首页 > 论文期刊知识库 > 红外热成像论文

红外热成像论文

发布时间:

红外热成像论文

多少字不难的资料多是

通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,为工作和研究提供判断依据。我们常用的热像仪属于被动热像测试,很安全。红外线根据大气窗口,分为近红外、短波红外、中波红外、长波红外。长波红外可以透过空气观测,不能透过墙壁和玻璃观测,并且具有全天候成像、非接触测温、透烟雾观测的优势。如果想要了解更多红外热像仪相关的原理、产品和案例介绍,或者想要工程师免费上门演示,可以找上海热像科技股份有限公司,旗下品牌“FOTRIC 飞础科”。FOTRIC十年专注于红外热成像专业测温领域并持续创新,手持式、在线式、体温筛查型等产品线一应俱全,100+丰富产品型号供选择,具有1000+各种细分行业的丰富应用案例。该公司是一家高新技术企业,总部位于中国上海,同时在北京、无锡、南京、济南、西安设有办事处,在北美、欧洲、韩国、新加坡、澳大利亚等三十多个国家和地区设有分销商,已通过了国际ISO:9001质量体系认证、美国FCC认证、欧洲CE认证。同时公司致力于热像技术的智能化创新,产品被广泛应用在电力、工业、钢铁、石化、电子、科研等行业,得到国家电网、中石化、宝钢、华能、华电、上汽等10000+工业客户的认可,实力厂家值得信赖。

自然界中只要高于绝对零度(-273℃)的物体,都会不断向外辐射红外线。红外热成像原理简单来说,就是利用温度成像,将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。红外热成像具有不受可见光影响、可24小时清晰成像、非接触测温、穿烟透雾等优势,在人体测温、工业测温、安防消防、自动驾驶、户外夜视等领域具有重要应用。

物体表面温度如果超过绝对零度即会辐射出电磁波,随着温度变化,电磁波的辐射强度与波长分布特性也随之改变,波长介于75μm到1μm间的电磁波称为“红外线”,而人类视觉可见的“可见光”介于4μm到75μm。其中波长为78~0微米的部分称为近红外,波长为0~1000微米的部分称为热红外线。红外线在地表传送时,会受到大气组成物质( 特别是H2O、CO2、CH4 、N2O、O3等)的吸收,强度明显下降,仅在短波3μ~5μm及长波8~12μm的两个波段有较好的穿透率(Transmission),通称大气窗口(Atmospheric window),大部份的红外热像仪就是针对这两个波段进行检测,计算并显示物体的表面温度分布。此外,由于红外线对极大部份的固体及液体物质的穿透能力极差,因此红外热成像检测是以测量物体表面的红外线辐射能量为主。照相机成像得到照片,电视摄像机成像得到电视图像,都是可见光成像。自然界中,一切物体都可以辐射红外线,因此利用探测仪测定目标的本身和背景之间的红外线差并可以得到不同的红外图像,热红外线形成的图像称为热图。

红外热成像系统论文

多少字不难的资料多是

由于黑体辐射的存在,任何物体都依据温度的不同对外进行电磁波辐射。波长为0~1000微米的部分称为热红外线。热红外成像通过对热红外敏感CCD对物体进行成像,能反映出物体表面的温度场。热红外在军事、工业、汽车辅助驾驶、医学领域都有广泛的应用。红外热成像原理并不神秘,从物理学原理分析,人体就是一个自然的生物红外辐射源,能够不断向周围发射和吸收红外辐射。正常人体的温度分布具有一定的稳定性和特征性,机体各部位温度不同,形成了不同的热场。当人体某处发生疾病或功能改变时,该处血流量会相应发生变化,导致人体局部温度改变,表现为温度偏高或偏低。根据这一原理,通过热成像系统采集人体红外辐射,并转换为数字信号,形成伪色彩热图,利用专用分析软件,经专业医师对热图分析,判断出人体病灶的部位、疾病的性质和病变的程度,为临床诊断提供可靠依据。黑体辐射热红外成像应用军事应用工业应用车载夜视医学应用

