近我们一直在遭遇奇怪的气候吗? 科学证据是无法驳斥的:地球的气候正在变化。整个地球上一直发生着奇奇怪怪的事情--珊瑚礁死亡、大型泥石流、不寻常的倾天大雨、一些地区的持续干旱。不管是因为工业排放原因还是自然因素的原因,世界对这些现象的应付机制依旧是相互紧密联系的,从生态系统方面到生态系统中的各类生命间。 例如,在地球上的许多地方,人们发现当他们砍伐森林后,它们的乡村和城镇就容易遭遇洪水。当这种洪水来时,就比以往的洪水要更凶猛、更快速。为什么?不是火箭的推力让它们变得更快,而是因为树可以用它们的根保持水土。根在湿潮季节里吸水并在夏天放出水分来。这是一种自然调节方法。 现在你有两个选择: 1, 帮助保护生物多样性 2, 什么都不作只是去承受 我们希望你选择第一项。我们正是那样做的! 同样的,人们一点也不考虑生物多样性,甚至很少考虑风暴可能造成的危险就把珊瑚红树林全部清除。红树林是自然暴雨的良好缓冲区,同时也是富于生物多样性的生态系统。当它们被砍伐,这个缓冲区就不复存在了,无论是对于人类还是其它的物种。 当我们忽视我们应该得到的教训的时候,这个世界上人们的做法导致了这样的结果:山坡坍塌,整个群落全部被冲走,造成生命的丧失。生物多样性的丧失也正在用极度悲痛的方式伤害着我们人类。也许现在是我们拾起我们早就该得到的教训的时候了。 什么是生物的多样性 “生物多样性”一词是20世纪80年代初出现于自然保护刊物上,《生物多样性公约》第二条中对“生物多样性”作了如下解释:“生物多样性是指所有来源的活的生物体中的变异性,这些来源除其他外,包括陆地、海洋和其他水生生态系统及其所构成的生态综合体,这包括物种内、物种之间和生态系统的多样性。” 1995年,联合国环境规划署(NNEP)发表的关于全球生物多样性的巨著《全球生物多样性评估》(GBA)给出了一个较简单的定义:“生物多样性是生物和它们组成的系统的总体多样性和变异性”。用句通俗的话说:生物多样性是由地球上所有的植物、动物和微生物,它们所拥有的全部基因以及各种各样的生态系统共同构成的。 生物多样性的价值及其意义 生物多样性的意义主要体现在生物多样性的价值。对于人类来说,生物多样性具有直接使用价值、间接使用价值和潜在使用价值。 直接价值生物为人类提供了食物、纤维、建筑和家具材料、药物及其他工业原料。单就药物来说,发展中国家人口的80%依赖植物或动物提供的传统药物,以保证基本的健康,西方医药中使用的药物有40%含有最初在野生植物中发现的物质。例如,据近期的调查,中医使用的植物药材达1万种以上。 生物多样性还有美学价值,可以陶冶人们的情操,美化人们的生活。如果大千世界里没有色彩纷呈的植物和神态各异的动物,人们的旅游和休憩也就索然寡味了。正是雄伟秀丽的名山大川与五颜六色的花鸟鱼虫相配合,才构成令人赏心悦目、流连忘返的美景。另外,生物多样性还能激发人们文学艺术创作的灵感。 间接使用价值间接使用价值是指生物多样性具有重要的生态功能。无论哪一种生态系统,野生生物都是其中不可缺少的组成成分。在生态系统中,野生生物之间具有相互依存和相互制约的关系,它们共同维系着生态系统的结构和功能。野生生物一旦减少了,生态系统的稳定性就要遭到破坏,人类的生存环境也就要受到影响。 潜在使用价值野生生物种类繁多,人类对它们已经做过比较充分研究的只是极少数,大量野生生物的使用价值目前还不清楚。但是可以肯定,这些野生生物具有巨大的潜在使用价值。一种野生生物一旦从地球上消失就无法再生,它的各种潜在使用价值也就不复存在了。因此,对于目前尚不清楚其潜在使用价值的野生生物,同样应当珍惜和保护。 生物多样性的三个层次 目前,大家公认的生物多样性的三个主要层次是物种多样性、基因多样性(或称遗传多样性)和生态系统多样性。这是组建生物多样性的三个基本层次。 物种多样性常用物种丰富度来表示。所谓物种丰富度是指一定面积内种的总数目。到目前为止,已被描述和命名的生物种有160万种左右,但科学家对地球上实际存在的生物种的总数估计出入很大,由500万到1亿种。其中以昆虫和微生物所占的比例最大。 基因多样性代表生物种群之内和种群之间的遗传结构的变异。每一个物种包括由若干个体组成的若干种群。各个种群由于突变、自然选择或其他原因,往往在遗传上不同。因此,某些种群具有在另一些种群中没有的基因突变(等位基因),或者在一个种群中很稀少的等位基因可能在另一个种群中出现很多。这些遗传差别使得有机体能在局部环境中的特定条件下更加成功地繁殖和适应。 不仅同一个种的不同种群遗传特征有所不同,即存在种群之间的基因多样性;在同一个种群之内也有基因多样性——在一个种群中某些个体常常具有基因突变。这种种群之内的基因多样性就是进化材料。具有较高基因多样性的种群,可能有某些个体能忍受环境的不利改变,并把它们的基因传递给后代。 环境的加速改变,使得基因多样性的保护在生物多样性保护中占据着十分重要的地位。基因多样性提供了栽培植物和家养动物的育种材料,使人们能够选育具有符合人们要求的性状的个体和种群。 生态系统多样性既存在于生态系统之间,也存在于一个生态系统之内。在前一种情况下,在各地区不同背景中形成多样的生境,分布着不同的生态系统;在后一种情况下,一个生态系统其群落由不同的种组成,它们的结构关系(包括垂直和水平的空间结构,营养结构中的关系,如捕食者与被捕者、草食动物与植物、寄生物与寄主等)多样,执行的功能不同,因而在生态系统中的作用也不一样。 总之,物种多样性是生物多样性最直观的体现,是生物多样性概念的中心;基因多样性是生物多样性的内在形式,一个物种就是一个独特的基因库,可以说每一个物种就是基因多样性的载体;生态系统的多样性是生物多样性的外在形式,保护生物的多样性,最有效的形式是保护生态系统的多样性。 我国生物多样性的一般特点 我国是地球上生物多样性最丰富的国家之一。在全世界占有十分独特的地位。1990年生物多样性专家把我国生物多样性排在12个全球最丰富国家的第8位。在北半球国家中,我国是生物多样性最为丰富的国家。我国生物多样性的特点如下。 1.物种高度丰富 我国有高等植物3万余种,仅次于世界高等植物最丰富的巴西和哥伦比亚。 2.特有属、种繁多 我国高等植物中特有种最多,约17 300种,占全国高等植物的57%以上。581种哺乳动物中,特有种约110种,约占19%。尤为人们所注意的是有活化石之称的大熊猫、白鳍豚、水杉、银杏、银杉和攀枝花苏铁,等等。 3.区系起源古老 由于中生代末我国大部分地区已上升为陆地,在第四纪冰期又未遭受大陆冰川的影响,所以各地都在不同程度上保存着白垩纪、第三纪的古老残遗成分。如松杉类植物,世界现存7个科中,我国有6个科。动物中的大熊猫、白鳍豚、羚羊、扬子鳄、大鲵等都是古老孑遗物种。 4.栽培植物、家养动物及其野生亲缘种的种质资源异常丰富 我国有数千年的农业开垦历史,很早就对自然环境中所蕴藏的丰富多彩的遗传资源进行开发利用、培植繁育,因而我国的栽培植物和家养动物的丰富度在全世界是独一无二、无与伦比的。例如,我国有经济树种1 000种以上。我国是水稻的原产地之一,有地方品种50 000个;是大豆的故乡,有地方品种20 000个;有药用植物11 000多种等等。 5.生态系统的类型丰富 我国具有陆生生态系统的各种类型,包括森林、灌丛、草原和稀树草原、草甸、荒漠、高山冻原等。由于不同的气候、土壤等条件,又进一步分为各种亚类型约600种。