如果满意再追加100分。 2009-03-22 19:31可以再充分点吗?谢谢了

红外成像论文

使用经验 三大数码照片格式 数码相机三大存储格式就是RAW、TIFF和JPEG,了解这三种格式的特点您才能够在拍摄时正确地选择存储格式。 首先是高级数码相机支持的RAW图像格式,这是一种将数码相机感光元件成像后的图像数据直接存储的格式,不经过压缩也不会损伤数码照片的质量,而且由于存储的是感光元件的原始图像数据,以后您还可以对图像的正负两级的曝光调整、色阶曲线、白平衡、锐利度等参数进行调整;缺点是RAW需要特殊的软件来处理,同时在拍摄时,数码相机的液晶屏幕上只能看到RAW文件的专门为预览提供的JPEG副本,而且为了避免浪费存储空间,这个副本的压缩比大,图像质量比较差。这也是部分数码相机用户误以为RAW格式的效果比JPEG还差的原因。 如果拍摄的数码照片是用于印刷出版,那么只有RAW和采用无损压缩格式的TIFF格式的照片的效果会比较理想。TIFF格式是目前大部分数码相机都支持的格式,其优点是质量好而且兼容性比RAW高,不会受到处理软件的限制,但TIFF格式的缺点也非常明显,那就是图像的文件大而且在存储时也需要更多的时间。 JPEG是三种格式中“体积”最小的,如果您追求更快的存储速度和更高的软件兼容性,那么JPEG是最好的选择。但需要注意,JPEG是一种有损压缩格式,也就是它在压缩的过程中丢掉了原始图像的部分数据,而且这些数据是无法恢复的。 使用了数码变焦拍摄并存储为JPEG格式的照片,数码变焦的效果优于后期电脑软件的插值放大效果,而对于无损的TIFF或RAW格式图像而言,后期软件处理比数码变焦的效果要好一些。 使用经验 正确使用RAW格式 高级数码相机支持使用RAW图像格式,但是不少用户都不太明白应该怎么去使用它。这种原始图像数据存储格式类似传统相机的数字底片,是专业摄影师的首选格式。如果您也想使用单反数码相机代替专业传统胶片相机,那么您也会需要这种能够最大限度地保留了成像时的各项细节和数据的图像格式。 但要使用这种图像格式,需要专门的图像处理工具软件,RAW文件是CCD或CMOS感光部件在拍摄时所记录下的原始数据文件,是以一组8位或10位的二进制数据记录的数据,只反映照射到感光单元上光线的强度,本身并不包含色彩等直观的图像信息,而且它是和硬件密切相关的,不知道CCD或CMOS的感光单元行列排布、滤色镜排列等物理参数就无法将它转换成图像,所以处理RAW文件的图像处理工具还需要支持您的数码相机。 一般情况下,推荐您首选数码相机厂商附送的软件,例如,如果您使用佳能公司的EOS 10D数码相机,可以选择该公司附送的RAW文件浏览器“File Viewer Utility”,这样就可以在电脑上浏览拍摄的照片,查看所有相关的相机设置。更为重要的是,它可以让您调整RAW格式的图像,包括正负两级的曝光调整、色阶曲线、白平衡、锐度等参数。 另外,您也可以考虑使用Photoshop的数码相机RAW插件,该插件支持佳能、富士等多家数码相机厂商的数码相机。 使用经验 恢复误删的数码照片 使用数码相机时,我们将数码照片存储在存储媒介上,常见的存储媒介有CF、SM、SD卡和记忆棒等。另外,我们还会将数码照片拷贝到电脑上,有时因为主观或者客观的种种原因,会出现误操作而将有用的照片或者其他数据文件误删除。此时,您大可不必捶胸顿足,无论是存储在存储卡上的还是拷贝到硬盘上的数码照片,误删除后大部分情况下都是可以恢复的。 对于电脑上被误删除的数据可以恢复这一点,相信大多数比较熟悉电脑的用户都没有异议,但大部分用户都误以为存储卡上的数据是不一样的。实际上,数码相机都是遵循DCIM标准的,存储卡上的数据存储格式和操作方式都和电脑操作磁盘数据时一样。所以,基于磁盘等磁介质的数据恢复原理,从理论上讲,存储卡上的数码照片和已经拷贝到电脑上的数码照片一样,不但是可以恢复的,而且是很容易实现的。使用电脑上常用的数据恢复软件,例如Easy Recovery、Get Data Back、Final Data、R-Studio等,都可以轻易地恢复存储卡上的数码照片。 使用经验 拍摄时分辨率的影响 分辨率越大,图像的精度越高,尽量使用高分辨率进行拍摄是许多数码相机用户的一种错误的认识。理论上讲,高分辨率可以获得高精度的图像,但数码照片要以图像文件的形式记录,随着分辨率的提高,图像文件也将增大,数码相机处理图像的时间随之增多。所以使用的分辨率越高,拍摄时需要的处理时间越多,拍摄时需要占用的存储空间也越大。使用数码相机拍摄时存储器件的容量是有限的,使用的分辨率越高所能拍摄的张数自然也就越少。另外,由于处理的时间长,在抓拍时使用过高的分辨率将有可能错过精彩的镜头。 即使您不在意存储空间的浪费和处理时间的增加,分辨率的选择也应当以够用为限,否则当您做后期处理时,您会发现,用较高分辨率拍摄的图像利用软件缩小成低分辨率,与用较低分辨率直接拍摄的图像视觉效果几乎相同,而且后者的图像锐度似乎还会更好一些。 使用经验 拍摄时分辨率的选择 目前,大多数数码相机都有几级分辨率可供选择,如何决定应该选择多大的拍摄分辨率呢?拍摄后的图像用途是影响需要选择哪一级别分辨率进行拍摄的主要原因。如果数码照片只是用于网页制作上,那么不需要太高的分辨率,如果只是在显示器上显示用,必须记住,图像像素和显示器显示设置存在相互对应的关系。所以若想让图像全屏显示到标准640×480像素的显示屏上,那么您需要的仅仅是一幅640×480像素的图像。如果屏幕显示设置为1280×960像素,那么640×480像素的图像只会占到屏幕的一半空间。不需要考虑每英寸的像素数目,显示器仅仅在意水平和垂直像素的数目。 如果您的数码照片将用于打印输出,那么您需要记住,屏幕显示和打印、印刷输出是两回事,您需要了解两个词汇并记住它们之间的关系,图像分辨率是描述图像的总像素数(PPI)的,以PPI为单位。而决定图像输出质量的是图像的输出分辨率,描述的是设备输出图像时每英寸可产生的点数(DPI),以DPI为单位。两者有联系但并不相等,“图像分辨率÷输出分辨率=图像输出尺寸”。以杂志印刷为例,输出分辨率最低要求为300 DPI,16开满版图片也就需要约3200×2400的分辨率。 使用经验 冲印尺寸与拍摄参数 目前数码冲印系统可以为您提供小至1寸,大至16寸的10种不同规格的冲印服务,不同规格的冲印尺寸对数码照片有不同的要求。 要得到好的照片,数码相机的有效像素最好在300万以上,同时,拍摄的数码照片分辨率也有一定要求。一般情况下,在数码冲印时有一个简单的计算方法,可以计算多大分辨率的数码照片合适冲印多大的照片,分辨率为1600×1200的数码照片,通过1600÷250 = 4四舍五入后为6的计算方法,计算出合适的冲印照片尺寸是6寸,那么您可以将6乘以250,就可以得出选择1600×1200的分辨率是比较合适的。 要注意,不同数码相机的选择方法是不同的,大部分数码相机提供了比较详细的分辨率选项,但有的则只提供Large、Medium、Low三级选择,此时您需要参照数码相机的说明书等资料了解对应的分辨率大小。 使用经验 白平衡的使用 在数码摄影中,要达到准确的色彩还原,解决相机不能正确识别各种不同性质的光源颜色的问题,必须正确设置白平衡。 各厂家的数码相机既有自动进行白平衡的,也有手动进行的。自动白平衡虽然方便,但准确度有限,所以,现在的数码相机除了自动白平衡之外,还有日光、阴天、白炽灯、日光灯等多种预定义的白平衡。但即使如此,现实生活中光线条件是多种多样的,不同的数码相机,预定义的白平衡和自动白平衡的修正能力也是有限的。另外,在使用自动白平衡时还容易由于前一个景物的颜色特别偏向某一种颜色,引起之后的照片都偏向某一种色的问题。 因此,在选购时,您最好选择具有手动白平衡功能的数码相机,给自己留下更多的调整空间。仔细观察,反复揣摩,熟练地使用白平衡功能将会拍摄出更优美的照片,给您带来意想不到的乐趣。 不要太过于局限于专家或者传统的使用方法,例如佳能G2数码相机的用户大多按WB按钮切换到白平衡设置,选择最后一项的手动设置然后将镜头对着大面积的纯白色对象按下“*”按钮来设置白平衡。但事实上,我们可以按实际的需要进行设置,例如反向利用白平衡功能,这样不仅能够把晚霞拍摄得更红,而且还可以拍摄出像专业照片那样的摄影效果。 使用经验 测光方式的选择 几乎目前所有的数码相机都采用TTL测光方式经过镜头来测光。透过镜头测光的好处是能够直接反射所见景物光线的大小,也就是光线经于镜头投射在感光元件上,感光元件再将光信号传送给数码相机的处理芯片作分析。另外,部分半专业或者专业数码相机还提供多种测光方式供用户选择,在选择测光方式时,您首先要弄明白这些测光方式的特点。 目前,数码相机的测光方式有许多种,但实际上,可以将它们划分为平均测光、中央重点测光和点测光几种。 平均测光就是把画面的所有光线强度的平均值作为测光数值,其特点是不考虑画面主体,对于光照比较平均的画面,测光比较准确,适合于光照均匀,没有强烈反差对比的场合。平均测光有多种数据采集和计算方法,例如佳能的“分区评价测光”方式,将画面分割成35部分作评价测光,实际上这也是平均测光的一种,但是能令计算结果更趋合理。 中央重点测光是将画面中心及附近的画面按不同的加权系数进行计算得出的值作为测光数值,以中心的权数为最大,越接近画面边缘,权数越小。这是一种中庸的测光方式,既照顾到取景范围内整体的亮度,又考虑到摄影时的主体一般位于中央区域,适合主体比较突出又需要兼顾背景的场合。 点测光是比较专业的测光方式,取画面中心占1%的面积作为测光区域。这是一种比较极端的测光方式,适合于光线复杂或光比强烈需要突出主体的场合,营造特殊艺术效果。 使用经验 感光度的设定 ISO(International Standards Organization)是制定工业标准的国际标准组织的简称。胶片相机工业标准中,ISO标准衡量胶片对光线敏感程度,数值越低,胶片的曝光感应速度越慢。 数码相机中同样也采用ISO标准来衡量感光部件对光线的敏感程度,数值越大,感光部件越敏感。在传统相机中,您可以按需要的拍摄效果使用不同ISO标准的胶片来利用其不同的曝光感应速度。在数码相机中,您也可以通过调整ISO数值来设定改变感光部件的敏感程度。 在数码相机上提高ISO数值也就是提高感光度,由于感光度的提高,数码相机的快门速度会比较快,拍摄起来也比较容易。但是需要注意,因此也会产生一些不良的影响,例如,因为感光部件感光不足而使光信号转换为电信号后的电流强度减弱,照片的阴暗部分或者单色区域噪声色斑现象会比较明显。如果您希望获得画面干净利索的照片,那么您或者可以考虑采用低ISO数值来拍摄。不过,不同的相机感光度的设定还需要您自己实际去体验,建议您在还没有了解相机的特性时,在拍摄时一级一级地升高感光度来进行测试。 使用经验 快门的控制技巧 在摄影技术中,拍摄影像的最原始的质量来源于对曝光的控制。数码相机与传统相机一样,通过光圈和快门控制允许光线照射到感光元件或胶片上的量。其中,快门决定了拍摄影像的时间,其打开的时间就是根据设定的快门速度决定的。 通常,相机的快门速度范围有4秒、2秒、1秒等多种。控制快门的技巧首先是要注意安全快门的时间,如果在快门打开期间,相机因不稳而产生晃动,则拍摄所得的影像就会变得模糊不清。这就是为什么在拍摄时要保持机身的稳定,也正是为什么快门速度过慢更容易使影像模糊的原因。因此,一般情况下,选择的快门速度要比安全快门速度快,安全快门=1/镜头的焦距。例如,镜头的焦距是50mm,安全快门就是1/50秒,即要选1/60秒以上的快门速度才可避免因拍摄时手部震动而造成影像模糊的问题。 另外,在控制快门时,还需要特别注意快门的时滞问题。所谓快门时滞也就是按下快门和感光元件或胶片成像之间的时间,由于数码相机的快门时滞比传统相机长,只有顶级专业单镜头反光数码相机的快门时滞与传统相机相当,而绝大多数数码相机的时滞都是普通传统相机的2-3倍。如果使用液晶屏取景的话,时滞更加严重,时滞的时间虽然很短,但对于一个运动的物体来说,这便是很长的时间了,对于抓拍摄影,必然会错过最佳时机。而且不同相机的时滞都不同,您需要了解自己的相机,同时做大量的快速反应拍摄练习来避免时滞对您的影响。 使用经验 控制曝光量 不论是传统相机还是数码相机,拍摄时控制曝光量都是影响照片效果的关键。要控制好曝光量,首先要记住快门速度、光圈和ISO感光度三者之间的关系,即快门速度提高一倍,镜头的通光量就会减少一半;光圈每增加一档,和快门速度提高一倍时一样,通光量也会减少一半;ISO感光度增加一倍,通光量即使减半也能够用同样曝光量曝光。 如今大多数数码相机都配备了“曝光补偿”功能,将曝光补偿设置成+1档,就意味着快门速度减慢一半,或者光圈增大一倍。实际上,使用数码相机提供的预设模式时,相机会从光圈和快门速度两方面进行调节,以使通光量翻倍。 一般情况下,可以由相机来测定整个画面的光线亮度,并确定最佳曝光量。但相机的智能是有限的,例如在拍摄雪景等以白色为主的对象时,数码相机本身就会错误地认为光量充足,并自动减小曝光量,这样拍摄到的画面就较暗。而拍摄大面积黑色对象时,相机同样会认为光线不足。 要控制好曝光量,您需要具有曝光补偿的知识,这样才能拍摄到亮度和预想亮度一样的照片。在什么样的情况下,什么程度的补偿最合适,最终还是要由您本人的眼睛来掌握。这里无法给您一个准确的标准,但原则是,对于白色和高亮度区域多的对象应增加曝光补偿,黑色和昏暗的、区域广的对象,应减小曝光补偿。 使用经验 红外线拍摄效果 除了一般的闪光灯外,其他光线也可以应用在摄影技术上,例如,红外线和紫外线等。红外线摄影技术不管是在业余或者是专业领域,都有相当多的讨论和应用。想体验一下,您可以在拍摄时应用大功率的红外线灯照射主体,也可以在其他电子发光装置上装一个红外滤光片,这样,红外线会直接打在主体上再反射回镜头成像,这样就可以实现红外线拍摄效果。但传统摄影必须依赖红外线专用底片,而且底片保存、冲洗与运送都是一件麻烦事,所以一般用户都比较缺乏这方面的经验。但数码相机由于硅材质的感光元件对红外线的波长敏感,拍摄红外线照片会比传统相机简单。 另外,如果您的数码相机配备红外线辅助功能,例如SONY的F717,那么应用红外线摄影时,不仅能在微光的环境下继续操作拍摄生态写真,而且将之应用在风景摄影上也可创造出与众不同的特别效果,并且还可以有透视功能,但红外线的透视能力并不是100%。 使用经验 合理使用闪光灯 闪光灯是非常便捷且适合当作补充光源的一种工具。但一般来说,强调自动化的数码相机并没有太强的闪光灯,充其量是把闪灯功能加以程序化,提供“自动”、“强制”、“防红眼”、“慢速”等设定。 “自动”模式下,相机会自动判断拍摄场景的光线是否充足。如果不足,就会自动在拍摄时打开闪光灯进行闪光,以弥补光线;“防红眼”模式先让闪光灯快速闪烁一次或数次,使人的瞳孔适应之后,再进行主要的闪光与拍摄,避免照片中人眼睛发红的问题;“强制”模式即不管在明亮或弱光的环境中,都开启闪光灯进行闪光,通常用在拍摄背对光源的人物;“慢速”模式会延迟数码相机的快门释放速度,以闪光灯照明前景,配合慢速快门,如1/5秒,为弱光背景曝光,能够拍摄出前后景均得到和谐曝光的照片。 由于数码相机的智能程度有限,在不同设定下,闪光灯产生的效果很难确定,因此,要获得更好的拍摄效果,需要选购带手动功能的外接闪光灯的数码相机,通过人脑决定闪光灯的强度、大小、次数与频率,可以大大地增加摄影适用范围。一般,手动控制闪光灯需要进行大量的实践,因为使用的是数码相机,所以您可以多试拍几张以确定闪光灯的能量。需要注意的是,部分外接闪光灯使用低功率以减少光的输出时,色温会稍高。 使用经验 理解电脑屏幕的差异 使用数码相机的用户大多都会使用电脑对照片进行处理,或者是在电脑上存储、浏览照片。但同时,由于在电脑屏幕上浏览照片的效果与实际输出的照片效果不相同而引起的烦恼也困扰着大部分用户。 实际上,由于设备的不同,产生这种差异是非常正常的,您是否感觉到电脑上所呈现的影像比打印机输出的照片漂亮呢?显示器的分辨率只有72dpi,但显示出的影像却比720dpi甚至1440dpi的打印机结果还要好,其原因就在于,电脑屏幕上输出的色彩采用模拟方式,当影像能以连续色调显示时,就算分辨率不怎么高,影像仍很逼真。但用喷墨或是激光打印机输出时,影像是以墨点来构成的。打印机仅能控制有无墨点,却无法控制其深浅变化。而且印刷采用的分辨率与电子影像的分辨率不同,以目前的技术要让打印机以同样精确的墨滴进行打印是相当困难的。 另外,还有许多类似的问题,例如,照片在数码相机上效果正常,但在电脑屏幕上看时却有点曝光不正常,这是由于数码相机的液晶显示和阴极射线式显示器的差异造成的,和打印机的问题一样是相当正常的。 那么应该如何解决这些问题呢?要解决打印机的问题,首先需要您调整电脑屏幕的颜色,使之显示的颜色能够与打印机的一致,同时学会计算打印输出不同质量的图像时需要的精度(可参考上面介绍的“拍摄时分辨率的选择”)。而数码相机液晶显示的问题比较简单,您只需要使用Photoshop打开图像,使用“图像”菜单“调整”中的“色阶”查看一下,如果色阶平均,则说明照片曝光正常,应该调节显示器亮度,如果色阶右边有空白的区域,则说明照片曝光不足,有了依据您就可以做出调整。 使用经验 保护Exif摄影信息 大部分数码相机都支持在照片上存储Exif摄影信息,这些摄影信息可以帮助我们方便地保存拍摄数据,在欣赏数码照片时,既可以回味拍摄时的感觉,还可以让我们总结拍摄经验,提高摄影水平。通过研读数码照片的摄影信息,比较同一主题的照片所采用的各种不同快门、光圈等相机设置和处理,我们可以更好地掌握拍摄此类照片时最佳的相机设置,从而提高自己的摄影水平。 Exif信息非常有用,但也很容易被破坏。如果您使用Windows XP的图像文件查看功能浏览您的数码照片,照片上的摄影信息将会被破坏。摄影信息就会被破坏,而且这些摄影信息一旦被破坏就无法恢复了。 另外,大部分电脑用户都喜欢使用通用的图像浏览软件(如ACDSee)来浏览数码照片,但是,您需要特别注意的是,如果您使用ACDSee旋转照片或者改变数码照片的分辨率,数码照片的摄影信息也会被更改,因此,在选择和使用管理数码照片的软件时,您需要特别小心。如果您的数码相机厂商随机附赠处理和浏览数码照片的软件,您应该首先选择它们,例如佳能数码相机的ZoomBrowser EX、PhotoStitch等随机附送软件。 维护保养 数码相机固件升级 我们需要不时地对电脑主板BIOS进行升级来获得更稳定的性能,数码相机也一样,通过固件(Firmware)的升级,可以提高系统的性能并改善其功能。数码相机的固件和电脑主板BIOS一样,是烧录在芯片上的。目前,大部分数码相机的固件采用了可擦写芯片,我们只需要利用一个简单的工具软件以及相应的数据,就可以对数码相机的固件进行升级。 以佳能的PowerShot G2为例,您可以首先从佳能公司的网站上查看和下载升级用的固件软件包。解压缩后您就会获得一个“fir”文件,这个文件就是G2的最新固件程序。接下来把这个文件拷贝到您的G2相机的存储卡中。您可以先通过读卡器拷贝文件到存储卡上,然后再将卡插到相机上。也可以用USB数据线把电脑和相机连接起来,将相机的模式转盘选择到播放档,再运行固件升级软件包中的UPLOADFIRMWAREEXE就可以把文件传输到存储卡中。 拷贝文件后,不需要连接电脑,将相机模式转盘保持在播放档,同时确保数码相机有充足的电力支持,可以考虑接上外接电源来保证足够的电能。打开可以在相机上调出播放档的菜单,选择菜单里多出来的“Firm Updated”选项,按下确认键,固件升级就开始执行了。约几十秒后,相机升级完毕,之后会伴随一声清脆的启动声音,液晶显示屏上会出现一个升级成功的提示“Updated already”,重新启动相机,整个固件升级工作就完成了。 维护保养 镜头的清洁技巧 相机镜头是非常精密的部件,其表面做了防反射的涂层处理,一定要注意不能直接用手去摸,因为这样就会粘上油渍及指纹,这对涂层非常有害,而且对数码相机拍摄出来的照片质量影响也很要大。 相机使用后,镜头多多少少也会沾上灰尘,最好的方法是用吹气球吹掉,或者是用软毛刷轻轻刷掉。如果吹不去也刷不掉,那就要使用专用的镜头布或者镜头纸轻轻擦拭,但要记住一个原则,那就是不到万不得已不要擦拭镜头。千万不要用纸巾等看似柔软的纸张来清洁镜头,这些纸张都包含有比较容易刮伤涂层的木质纸浆,一不小心会严重损害相机镜头上的易损涂层。在擦拭之前,要确保表面无可见的灰尘颗粒,以避免灰尘颗粒磨花镜头。擦拭时轻轻地沿着同一个方向擦拭,不要来回反复擦,以避免磨伤镜片。如果这样还是不行,市面上也有相机专用清洗液,但要注意,使用清洗液时,应该将清洗液沾在镜头纸上擦拭镜头,而不能够将清洗液直接滴在镜头上。 另外,绝对不能随便使用其他化学物质擦拭镜头,而且只有在非常必要时才使用清洗液,平时注意盖上镜头盖和使用相机包,以减少清洗的次数,清洗液多少还是会对镜头有害而且有可能带来一些潮湿问题。 维护保养 液晶屏的保护 彩色液晶显示屏是数码相机重要的特色部件,不但价格很贵,而且容易受到损伤,因此在使用过程中需要特别注意保护。首先要注意避免彩色液晶显示屏被硬物刮伤,彩色液晶显示屏的表面有的有保护膜,有的没有,没有保护膜的彩色液晶显示屏非常脆弱,任何刮伤,都会留下痕迹,您可以考虑使用掌上电脑屏幕使用的保护贴纸,这对保护彩色液晶显示屏有一定的作用。 另外,要注意不要让彩色液晶显示屏表面受重物挤压,同时还要特别注意避免高温对彩色液晶显示屏的伤害,随着温度的升高,彩色液晶显示屏会变黑,达到一定的温度后,即使温度降到正常的状态,彩色液晶显示屏也无法恢复。而有些彩色液晶显示屏显示的亮度会随着温度的下降而降低,温度相当低时,液晶显示屏显示的亮度将会很低,一旦温度回升,亮度又将自动恢复正常,这属于正常现象。 此外,彩色液晶显示屏的背后有一个无法从表面看到的灯,如果彩色液晶显示屏显示的影像变暗,或显示的影像上有斑斑点点,或根本就不能显示影像,多半是灯泡老化所致,遇到这种情况,一般只要更换相应的灯泡即可。如果彩色液晶显示屏表面脏了,清洁的方法可以参考清洁镜头的方法,清洁完后,应该用干燥的棉布擦干。 维护保养 存储卡的维护和保养 对于数码摄影而言,存储卡在摄影过程中扮演着相当重要的角色。但是,由于存储卡的使用比较简单,经常会由于用户漫不经心地使用、处理而导致存储卡损坏。 保护存储卡的首要原则是,永远只在数码相机已经关闭的情况下安装和取出存储卡。使用者常犯的错误是,急着要将储存卡从相机中取出,虽然电源已经关闭,但有些相机的储存速度较慢,或是图档较大要花较长的时间,相机也许看起来已经处于停止状态,但事实上,储存动作仍在继续,这时存到一半的档案毁了不说,还可能造成储存卡的永久毁损。因此,建议您关闭相机后等一会儿或注意相机的亮灯完全熄灭后再取出储存卡。 其次,平时不要随意格式化存储卡,在使用相机格式化存储卡时,注意相机是否有足够的电量;在使用电脑格式化存储卡时,注意选择准确的格式。如果您使用Windows XP之类的操作系统,需要注意,系统格式化时,默认的FAT32格式是不正确的,一般数码相机都采用FAT格式。 同时,还需要注意避免在高温、高湿度下使用和存放存储卡,不要将存储卡置于高温和直射阳光下。避免重压、弯曲、掉落、撞击等物理伤害,远离静电、磁场、液体和腐蚀性的物质。在拆卸存储卡时,避免触及存储卡的存储介质。如果长期使用后,存储卡插槽的接触点脏了,导致存储、读取信息的故障,这时您可以使用压缩空气去吹,而千万不要用小的棍棒伸进去擦,否则可能引起更大的问题。 维护保养 电池的使用和保养 数码相机和传统相机不同,数码相机对电力的需求特别大。因此,锂电池和镍氢电池这些可重复使用且电量也较大的电池越来越受到数码相机用户的欢迎。但不论是锂电池还是镍氢电池,各种电池的使用、保存、携带都有很多要注意的地方。 镍氢电池有记忆效应,这种效应会降低电池的总容量和使用时间。随着时间的推移,存储电荷会越来越少,电池也就会消耗得越来越快。因此,应该尽量将电力全部用完再充电。如果使用的?/ca> 参考资料:-10-24/shtml