如我国的森林有针叶林、针阔混交林和阔叶林;草甸有典型草甸、盐生草甸、沼泽化草甸和高寒草甸等。除此之外,我国海洋和淡水生态系统类型也很齐全。 6.空间格局繁复多样 我国地域辽阔,地势起伏多山,气候复杂多变,从北到南,气候跨寒温带、温带、暖温带、亚热带和热带,生物群落包括寒温带针叶林、温带针阔叶混交林、暖温带落叶阔叶林、亚热带常绿阔叶林、热带季雨林。从东到西,随着降水量的减少,在北方,针阔叶混交林和落叶阔叶林向西依次更替为草甸草原、典型草原、荒漠化草原、草原化荒漠、典型荒漠和极旱荒漠;在南方,东部亚热带常绿阔叶林(分布于江南丘陵)和西部亚热带常绿阔叶林(分布于云贵高原)在性质上有明显的不同,发生不少同属不同种的物种替代。参考资料:

我来试试,首先,你们的是什么学校,第二,是哪一类的植物,这个范围似乎太大了,第三、分数能否增加些啊,呵呵。当你补充之后,我肯定会跟进的。还有,你题目中,是认种还是引种啊,呵呵

孟德尔遗传规律 - 孟德尔介绍1822年出生于当时奥地利海森道夫地区的一个贫苦农民家庭,他的父亲擅长于园艺技术,在父亲的直接熏陶和影响之下,孟德尔自幼就爱好园艺。1843年,他中学毕业后考入奥尔谬茨大学哲学院继续学习,但因家境贫寒,被迫中途辍学。1843年10月,因生活所迫,他步入奥地利布隆城的一所修道院当修道士。从1851年到1853年,孟德尔在维也纳大学学习了4个学期,系统学习了植物学、动物学、物理学和化学等课程。与此同时,他还受到了从事科学研究的良好训练,这些都为他后来从事植物杂交的科学研究奠定了坚实的理论基础。1854年孟德尔回到家乡,继续在修道院任职,并利用业余时间开始了长达12年的植物杂交试验。在孟德尔从事的大量植物杂交试验中,以豌豆杂交试验的成绩最为出色。经过整整8年(1856-1864)的不懈努力,终于在1865年发表了《植物杂交试验》的论文,提出了遗传单位是遗传因子(现代遗传学称为基因)的论点,并揭示出遗传学的两个基本规律——分离规律和自由组合规律。这两个重要规律的发现和提出,为遗传学的诞生和发展奠定了坚实的基础,这也正是孟德尔名垂后世的重大科研成果。孟德尔的这篇不朽论文虽然问世了,但令人遗憾的是,由于他那不同于前人的创造性见解,对于他所处的时代显得太超前了,竟然使得他的科学论文在长达35年的时间里,没有引起生物界同行们的注意。直到1900年,他的发现被欧洲三位不同国籍的植物学家在各自的豌豆杂交试验中分别予以证实后,才受到重视和公认,遗传学的研究从此也就很快地发展起来。孟德尔遗传规律 - 孟德尔的分离规律豌豆具有一些稳定的、容易区分的性状,这很符合孟德尔的试验要求。所谓性状,即指生物体的形态、结构和生理、生 化等特性的总称。在他的杂交试验中,孟德尔全神贯注地研究了7对相对性状的遗传规律。所谓相对性状,即指同种生物同一性状的不同表现类型,如豌豆花色有红花与白花之分,种子形状有圆粒与皱粒之分等等。为了方便和有利于分析研究起见,他首先只针对一对相对性状的传递情况进行研究,然后再观察多对相对性状在一起的传递情况。这种分析方法是孟德尔获得成功的一个重要原因。显性性状与隐性性状大家知道,孟德尔的论文的醒目标题是《植物杂交试验》,因此他所从事试验的方法,主要是“杂交试验法”。他用纯种的高茎豌豆与矮茎豌豆作亲本(亲本以P表示),在它们的不同植株间进行异花传粉。如图2-4所示高茎豌豆与矮茎豌豆异花传粉的示意图。结果发现,无论是以高茎作母本,矮茎作父本,还是以高茎作父本,矮茎作母本(即无论是正交还是反交),它们杂交得到的第一代植株(简称“子一代”,以F1表示)都表现为高茎。