自然界中除了人眼看得见的光(通常称为可见光),还有紫外线、 红外线等非可见光。自然界中温度高于绝对零度(-273℃)的任何物体,随时都向外辐射出电磁波(红外线),因此红外线是自然界中存在最广泛的电磁波,并且热红外线不会被大气烟云所吸收。随着科技的日新月异,利用红外线这一特性,采用应用电子技术和计算机软件与红外线技术的结合,用来检测和测量热辐射。物体表面对外辐射热量的大小,热敏感传感器获取不同热量差,通过电子技术和软件技术的处理,呈现出明暗或色差各不相同的图像,也就是我们通常说的红外线热成像;将辐射源表面热量通过热辐射算法运算转换后,实现了热像与温度之间的换算。

摘 要图像融合是一门新兴的学术研究方向,多传感器图像融合是指将多元信道所采集的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成统一图像或综合图像特征以供观察或进一步处理。它是一门综合传感器、图像处理、信号处理、计算机视觉和人工智能等技术的现代高新技术。 图像融合工具箱是基于Matlab GUI界面,实现图像融合的可视化人机交互界面。图像融合工具箱的研制具有极其重要的意义,它不仅使图像融合变得更加直观,而且可以显示相应参数,为评价图像融合的效果提供了数据支持。本文主要是研究基于小波变换的彩色图像融合算法(包括2种融合规则:选择最大规则和加权系数规则)和融合方法性能评价,及matlab算法实现,并将其基于Matlab GUI的界面程序。这次设计主要编写了基于小波变换图像融合算法的程序以及完成若干个融合方法性能评价(主要有均方根误差、互信息、熵和交叉熵等),另外为使程序在能更加简单明了的呈现其特点,还设计了Matlab GUI的图像融合控制工具箱界面。关键词: 图像融合,小波变换,Matlab GUI目录前 言 1第1章 图像融合概述 1多传感器图像融合的基本概念 1多传感器数据融合 2从数据融合到图像融合 2 图像融合的分类及流程 3 图像融合技术的发展及应用 4 本章小结 7第2章 图像融合程序的算法及实现 1 图像融合算法 1图像融合算法概述 2 小波分析 3 基于小波变换的融合算法 2 图像融合算法的实现 1 原始图像的制作 2 融合算法的函数 3 实现融合算法的具体程序 3 图像融合效果的评价的及其实现 1 融合效果评价 2 图像融合效果评价的实现 4 图像融合算法的程序实现结果 5 本章小结 25第3章 图像融合程序的界面及实现 1 GUI图形用户界面 1 Matlab语言GUI图形用户界面概述 2图形对象简介 3 GUIDE的使用 2 GUI图形用户界面的实现 1 图像融合界面设计要求 2 图像融合界面的具体实现 3 GUI图形用户界面的实现结果 3 本章小结 43第4章 结论 44致 谢 45参考文献 46附录 47