也就是说,就这一对相对性状而言,F1植株的性状只能表现出双亲中的一个亲本的性状——高茎,而另一亲本的性状——矮茎,则在F1中完全没有得到表现。又如,纯种的红花豌豆和白花豌豆进行杂交试验时,无论是正交还是反交,F1植株全都是红花豌豆。正因为如此,孟德尔就把在这一对性状中,F1能够表现出来的性状,如高茎、红花,叫做显性性状,而把F1未能表现出来的性状,如矮茎、白花,叫做隐性性状。孟德尔在豌豆的其他5对相对性状的杂交试验中,都得到了同样的试验结果,即都有易于区别的显性性状和隐性性状。分离现象及分离比在上述的孟德尔杂交试验中,由于在杂种F1时只表现出相对性状中的一个性状——显性性状,那么,相对性状中的另一个性状——隐性性状,是不是就此消失了呢?能否表现出来呢?带着这样的疑问,孟德尔继续着自己的杂交试验工作。孟德尔让上述F1的高茎豌豆自花授粉,然后把所结出的F2豌豆种子于次年再播种下去,得到杂种F2的豌豆植株,结果出现了两种类型:一种是高茎的豌豆(显性性状),一种是矮茎的豌豆(隐性性状),即:一对相对性状的两种不同表现形式——高茎和矮茎性状都表现出来了。孟德尔的疑问解除了,并把这种现象称为分离现象。不仅如此,孟德尔还从F2的高、矮茎豌豆的数字统计中发现:在1064株豌豆中,高茎的有787株,矮茎的有277株,两者数目之比,近似于3∶1。孟德尔以同样的试验方法,又进行了红花豌豆的F1自花授粉。在杂种F2的豌豆植株中,同样也出现了两种类型:一种是红花豌豆(显性性状),另一种是白花豌豆(隐性性状)。对此进行数字统计结果表明,在929株豌豆中,红花豌豆有705株,白花豌豆有224株,二者之比同样接近于3∶1。孟德尔还分别对其他5对相对性状作了同样的杂交试验,其结果也都是如此。我们概括上述孟德尔的杂交试验结果,至少有三点值得注意:(1)F1的全部植株,都只表现某一亲本的性状(显性性状),而另一亲本的性状,则被暂时遮盖而未表现(隐性性状)。2)在F2里,杂交亲本的相对性状——显性性状和隐性性状又都表现出来了,这就是性状分离现象。由此可见,隐性性状在F1里并没有消失,只是暂时被遮盖而未能得以表现罢了。(3)在F2的群体中,具有显性性状的植株数与具有隐性性状的植株数,常常表现出一定的分离比,其比值近似于3∶1。对性状分离现象的解释孟德尔对上述7个豌豆杂交试验结果中所反映出来的、值得注意的三个有规律的现象感到吃惊。事实上,他已认识到,这绝对不是某种偶然的巧合,而是一种遗传上的普遍规律,但对于3∶1的性状分离比,他仍感到困惑不解。经过一番创造性思维后,终于茅塞顿开,提出了遗传因子的分离假说,其主要内容可归纳为:(1)生物性状的遗传由遗传因子决定(遗传因子后来被称为基因)(2)遗传因子在体细胞内成对存在,其中一个成员来自父本,另一个成员来自母本,二者分别由精卵细胞带入。在形成配子时,成对的遗传因子又彼此分离,并且各自进入到一个配子中。这样,在每一个配子中,就只含有成对遗传因子中的一个成员,这个成员也许来自父本,也许来自母本。3)在杂种F1的体细胞中,两个遗传因子的成员不同,它们之间是处在各自独立、互不干涉的状态之中,但二者对性状发育所起的作用却表现出明显的差异,即一方对另一方起了决定性的作用,因而有显性因子和隐性因子之分,随之而来的也就有了显性性状与隐性性状之分。4)杂种F1所产生的不同类型的配子,其数目相等,而雌雄配子的结合又是随机的,即各种不同类型的雌配子与雄配子的结合机会均等。为了更好地证明分离现象,下面用一对遗传因子的图解来说明孟德尔的豌豆杂交试验及其假说,如图2-5所示。我们用大写字母D代表决定高茎豌豆的显性遗传因子,用小写字母d代表矮茎豌豆的隐性遗传因子。在生物的体细胞内,遗传因子是成对存在的,因此,在纯种高茎豌豆的体细胞内含有一对决定高茎性状的显性遗传因子DD,在纯种矮茎豌豆的体细胞内含有一对决定矮茎性状的隐性遗传因子dd。杂交产生的F1的体细胞中,D和d结合成Dd,由于D(高茎)对d(矮茎)是显性,故F1植株全部为高茎豌豆。当F1进行减数分裂时,其成对的遗传因子D和d又得彼此分离,最终产生了两种不同类型的配子。一种是含有遗传因子D的配子,另一种是含有遗传因子d的配子,而且两种配子在数量上相等,各占1/2。因此,上述两种雌雄配子的结合便产生了三种组合:DD、Dd和dd,它们之间的比接近于1∶2∶1,而在性状表现上则接近于3(高)∶1(矮)。因此,孟德尔的遗传因子假说,使得豌豆杂交试验所得到的相似结果有了科学的、圆满的解释。基因型与表现型我们已经看到,在上述一对遗传因子的遗传分析中,遗传下来的和最终表现出来的并不完全是一回事,如当遗传结构为DD型时,其表现出来的性状是高茎豌豆,而遗传结构为Dd型时,其表现出来的也是高茎豌豆。像这样,生物个体所表现出来的外形特征和生理特性叫做表现型,如高茎与矮茎,红花与白花;而生物个体或其某一性状的遗传基础,则被称为基因型,如高茎豌豆的基因型有DD和Dd两种,而矮茎豌豆的基因型只有dd一种。由相同遗传因子的配子结合成的合子发育而成的个体叫做纯合体,如DD和dd的植株;凡是由不同遗传因子的配子结合成的合子发育而成的个体则称为杂合体,如Dd。基因型是生物个体内部的遗传物质结构,因此,生物个体的基因型在很大程度上决定了生物个体的表现型。例如,含有显性遗传因子D的豌豆植株(DD和Dd)都表现为高茎,无显性遗传因子的豌豆植株(dd)都表现为矮茎。由此可见,基因型是性状表现的内在因素,而表现型则是基因型的表现形式。由以上分析我们还可知道,表现型相同,基因型却并不一定相同。例如,DD和Dd的表现型都是高茎,但其基因型并不相同,并且它们的下一代有差别:DD的下一代都是高茎的,而Dd的下一代则有分离现象——既有高茎,也有矮茎。分离规律的验证前面讲到孟德尔对分离现象的解释,仅仅建立在一种假说基础之上,他本人也十分清楚这一点。假说毕竟只是假说,不能用来代替真理,要使这个假说上升为科学真理,单凭其能清楚地解释他所得到的试验结果,那是远远不够的,还必须用实验的方法进行验证这一假说。下面介绍孟德尔设计的第一种验证方法,也是他用得最多的测交法。测交就是让杂种子一代与隐性类型相交,用来测定F1的基因型。按照孟德尔对分离现象的解释,杂种子一代F1(Dd)一定会产生带有遗传因子D和d的两种配子,并且两者的数目相等;而隐性类型(dd)只能产生一种带有隐性遗传因子d的配子,这种配子不会遮盖F1中遗传因子的作用。所以,测交产生的后代应当一半是高茎(Dd)的,一半是矮茎(dd)的,即两种性状之比为1∶1。孟德尔用子一代高茎豌豆(Dd)与矮茎豌豆(dd)相交,得到的后代共64株,其中高茎的30株,矮茎的34株,即性状分离比接近1∶1,实验结果符合预先设想。对其他几对相对性状的测交试验,也无一例外地得到了近似于1∶1的分离比。孟德尔的测交结果,雄辩地证明了他自己提出的遗传因子分离假说是正确的,是完全建立在科学的基础上的。分离规律的实质孟德尔提出的遗传因子的分离假说,用他自己所设计的测交等一系列试验,已经得到了充分的验证,亦被后人无数次的试验所证实,现已被世人所公认,并被尊称为孟德尔的分离规律。那么,孟德尔分离规律的实质是什么呢?这可以用一句话来概括,那就是:杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代,这就是孟德尔的分离规律。