红外成像技术小论文

太赫兹波是宝贵的战略资源  太赫兹波(THz波)或称为太赫兹射线(THz射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将这一波段统称为远红外射线。太赫兹波是指频率在1—10THz范围的电磁波,波长在30um—3mm范围,介于微波与红外线之间,属于全人类的宝贵的电磁资源,也是电磁波谱中唯一没有获得较全面研究并很好加以利用的最后一个波谱区间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(009mm)和20um(02mm),之后又有到达50um的记载。之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。但是涉及太赫兹波段的研究结果和数据非常少,主要是缺乏有效太赫兹产生源和灵敏探测器,因此这一波段也被称为THz间隙。随着80年代末90年代初一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在世界范围内掀起一股THz研究热潮。  太赫兹波有很多优越的特性,在材料分子光谱信息分析、材料与结构的无损探伤及三维层析、违禁物品反恐检查、生物组织的活体检查、高精度保密雷达、卫星间宽带通信等方面的研究中展现了独特的优势,在天体物理学、等离子体物理学、光谱学、材料学、生物学、医学成像、环境科学、信息科学等领域有着广阔的应用前景。  太赫兹波有非常重要的学术和应用价值(有的已处于实用),使得全世界各国都给予了极大的关注,美国、欧州和日本尤为重视。2004年美国TECHREV将THz技术列为未来改变世界的十大技术之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。另外,俄罗斯、韩国、以色列、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。  太赫兹研究迅猛发展  2001年首都师范大学太赫兹实验室成立,杨国桢院士任实验室学术委员会主任,张存林教授任实验室主任。在当时,国内在太赫兹研究领域几乎是一片空白。实验室主任张存林教授首先做的是聘请了时任美国伦斯勒理工大学太赫兹中心主任的张希成教授、中国科学院物理研究所张杰院士和汪力研究员作为实验室的特聘教授,同时加大了实验室人才引进的力度,陆续引进了德国留学的张岩研究员和荷兰回国的赵国忠研究员,奠定了太赫兹实验室发展的基础。  几年艰难发展之后,实验室迎来了千载难逢的发展机遇。2005年11月22日,根据太赫兹科学技术所蕴含的重要学术研究价值,及其在国民经济和国防建设领域的潜在应用前景,结合当时世界各国对这一领域的研究力度和关注,以“太赫兹科学技术的新发展”为主题的第270次香山会议在北京召开。来自科研院所、高等院校等相关领域的44名专家学者参加了此次学术讨论会,交流国内外THz科学技术的研究现状和发展趋势,探讨了我国THz科学技术研究的重大科学问题和拟要解决的关键技术。刘盛纲、姚建铨、张杰、杜祥琬、母国光、周炳琨、杨国桢、姜文汉、范滇元、樊明武、朱静等11位院士在会上发言,对THz科学技术的重要性和我国未来发展战略提出了宝贵意见。在会上,张存林教授向与会同行介绍了最近几年的工作,得到了专家同行们的广泛认可。会后,首都师范大学太赫兹实验室被确定为全国太赫兹技术开放研发平台之一(香山会议简报),极大促进了太赫兹科学与技术在我国的发展。  2006年实验室被正式批准为北京市“太赫兹波谱与成像”重点实验室。2007年获批太赫兹光电子学省部共建教育部重点实验室。2008年获批中关村开放实验室。2010年通过教育部验收,正式成为太赫兹光电子学教育部重点实验室。2011年获批北京市太赫兹与红外工程技术研究中心和无损检测新技术北京市工程实验室。实验室具有科研用房3000平方米,其中千级超净实验室6间,面积675平方米。科研仪器设备总值超过4000万元。近三年中,实验室共承担包括国家重大科学仪器设备开发专项、国家973计划、国家863、国家自然科学基金重大项目等各类项目30余项,总科研经费9300多万元;发表SCI索引论文180多篇,其中不乏国际上在物理领域的知名杂志P R L,APL,OPTICS LETTERS,OPTICS EXPRESS等;申请专利16项,已授权11项;制定国家标准3项;完成学术著作4本。  实验室以太赫兹光电子学的基本物理问题及其应用为主要研究内容,主要开展太赫兹波谱、太赫兹成像、太赫兹和红外无损检测、太赫兹传输与物质相互作用四个研究方向。在太赫兹波谱方向,成功研制宽谱太赫兹时域光谱仪、便携式太赫兹时域光谱仪,并在已有的研制基础上获得科技部重大仪器专项“基于飞秒激光的太赫兹时域光谱仪开发”的支持(资助总额4035亿元),作为第一技术支撑单位,与大恒新纪元科技股份有限公司合作,开拓太赫兹光谱仪的产业化生产,极大促进了太赫兹领域的发展,为我国太赫兹领域的发展提供了仪器和方法基础。同时在太赫兹波源的发展上,实验室成功研制出高能量宽频谱太赫兹元激发元件,太赫兹超连续辐射的转换效率由国际报道最高水平10-4提高到10-2,提高了两个数量级,谱宽达到最新文献报道的2倍,达到149THz。在太赫兹成像方面,在北京市科学技术委员会的支持下,已成功研制出太赫兹被动式安检仪,采用自行设计制作的三面体微角度旋转扫描结构和16探头弧形线阵列探测方式,能够以每秒3—5帧的速度对人体进行1米×2米的大尺寸被动成像,分辨率达到2cm,具有较好的实用性和可靠性,有望在机场、地铁、重要活动和会议场所等地实现推广应用,也将会带来明显的经济效益,目前正在向产业化推进。在无损检测领域成功解决了航天泡沫拓展缺陷检测的问题,另外一个亮点是利用红外热波无损检测技术,成功解决我国某型大功率运载火箭发动机关键部件分层缺陷的无损检测问题,并成为唯一有效检测手段。现实验室已经取得国家红外无损检测二级培训资质。在太赫兹传输与物质相互作用方面,发表了多篇PRL量级高水平原创论文,成果受到了国际同行的认可。  科技兴国 造福社会  科技创新是科学研究永恒的主题,已成为国际竞争中成败的主导因素,科技竞争力将决定一个国家或地区在未来世界竞争格局中的命运和前途。张存林教授指出,遵循《国家中长期科学和技术发展规划纲要(2006—2020)》,实验室的发展要以基础研究为基础,要注重鼓励原始创新,不仅要会跟新,更要会自主创新,这样才有生命力,国家的科技实力才能够真正强大,因此实验室必须要注重基础,基础扎实才能够把事情做精。同时他又指出,实验室不能一味地做基础研究,研究的最终目的不仅仅是发表论文和申请专利,基础研究要以国家重大需求为牵引,要将科研成果利用起来,将国家在科研上的投入真正转化为能够促进生产的工具,能够改善民生的方案,能够促进社会发展的推动力,能够增强国力的支撑。  一直以来,科研领域不同程度地存在着重研发、不重转化,重发表、不重运用的现象,评判科研水平、科技“含金量”,关键还是应该看“转化实绩”。  作为实验室负责人,张存林非常重视基础研究与应用开发相结合,使科研成果最终实现产业化。目前,实验室依托现有条件和中关村地区科技资源的优势和作用,深化产学研合作,正式为中关村2万多家注册企业提供相应的技术服务,联合进行关键技术攻关。与北京航空材料研究院、北京维泰凯信新技术有限公司在无损检测领域成立联合实验室,发挥实验室技术和人才培养优势,利用公司的市场推广和渠道优势,成功解决了许多实际问题。比如为安泰科技股份公司进行了多孔面板分层缺陷红外热波无损检测研究,为中国空间研究院502研究所进行了红外成像技术在印制电路板虚焊检测中的可行性研究,中国空间研究院北京卫星厂相关卫星产品材料和部件检测,北京航空材料研究院相关航空材料和部件、产品检测,为北京新材料中心、新材料产业联盟等机构提供相关咨询、培训、服务等,利用太赫兹成像技术为中国运载火箭技术研究院火箭燃料箱泡沫面板脱胶缺陷进行检测,火箭尾焰出气筒烧蚀状况检测,隐身材料太赫兹波段特性分析等。取得了很好的经济效益和社会效益。提供太赫兹光谱检测和分析服务,涉及毒品、爆炸物、生物大分子、医药产品、化学试剂、窗口材料、半导体材料等。  不仅如此,实验室还积极寻求与企业合作。在中关村管委会和民营企业协会领导的安排下,与园区企业共同承担国家航空航天、国防等下一代太赫兹器件研究,共同攻关某些重大技术问题,比如航天和国防中的太赫兹成像、通信、雷达、安检等应用。研制相关国家标准,申请相关专利。帮助园区企业填补太赫兹波段光谱数据空白,共同完善国家毒品和爆炸物太赫兹谱库, 以及其他药品或试剂的太赫兹谱库,丰富企业自主知识产权,同时提供紫外、可见光、近红外、中红外、远红外的光谱测量。为园区企业创造知识产权、创制先进标准服务,参与建立以企业为主体的标准联盟、技术联盟和产业联盟。与园区企业共同承担国家或北京市太赫兹安检设备相关项目的攻关,以及推广太赫兹光谱系统在线监测应用的产业化;共同承担国家和北京市的科技攻关和产业化项目方面。  在实验室走产学研用相结合的发展道路的过程中,不仅发挥了实验室的技术和人员优势,为合作企业带来技术支撑和新的发展机遇,同时企业的参与也使实验室的研究成果得到了市场的放大,更大地实现了实验室成果的价值,真正促进了国家经济和社会的发展。  不断开拓 任重道远  对于实验室的未来,张存林教授指出:在各级领导的关心和实验室全体人员的共同努力下,实验室已经发展成为国内最好的太赫兹科技开放研发平台之一,首都师范大学太赫兹实验室计划到2015年要在THz科学与技术总体上接近或达到当时的国际水平,在理论和实验研究方面做出与当时国际水平相当的重要贡献;在太赫兹成像及波谱等关键技术上取得自主知识产权,太赫兹光谱仪和太赫兹安检仪形成产业化,满足我国国民经济和国防建设需要;打造一支在国内外有较大影响、研究特色鲜明、在科研、技术、管理有机结合的研究团队;形成相当的研究生培养规模,培养一批高质量的复合型人才,为促进国民经济的发展,为占领下一个国防科技制高点贡献自己的力量。

自然界中除了人眼看得见的光(通常称为可见光),还有紫外线、 红外线等非可见光。自然界中温度高于绝对零度(-273℃)的任何物体,随时都向外辐射出电磁波(红外线),因此红外线是自然界中存在最广泛的电磁波,并且热红外线不会被大气烟云所吸收。随着科技的日新月异,利用红外线这一特性,采用应用电子技术和计算机软件与红外线技术的结合,用来检测和测量热辐射。物体表面对外辐射热量的大小,热敏感传感器获取不同热量差,通过电子技术和软件技术的处理,呈现出明暗或色差各不相同的图像,也就是我们通常说的红外线热成像;将辐射源表面热量通过热辐射算法运算转换后,实现了热像与温度之间的换算。