孟德尔遗传规律 - 孟德尔的自由组合规律孟德尔在揭示了由一对遗传因子(或一对等位基因)控制的一对相对性状杂交的遗传规律——分离规律之后,这位才思敏捷的科学工作者,又接连进行了两对、三对甚至更多对相对性状杂交的遗传试验,进而又发现了第二条重要的遗传学规律,即自由组合规律,也有人称它为独立分配规律。这里我们仅介绍他所进行的两对相对性状的杂交试验。杂交试验现象的观察孟德尔在进行两对相对性状的杂交试验时,仍以豌豆为材料。他选取了具有两对相对性状差异的纯合体作为亲本进行杂交,一个亲本是结黄色圆形种子(简称黄色圆粒),另一亲本是结绿色皱形种子(简称绿色皱粒),无论是正交还是反交,所得到的F1全都是黄色圆形种子。由此可知,豌豆的黄色对绿色是显性,圆粒对皱粒是显性,所以F1的豌豆呈现黄色圆粒性状。如果把F1的种子播下去,让它们的植株进行自花授粉(自交),则在F2中出现了明显的形状分离和自由组合现象。在共计得到的556粒F2种子中,有四种不同的表现类型如果以数量最少的绿色皱形种子32粒作为比例数1,那么F2的四种表现型的数字比例大约为9∶3∶3∶1。如图2-7所示豌豆种子两对相对性状的遗传实验。从以上豌豆杂交试验结果看出,在F2所出现的四种类型中,有两种是亲本原有的性状组合,即黄色圆形种子和绿色皱形种子,还有两种不同于亲本类型的新组合,即黄色皱形种子和绿色圆形种子,其结果显示出不同相对性状之间的自由组合。杂交试验结果的分析孟德尔在杂交试验的分析研究中发现,如果单就其中的一对相对性状而言,那么,其杂交后代的显、隐性性状之比仍然符合3∶1的近似比值。以上性状分离比的实际情况充分表明,这两对相对性状的遗传,分别是由两对遗传因子控制着,其传递方式依然符合于分离规律。此外,它还表明了一对相对性状的分离与另一对相对性状的分离无关,二者在遗传上是彼此独立的。如果把这两对相对性状联系在一起进行考虑,那么,这个F2表现型的分离比,应该是它们各自F2表现型分离比(3∶1)的乘积:这也表明,控制黄、绿和圆、皱两对相对性状的两对等位基因,既能彼此分离,又能自由组合。自由组合现象的解释那么,对上述遗传现象,又该如何解释呢?孟德尔根据上述杂交试验的结果,提出了不同对的遗传因子在形成配子中自由组合的理论。因为最初选用的一个亲本——黄色圆形的豌豆是纯合子,其基因型为YYRR,在这里,Y代表黄色,R代表圆形,由于它们都是显性,故用大写字母表示。而选用的另一亲本——绿色皱形豌豆也是纯合子,其基因型为yyrr,这里y代表绿色,r代表皱形,由于它们都是隐性,所以用小写字母来表示。由于这两个亲本都是纯合体二者杂交,YR配子与yr配子结合,所得后代F1的基因型全为YyRr,即全为杂合体。由于基因间的显隐性关系,所以F1的表现型全为黄色圆形种子。杂合的F1在形成配子时,根据分离规律,即Y与y分离,R与r分离,然后每对基因中的一个成员各自进入到下一个配子中,这样,在分离了的各对基因成员之间,便会出现随机的自由组合,即:(1) Y与R组合成YR;(2)Y与r组合成Yr;(3)y与R组合成yR;(4)y与r组合成yr。由于它们彼此间相互组合的机会均等,因此杂种F1(YyRr)能够产生四种不同类型、相等数量的配子。当杂种F1自交时,这四种不同类型的雌雄配子随机结合,便在F2中产生16种组合中的9种基因型合子。由于显隐性基因的存在,这9种基因型只能有四种表现型,即:黄色圆形、黄色皱形、绿色圆形、绿色皱形。如图2-8所示它们之间的比例为9∶3∶3∶1。这就是孟德尔当时提出的遗传因子自由组合假说,这个假说圆满地解释了他观察到的试验结果。事实上,这也是一个普遍存在的最基本的遗传定律,这就是孟德尔发现的第二个遗传定律——自由组合规律,也有人称它为独立分配规律。自由组合规律的验证与分离规律相类似,要将自由组合规律由假说上升为真理,同样也需要科学试验的验证。孟德尔为了证实具有两对相对性状的F1杂种,确实产生了四种数目相等的不同配子,他同样采用了测交法来验证。把F1杂种与双隐性亲本进行杂交,由于双隐性亲本只能产生一种含有两个隐性基因的配子(yr),所以测交所产生的后代,不仅能表现出杂种配子的类型,而且还能反映出各种类型配子的比数。换句话说,当F1杂种与双隐性亲本测交后,如能产生四种不同类型的后代,而且比数相等,那么,就证实了F1杂种在形成配子时,其基因就是按照自由组合的规律彼此结合的。实际测交的结果,无论是正交还是反交,都得到了四种数目相近的不同类型的后代,其比数为1∶1∶1∶1,与预期的结果完全符合。这就证实了雌雄杂种F1在形成配子时,确实产生了四种数目相等的配子,从而验证了自由组合规律的正确性。自由组合规律的实质根据前面所讲的可以知道,具有两对(或更多对)相对性状的亲本进行杂交,在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这就是自由组合规律的实质。也就是说,一对等位基因与另一对等位基因的分离与组合互不干扰,各自独立地分配到配子中。孟德尔遗传规律 - 孟德尔遗传规律在理论和实践上的意义孟德尔的分离规律和自由组合规律是遗传学中最基本、最重要的规律,后来发现的许多遗传学规律都是在它们的基础上产生并建立起来的,它犹如一盏明灯,照亮了近代遗传学发展的前途。理论应用 从理论上讲,自由组合规律为解释自然界生物的多样性提供了重要的理论依据。大家知道,导致生物发生变异的原因固然很多,但是,基因的自由组合却是出现生物性状多样性的重要原因。比如说,一对具有20对等位基因(这20对等位基因分别位于20对同源染色体上)的生物进行杂交,F2可能出现的表现型就有220=1048576种。这可以说明现在世界生物种类为何如此繁多。当然,生物种类多样性的原因还包括基因突变和染色体变异,这在后面还要讲到。分离规律还可帮助我们更好地理解为什么近亲不能结婚的原因。由于有些遗传疾病是由隐性遗传因子控制的,这些遗传病在通常情况下很少会出现,但是在近亲结婚(如表兄妹结婚)的情况下,他们有可能从共同的祖先那里继承相同的致病基因,从而使后代出现病症的机会大大增加。因此,近亲结婚必须禁止,这在我国婚姻法中已有明文规定。实践应用孟德尔遗传规律在实践中的一个重要应用就是在植物的杂交育种上。在杂交育种的实践中,可以有目的地将两个或多个品种的优良性状结合在一起,再经过自交,不断进行纯化和选择,从而得到一种符合理想要求的新品种。比方说,有这样两个品种的番茄:一个是抗病、黄果肉品种,另一个是易感病、红果肉品种,现在需要培育出一个既能稳定遗传,又能抗病,而且还是红果肉的新品种。你就可以让这两个品种的番茄进行杂交,在F2中就会出现既抗病又是红果肉的新型品种。用它作种子繁殖下去,经过选择和培育,就可以得到你所需要的能稳定遗传的番茄新品种。为本词条添加视频和组图相关影像被引用:本词条已被如下媒体引用 我来补充

植物遗传育种相关论文5000字

(1)单倍体育种单倍体植株往往不能结实,在培养中用秋水仙素处理,可使染色体加倍,成为纯合二倍体植株,这种培养技术在育种上的应用称为单倍体育种。单倍体育种具有高速、高效率、基因型一次纯合等优点,因此,通过花药或花粉培养的单倍体育种,已经作为一种崭新的育种手段问世,并已开始育成大面积种植的作物新品种。在单倍体育种方面,我国科学家做出了突出贡献。1974年就育成了世界上第一个作物新品种--单育1号烟草品种。随后又育成了中花8号水稻和京花1号、京单92-2097小麦等面积栽培的作物新品种,还获得了多种作物的大量花培新品系。