1、光学的发展及演变 谈到光学和光学工程,首先要谈一下光学发展史。 光学是一门古老的科学,中国古代的墨子(墨翟)和古希腊的欧几里德、托勒密都对此做出过杰出贡献。 光学作为一门科学(也就是有定义、定理、学说等),应该说是从牛顿开始。1664年,牛顿开始研究光学,时年21岁。1671年牛顿制作勒第二台反射式望远镜(长2m,直径2m);1672年发表了“光和色的新理论”;1704年发表了“光学——关于光的反射、折射、弯曲和颜色”的论文,叙述了几何光学的基本原理。此外,牛顿的分光实验以及牛顿环的发现,使光学由几何光学进入了物理光学领域。因此,我们通常说,光学自牛顿开始,迄今已有300多年的历史了。 在光学发展的300多年的历史中,牛顿的光微粒说统治达100年之久,但也不断持有波动说主张者加以反驳。19世纪初,菲涅耳以大量的实验证据,使光的波动理论得以确立。在后来的发展中,对光认识具有根本性变革的使麦克斯韦关于光的电磁波理论。1900年,普朗克提出了量子假说,他是为解决当时所谓“紫外灾难”而提出黑体辐射的能量分布共公式,但需假定物体的辐射能不是连续变化,而是以一定整数倍跳跃式变化,才能对他(普朗克)的黑体辐射公式作出合理的解释。这个最小的不可再分的能量单元称为“能量子”或“量子”。当时的物理学家认为:量子假说与物理学界几百年来信奉的“自然界无跳跃”理念相矛盾,普朗克本人甚至也放弃量子论继续用能量的连续变化的概念来研究辐射问题。 第一个意识到量子概念的普遍意义并将其运用到其他问题的是爱因斯坦。他提出了光子的概念,建立了光量子论以解释光电效应中的新现象。光量子论的提出使光的本性历史争论进入了一个新的阶段。自牛顿以来,光的微粒说和波动说此起彼伏,争论不已。爱因斯坦的理论重新肯定了微粒说和波动说描述光的行为的意义,它们均反映了光的本质的一个侧面:光有时候表现出波动性,有时候表现出粒子性,但它既非经典的粒子,也非经典的波。这就是光的波粒二象性。此后,玻尔、薛定谔、海森伯的量子力学理论的提出又进一步推动了光的发射和吸收的量子光学的进展,从此光学理论的发展在近一个世纪中便同量子物理的发展联系起来了。 光学史上最重要的转折性阶段是与惠更斯、牛顿、菲涅耳、基尔霍夫、麦克斯韦、普朗克、玻尔、爱因斯坦、薛定谔、海森伯的名字联在一起的。 光学的发展历史表明,人们对于光的认识经历了多么复杂的演变过程,时至今日,尚未结束。2、现代光学的发展简况 自牛顿以来,以几何光学和物理光学为急促,形成了各种光学仪器和设备,对人类认识世界产生了重大影响。如望远镜对天文学,显微镜对生物学和金相学,照相和电影对人类文化生活,经纬仪对大地测量,光谱仪对物质成分和结构分析等等。经典光学主要是以电磁辐射本身为研究对象;而近代光学的发展则是以光与物质的相互作用为重要的研究内容。 光学经过20世纪初期量子理论的发展,到了60年代,首先是激光的出现,即激光器。同步辐射器这些新型光源的出现,强激光与物质相互作用产生了一系列非线性效应,使光学研究领域焕然一新。激光的卓越特性推进了物理学、化学、生物学的研究,加深了对物质及其运动规律的认识,已经形成和正在形成一些新的学科分支,如量子光学、激光物理学、激光化学、激光生物学等。特别是70年代以后,由于半导体激光器和光导纤维技术的重大突破,导致了以光纤通信为代表的光信息技术的蓬勃发展,促进了相应各学科的发展和彼此间的相互渗透,形成了光子学(光电子学)。这门新兴的分支学科是研究光波(光子)与物质中的电子相互作用及其能量的相互转换。现代光学与光子学——激光、微光、红外、光纤、光纤通信、光存储、光显示的进展促进了当代科技、国防、经济的发展,现代社会如果没有这些进展是不可想象的。其主要特点有:(1)“光、机、电、算”已成为现代工程与技术的主要内涵。光的含义也已远远超出传统意义上的望远镜、显微镜等光学仪器。当前的光学仪器(其中大部分指测试计量仪器)已进入光(光学)、机(精密机械)、电(电子)、算(计算机)相结合的光电子技术的新时代。它表现在多功能、高效率的光机电算一体化,技术手段的自动化、智能化、数字化、获取数据从静态转向动态,从有感信息到无感信息。(2)光学的研究从可见光扩展到X射线、紫外、近红外、中红外、直到远红外等不可见的电子波谱段,如微光夜视、热成像、天文成像等;从静态光学到瞬态光学,如研究纳秒、皮秒、飞秒等超快速现象;从宏大光学(天文望远镜)到微小光学(微透镜)等。(3)光(光子)已不仅是信息载体,作为信息传递的手段用于了解和认识世界;光(光子)也能改变物质的形态,作为能量、加工的手段改造世界。(4)新兴的全息、激光、微光、红外热成像、光纤与光纤通信、光探测器、光集成、光信息处理、图像处理、图像融合和光计算等都被认为属于现代光学与光子学的范畴。(5)光学与光子学的最大特点是应用范围非常广泛,基础理论学与工程技术之间紧密联系。今天,光学和光子学的应用已遍及各个领域,如空间、能源、材料、微电子、生命科学、生物工程、化学工程、微观化学动力学、医疗、环境保护、遥感、遥测、精密加工、计量、通信、印刷以及军事等领域。特别在信息领域的应用,不少学科分支和方向已经形成大规模的产业。1995年,全世界光学和光(电)子学技术产业规模已达700亿美元,2000年达1030亿美元。可以预期,光学和光子学将成为21世纪初的一个骨干产业。3、光学工程的研究对象和内容 光学既是一门基础科学,又是一门技术科学。作为基础科学,主要研究光的产生、光的本性以及光和物质的相互作用。作为技术科学,是把光的现象和规律应用于人类的生产活动中而形成的一门技术科学,如将光作为信息传递的手段,便发展出各种光学仪器和设备,藉以扩展人们的视觉功能(观察)、听觉功能(通信)、触觉功能(测量)等(众所周知,视觉和听觉占人的感觉知觉的90%);又如光作为能量的形式,利用光对物质产生的物理化学反应来改变物质的形态和属性,如激光核聚变,各种光源,光合作用等;再如光作为加工处理的手段,如激光进行材料加工,表面改性和医疗手术等。光学工程主要研究:(1)以光作为信息传递的媒介,进行对客观事物的认知与了解,特别是作为视觉及其他人身感官的延伸,包括图像及多维时空信息的传输、存储、处理、显示等。(2)光的产生,如激光、发光光源等。(3)光对物质相互作用的应用,如光敏探测器件、光刻蚀、光化学等、或以光能量作为加工手段,如激光加工、激光核聚变、光能应用等。(4)利用光学等小原理进行图像及多维时空结构的观察及处理,如微光夜视技术、变像管高速摄影等。 基于光学现象的新发展,以及光学原理与其他学科的综合应用(工程学科,一般都有多种基础学科应用的综合性,但以其核心技术的不同而成为不同的工程学科),光学对经济活动诸方面的作用,早已超出作为物理学学科分支的传统概念,或如20世纪30年代作为应用光学领域的光学仪器所能概括的。正如物理学中的力学发展成为机械工程,电磁学发展成为电气工程,热力学发展成为动力工程一样,光学也当之无愧地以其广阔的应用领域而形成光学工程,也理应与机械工程、电气工程、动力工程一样。并列为一级学科。 总地说来,学科的设立及其划分层次至关重要,特别是它作为高层次人才培养的指南,必须顺应时代发展的趋势。一级学科设立不当,将会影响培养具有整体知识的学科带头人。此外,学科的设立及其划分层次将会涉及对该学科的支持与发展,并对社会分工及技术体制产生影响。不适当的划分层次不利于人才的培养。因此,必须全面地考虑学科层次安排,并应向前看,而不能仅满足于过去已有的学科内容及排序。关于光学工程作为一级学科的建议:一级学科:光学工程二级学科:(1)光学仪器(作为认识世界的工具)。(2)激光与光子学技术(现在全世界都承认光子学这个学名)。(3)信息光学技术。(4)光学技术及工程(作为改造世界的手段)。光学工程的二级学科内容示例:(1) 光学仪器作为视觉功能延伸(图像视觉的延伸)的工具,包括光学仪器的结构设计、光学镜头与系统设计及其工艺等,和各种专用光学仪器,如军用光学仪器、测量光学仪器、天文光学仪器、物理光学仪器等。(2)激光与光子学技术利用光子原理或光电相互作用原理的器件,包括各种激光器、光敏器件及红外探测器、光电成像器件、红外及夜视技术、超高速摄影、光阀、光源、短波及X射线光学等。(3)信息光学技术主要研究光信息的产生、传输、处理及图像显示技术,包括光信息及图像处理技术、图像模式识别、全息术、自适应光学技术、光传输及通信急速、光学遥感技术、目标及传输特征数据库及光计算技术等。(4)光学技术及工程主要研究光能应用、光加工及有关工程,包括光武器工程,激光加工(工业),激光核聚变,照明工程,光学材料、工艺、特殊光器件,光刻技术(用于微电子技术),微机械中的微光学技术等。 光子学(Photonics)这个名词目前在国际光学界,已逐步取代Photoelectronics和Optoelectronics(这两个字的中文都译为光电子学),也取代了20世纪70年代常用的电光学。光子学与光电子学,据学术界的认识,主流内容上无甚差异,其含义均是以光子作为信息载体。不过,在当前信息时代,研究光子作为信息载体与物质(主要是电子)的相互作用,越来越趋向光子学这个名词。 可以预期,光子学与光子技术将与电子学和电子技术一样作为信息载体或作为控制手段在应用技术和工程方面发挥越来越重要的作用。世界正从工业化时代进入信息时代,特征是由于电子技术和电子计算机等新技术的发展,过去靠人的监控来完成的生产过程或过去无法做到的事现在可以用物化的智能系统实现监控并作为人的脑力劳动的扩充来完成。过去工业化把眼光主要放在机械设备上,而今天已走出机械化的过程,主要把眼光放在生产过程的信息化程度上。这就是说,整个生产机制有了拟人的概念。在人的感官活动中,眼睛的作用占70%~80%,这说明眼睛在整体活动中的重要意义。眼睛的租用在于能输入图像,感受周围的系统环境的信息并以图像的形式做出表述,即光电过程和光子技术,能与人眼起到一样得作用。在整个信息技术的体系中,没有光子学和光子技术是不完备的。因此,发展光子学和光子技术,是信息科学技术发展的需要和必然,也是时代的需要。何况光子学与光子技术已进入当代信息技术最重要的一个领域:光纤通信,以光子技术来补充电子技术的不足。4、国际光学工程的发展 国际上特别是技术发达的国家对光学与光子学的发展十分重视,都建立了相应的学术机构和从事教学和科研的院校和研究所。1995年,据美国出版的Optics Education报道,有112所院校设有专门的系或研究所,从事光学和光子学的教学和科学研究。现简要介绍总部设在美国的国际光学工程学会(SPIE——The International Society for Optical Engineering)。 SPIE(国际光学工程学会)是当今世界上最大的光学学术组织。每年在美国和世界各地(包括中国)召开有关光学与光子学的各种学术会议。到1996年,已出版了2800卷会议论文集,发表了90000篇学术论文。以1994年~1995年为例,分别出版了279和288卷会议论文集,共发表了24200篇学术论文。SPIE会议论文集以最快速度报道光学和光子学的最新进展,是从事光学与光子学的科技工作者的主要参考文献。SPIE专业组名称:自适应光学【信息】生物及医学光学【工程】电子成像【光子学】纤维光学【信息】与健康有关的光学【工程】高速摄影、图像显示术与光子学【仪器】【光子学】全息术【信息】激光通信【信息】镜头设计【仪器】无损检验(光学)【仪器】光学(图像)处理及光计算【信息】光学材料【工程】光电子学(包括激光)【光子学】光电与精密仪器设计【光子学】【仪器】可穿透辐射【光子学】光刻技术【工程】光掩模技术【工程】机器人与机器视觉【工程】【信息】灵巧结构与材料(光学部分)【仪器】【工程】热敏感(热图)【光子学】X射线 / 紫外光学【光子学】括号【】内表示所属的是二级学科。此外,国际上另有规模很大,历史悠久的国际照明学会。SPIE的出版物主要有:(1)Optical Engineering(光学工程)主要报道光学科学与工程的最新进展,例如:·电子全息(Electronic Holography)·光学中神经网络的应用(Applications of Neural Networks in Optics)·光学安全(Optical Security)·光学系统中的光学材料(Optical Materials for Optical Systems)·光声与光热的科学与工程(Photoacoustic and Photothermal Science and Engineering)·微光电机系统(Micro-Opto-Electro-Mechanical Systems)(2)Journal of Electronic Imaging(电子成像杂志)这是SPIE和IS&T(The Society for Imaging Science and Technology——成像科学与技术学会)合作的刊物,主要报道成像技术的进展。如:·图像获取(Image Acquisition)·图像数据存贮(Image Data Storage)·图像数据显示(Display of Image Data)·图像数据形象化(Image Visualization)·图像处理(Image Processing)·图像数据通信(Image Data Communication)·硬拷贝输出(Hard Copy Output)·多媒体系统(Multimedia Systems)(3)Journal of Biomedical Optics(生物医学的光学杂志) 主要报道在生物医学研究、诊断与处理过程中光学技术的应用。主要有:激光、光电子器件、医学和生物学成像、物理和化学传感器以及纤维光学等。 目前SPIE出版关于光学、成像和光子学领域的重点刊物有:(1)航天与天文学,(2)自动化与生产工程,(3)电子成像(包括医用成像),(4)激光器及光源,(5)微电子学和光电子学及其器件,(6)光学科学与工程,(7)信号与图像处理。此外,还有生物医学光学、纤维光学、光学物理、光化学和光生物学等。5、中国的光学与光学工程的发展以及中国光学学会1中国的光学与光学工程的发展 由于国民经济和国防建设的需要,20世纪50年代我国开创了光学工程。50年代初,中国科学院成立了第一个光学科研机构——中国长春光学精密机械研究所。1952年和1953年浙江大学和北京工业学院等高等院校开始设置光学仪器专业,继之长春光学精密机械学院、清华大学等院校也设立了光学专业。中科院和工业部门的研究所和光学工厂也陆续兴起光学工程的研究和光学仪器的制造,主要是一些生产量大、应用面广的通用型中低档光学仪器。这一时期的主要工作是建立我国的光学技术基础。 20世纪60年代初,光学研究迅速发展,特别是激光、微光、红外等技术的出现,其研究领域不断扩大,光子学也应运而生。继上海光机所成立后,又成立了西安光机所,上海技术物理所、安徽光机所、成都光电所、西南技术物理所、昆明物理所、西安应用光学研究所等。进入80年代,由于高技术发展的需要,光学和光子学在整个科技领域的地位日益突出,科研工作也随之进入了一个新的阶段。 目前,我国的光学与光子学的研究与制造工业已有一支庞大的队伍,有了较好的基础。据1991年统计,我国有大、中型研究所和企业近300家,从业人员5万人,分布在中国科学院、国家教委、机械工业部、电子工业部、兵器工业部、航空航天工业部等18个部委归口管理。全国有85所高校设立光学、光电及激光专业。1979年,成立了中国光学学会,下设15个专业委员会。 近半个世纪来,我国的光学与光子学的科研工作取得了较大的进展。在基础研究方面,不少分支学科取得了具有国际先进水平的科研成果,在光学领域的高技术方面建立了相应的技术基础,并开展了跟踪和开发研究,为国民经济、国防建设解决有关科学技术问题提供了科学试验装备,做出了积极的贡献。 我国在光学和光子学方面的研究,在若干分支领域已在国际上占有一席之地。如量子光学、非线性光学、激光光谱学、红外光电子学、光学材料等分支学科的基础研究,均做出了具有特色的工作。在激光研究方面,我国的“神光”装置(10W级)是国际上知名的高效率激光装置。在光学工程方面,为发展我国导弹和远程运载火箭需要所研制的陆地靶场和海上靶场测量船用的各种型号的光学跟踪测量设备。包括有红外、电视及激光三种自动跟踪测量及激光测距设备。在我国向太平洋发射运载火箭试验中,出色地完成了火箭地跟踪测量任务。仅就光学测量仪器而论,已形成了不同性能的系列。这些产品为配合我国“两弹一星”的研制,解决了多种飞行体轨迹及落点的测量问题,观测记录了飞行体与目标遭遇过程以及雷达测量精度的标定等问题,达到了国际同类仪器的先进水平。在光学材料方面,我国的非线性硼酸盐晶体KTP、KDP和某些声光、电光晶体的生产居国际领先地位。 应该指出,我国的光学与光子学研究的总体水平还明显落后于国际水平,我国的基础研究达到国际水平的只在少数学科上。在高技术和应用研究方面,技术基础比较薄弱,元器件研制水平低;在光学和光(电)子学的产业方面,产品质量和性能价格比差。改革开放以来,像其他学科一样,光学与光学工程得到了较大的发展。国际自然科学基金的设立,促进了光学和光子学的基础研究和部分应用研究的发展。国家自然科学基金的设立,使光学工程的科学研究的实验条件有了改善。目前已经建成或开放的有关光学的国家重点实验室有:超快激光光谱学实验室(中山大学),晶体材料实验室(山东大学),激光技术实验室(华中理工大学),应用光学实验室(中国科学院长春光学精密机械与物理研究所),集成光电子学实验室(清华大学、吉林大学、中国科学院半导体研究所),红外物理实验室(中国科学院上海技术物理研究所)等。此外,中国科学院的开放研究实验室有:视觉信息加工实验室(生物物理研究所),激光光谱学实验室(安徽光学精密机械研究所),高功率激光物理实验室(上海光学精密机械研究所),量子光学实验室(上海光学精密机械研究所),瞬态光学技术实验室(西安光学精密机械研究所),光学与精密机械新技术实验室(光电技术研究所)等。高等院校和各部委还有若干个光学与光电子学方面的开放研究实验室和专业实验室。所有这些都为加强光学与光子学的基础研究和应用基础研究,促进光学工程学科的发展,开展学术交流和合作研究创造了良好的条件。2中国光学学会的专业委员会中国光学学会现有如下15个专业委员会:基础光学 工程光学【仪器】【工程】 光学材料【工程】 红外光电(红外光学及光电器件)【光子学】 激光【光子学】 高速摄影与光子学【光子学】【仪器】 光谱学与光谱分析【仪器】 薄膜光学【工程】 光学检验【工程】 光学加工工艺【工程】 医用光学【仪器】【工程】 光学信息处理与全息术、光机算【信息】 光纤光学与集成光学【信息】 光电技术【光子学】 光学情报 以上各专业委员会除第一项为基础科学,第15项为情报机构外,其余都与光学工程有关。6、面向21世纪光学工程的战略地位 20世纪30年代以来,电子学得到了极大的发展。电子学是研究电子运动的各种物理过程和物理现象并加以应用的科学,设计电磁波的振荡、传播、电信号的放大、变换、频率的稳定、混合与检波等等。60年代以来,半导体微电子学、大规模集成电路等技术极大地推动了电子学的发展,建立了以电子计算机为代表的微电子产业。光纤通信出现,加速了人类进入信息社会的历程。 从波动的物理本质来看,光学与电子学所要处理的问题是相同的,只是涉及的电磁波频率范围不同而已。光学的频谱范围由X射线、紫外、可见光、直到红外等波段;而电子学研究的频谱范围则在射频以下,包括微波、无线电波、长波振荡等。二者之间的毫米波似乎是光学和电子学双方争夺的波段。光学和电子学中有许多概念,理论和器件原理是相互渗透、相互借鉴的。近代光学为电子学,特别是半导体电子学的研究和工艺技术提供了诸多的新方法。激光的问世,以及非线性光学所涉及的和频、差频、倍频等参量则又是随着电子学发展来实现的。这两个学科在发展过程中相互促进又相互融合,形成了多门分支和交叉学科,如光电技术、光电探测技术、光电子成像技术、光纤通信、光电子学等。光电子学实际是光学与电子学两大学科的结合。关于光电子学现今称为光子学的问题,主要是从本质上说,光子是起主导作用的(如激光、光电器件等)。 与无线电频谱波段相比较,光学波段(例如微光和红外)的最大优点是它的抗干扰能力强。按现代战争的观点来看,整个无线电频谱充斥着无线电侦察、干扰和反干扰,交战中任一方的应用都不可能不被对方发现。但是,在微光和红外波段,因为它可以在被动状态下侦察和识别目标,特别是红外波段,它可以在战场强光干扰下工作,甚至可以透过树叶、伪装网和迷彩等屏障观察目标,因此,它们是最有前景的。另外光波波长短,因而分辨率高;光速快,因而处理速度快;光由于其平行性、串音小、不受干扰能在空间互连,在未来高速计算机的发展和光机算机的研究中将发挥重要作用。无可争议的是,这些特点使光学和光子学在21世纪将会得到更大的发展。 20世纪60年代激光的出现,使光学迈入光子学新阶段,向更深层次发展。在激光领域,由于激光具有很高的单色亮度,从而产生种种非线性光学现象和非线性光谱方法。由于激光可以形成极高的功率密度或强电磁场,以致超过原子内部场强,从而发生种种多光子激发和电离,可借以研究原子在磁场中的行为以及高温高密度等离子体的行为。激光诱导荧光和光致电离的检测灵敏度可测得单原子(分子)的存在。用激光进行材料加工(切割、打孔、表面热处理和改性等)或医疗手术,已是十分成功的应用。激光若能在远距离形成高功率密度,就可作为一种定向能武器。目前虽然激光亮度远远达不到所需要的要求,但用激光使仪器致盲,用脉冲激光测定远距离目标,用激光引导导弹、炸弹、炮弹等战术武器多数已很成功。在成像和探测领域,光电子成像器件使不可见光的观测成为可能,使弱光信号能被探测。光纤通信以低损耗石英光纤和半导体激光器为基础,已经形成重要支柱产业。光盘存储的基础是光记录介质和精密伺服系统,进一步发展方向是更高的存储密度和更高的信息率(存入、取出),其前景不可估量。在图像显示和图像复制设备领域。在显示技术方面,液晶大屏幕显示也许会成为下一代电视的主流。光在信息领域中的最重要的潜在应用是用光纤方法处理信息。光纤方法可以同时并行处理二维信息,容易以模拟计算机方法实现积分变换之类的运算;用光学方法可演示神经网络的图像识别和复原的功能,已经提出过光学数字计算的多种结构和算法等。此外,生理光学以人类的视觉作为研究的对象,对视觉的机制和结构的了解,将有助于机器人视觉、图像识别、神经网络等研究。 现代光学和光子学的进展,已形成了一系列学科分支,入非线性光学、博导光学、强光光学、全息光学、自适应光学、X射线光学、天文光学、激光光谱学、瞬态光学、红外光学、遥感技术、声光学、成像光学等等。现代光学和光子学的一个最大特点是对其他学科和各个技术部门有很强的渗透力。如光学和光子学与物理学结合,便有激光物理学、量子光学、激光等离子体物理等;与化学结合,便有光化学、激光诱导荧光光谱学等;与生物学结合,便有激光生物学、生物光学等;与医学结合,便有激光医学。在当代,可以这样说,没有一个技术部门不与光学和光子学有联系。仅以兵器的应用为例,光学装备便是发现敌人、瞄准敌人的高级传感器系统,是武器的眼睛,它完成对敌方的侦察、监视、预警、瞄准以及通讯等任务。于是有微光夜视技术、红外热成像技术、光电火控技术、光电对抗技术、坦克光电系统及技术、野战信息数字化光电子技术、精确制导技术、以及激光武器、激光测距、激光制导、激光雷达、激光引信等等。如表1所示。表1光学与光电子学的技术应用技术领域 应用 附注 光学 空间光学望远镜大型天文望远镜激光器激光系统发光与显示 美国4m口径哈勃空间望远镜的投资为12亿美元现正筹建口径为25m的大型天文望远镜1990年全球激光器销售额为5亿美元1988年全球激光系统的市场为250亿美元液晶显示将是下一代电视的主要方向 机械 激光加工(包括打孔、切割、焊接、表面处理等)激光光刻与激光微细加工(3~5μm)X射线光刻(小于3μm)光化学三维模型制作 1988年市场达90亿美元将推动计算机辅助加工