河南省在花培育种方面卓有成效,培育出了花培28、花配 2321、峡麦1号、豫麦1号、豫麦37号、花9、花特早、豫麦60号等优良品种(系),已累计推广700多万亩,在全国名列前茅。   (2)胚胎培养在植物种间杂交或远缘杂交中,杂交不孕给远缘杂交带来了许多困难。而采用胚的早期离体培养可以使胚正常发育并成功地培养出杂交后代,可以通过无性系繁殖获得数量较多、性状一致的群体,胚培养已在50多个科属中获得成功。远缘杂交中,可把未受精的胚珠分离出来,在试管内用异种花粉在胚珠上萌发受精,产生的杂种胚在试管中发育成完整植株,此法称为“试管受精”。用胚乳培养可以获得三倍体植株,为诱导形成三倍体植物开辟了一条新途径。三倍体加倍后可得到六倍体,可育成多倍体新品种。  (3)细胞融合通过原生质体融合,可部分克服有性杂交不亲和性,而获得体细胞杂种,从而创造新种或育成优良品种,这是组织培养应用最诱人的一个方面,目前已获得40余个种间、属间、甚至科间的体细胞杂种、愈伤组织,有些还进而分化成苗。目前,采用原生质体融合技术已经能从不杂交的植物中如番茄和马铃薯、烟草和龙葵、芥菜等获得属间杂种,但这些杂种尚无实际应用价值。随着原生质体融合、选择、培养技术的不断成熟和发展,今后可望获得更多有一定应用价值的经济作物体细胞杂种及新品种。  (4)基因工程用基因工程的方法,把目标基因切割下来并通过载体使外来基因整合进植物的基因组是完全有可能的,这项研究如果获得成功,将克服作物育种中的盲目性,而变成按人们的需要操纵作物的遗传变异,育成优良品种,目前这项研究刚刚起步,加上植物的遗传背景比原核生物更为复杂,因此,要用基因工程实现作物改良,以增加产量和改善品质,将是21世纪需要解决的一个问题。  (5)培养细胞突变体无论是愈伤组织培养还是细胞培养,培养细胞均处在不断分生状态,容易受培养条件和外界压力(如射线、化学物质等)的影响而产生诱变,从中可以筛选出对人们有用的突变体,从而育成新品种。尤其对原来诱发突变较为困难、突变率较低的一些性状,用细胞培养进行诱发、筛选和鉴定时,处理细胞数远远多于处理个体数,因此一些突变率极低的性状有可能从中选择出来。例如植物抗病虫性、抗寒、耐盐、抗除草剂毒性、生理生化变异等的诱发,为进一步筛选和选育提供了丰富的变异材料。目前,用这种方法已筛选到抗病、抗盐、高赖氨酸、高蛋白、矮秆高产的突变体,有些已用于生产。

遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础?遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 1遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 2、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 3、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 4、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 5、基因表达的调控(了解操纵子学说) 6、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。

  • 索引序列
  • 植物遗传育种相关论文题目
  • 植物遗传育种相关论文
  • 植物遗传育种相关论文选题
  • 植物遗传育种相关论文范文
  • 植物遗传育种相关论文5000字
  • 返回顶部