不能,且绝大多数都不能穿透玻璃。红外热成像原理和相机差不多,只不过区别是在比可见光波长要长的红外波段。也就是和可见光一样红外线是直线传播不拐弯,墙挡住了自然就不会传播,也就不存在穿透墙壁看人。

红外成像论文怎么写

电视遥控,器就是红外线啊

摘 要图像融合是一门新兴的学术研究方向,多传感器图像融合是指将多元信道所采集的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成统一图像或综合图像特征以供观察或进一步处理。它是一门综合传感器、图像处理、信号处理、计算机视觉和人工智能等技术的现代高新技术。 图像融合工具箱是基于Matlab GUI界面,实现图像融合的可视化人机交互界面。图像融合工具箱的研制具有极其重要的意义,它不仅使图像融合变得更加直观,而且可以显示相应参数,为评价图像融合的效果提供了数据支持。本文主要是研究基于小波变换的彩色图像融合算法(包括2种融合规则:选择最大规则和加权系数规则)和融合方法性能评价,及matlab算法实现,并将其基于Matlab GUI的界面程序。这次设计主要编写了基于小波变换图像融合算法的程序以及完成若干个融合方法性能评价(主要有均方根误差、互信息、熵和交叉熵等),另外为使程序在能更加简单明了的呈现其特点,还设计了Matlab GUI的图像融合控制工具箱界面。关键词: 图像融合,小波变换,Matlab GUI目录前 言 1第1章 图像融合概述 1多传感器图像融合的基本概念 1多传感器数据融合 2从数据融合到图像融合 2 图像融合的分类及流程 3 图像融合技术的发展及应用 4 本章小结 7第2章 图像融合程序的算法及实现 1 图像融合算法 1图像融合算法概述 2 小波分析 3 基于小波变换的融合算法 2 图像融合算法的实现 1 原始图像的制作 2 融合算法的函数 3 实现融合算法的具体程序 3 图像融合效果的评价的及其实现 1 融合效果评价 2 图像融合效果评价的实现 4 图像融合算法的程序实现结果 5 本章小结 25第3章 图像融合程序的界面及实现 1 GUI图形用户界面 1 Matlab语言GUI图形用户界面概述 2图形对象简介 3 GUIDE的使用 2 GUI图形用户界面的实现 1 图像融合界面设计要求 2 图像融合界面的具体实现 3 GUI图形用户界面的实现结果 3 本章小结 43第4章 结论 44致 谢 45参考文献 46附录 47

红外线波长相对较长,表现为热属性,应用为红外线加热,例如:红外线热风扇等红外线波长相对较长,波长较长的波有着较好的绕过障碍物性能,应用为无线遥控,传递信息。紫外线波长相对较短,表现为化学属性,应用为紫外线杀毒,例如医院房间杀毒和碗柜消毒等。

立定跳远测距系统的研究与开发 【文 摘】青少年是民族的希望与未来,因此青少年的健康状况反映了一个国家的经济发展和社会文明、进步的程度。随着中华人民共和国《学生体质健康标准》的颁布实施,开发智能化体质测试系统用于检测大中小学生的身体健康状况已经成为当务之急。 立定跳远测距系统是智能化体质测试系统系列产品之一,该系统将计算机软硬件技术溶为一体,技术含量高。在研究参考国内外现有立定跳远测距仪的基础

  • 索引序列
  • 红外热成像论文
  • 红外热成像系统论文
  • 红外成像论文
  • 红外成像技术小论文
  • 红外成像论文怎么写
  • 返回顶部