首页 > 论文期刊知识库 > 影像成像方法论文

影像成像方法论文

发布时间:

影像成像方法论文

《医学影像成像原理》名词解释第一章1.X 线摄影(radiography):是X 线通过人体不同组织、器官结构的衰减作用,产生人体医疗情报信息传递给屏-片系统,再通过显定影处理,最终以X线平片影像方式表现出来的技术。2.X 线计算机体层成像(computed tomography,CT):经过准直器的X线束穿透人体被检测层面;经人体薄层内组织、器官衰减后射出的带有人体信息的X 线束到达检测器,检测器将含有被检体层面信息X 线转变为相应的电信号;通过对电信号放大,A/D 转换器变为数字信号,送给计算机系统处理;计算机按照设计好的方法进行图像重建和处理,得到人体被检测层面上组织、器官衰减系数(¦)分布,并以灰度方式显示人体这一层面上组织、器官的图像。3.磁共振成像(magnetic resonance imaging,MRI):通过对静磁场(B0)中的人体施加某种特定频率的射频脉冲电磁波,使人体组织中的氢质子(1H)受到激励而发生磁共振现象,当RF 脉冲中止后,1H 在弛豫过程中发射出射频信号(MR 信号),被接收线圈接收,利用梯度磁场进行空间定位,最后进行图像重建而成像的。4.计算机X 线摄影(computed radiography,CR):是使用可记录并由激光读出X 线影像信息的成像板(IP)作为载体,经X 线曝光及信息读出处理,形成数字式平片影像。5.数字X 线摄影(digital radiography,DR):指在具有图像处理功能的计算机控制下,采用一维或二维的X 线探测器直接把X 线影像信息转化为数字信号的技术。6.影像板(imaging plate,IP):是CR 系统中作为采集(记录)影像信息的接收器(代替传统X 线胶片),可以重复使用,但没有显示影像的功能。7.平板探测器(flat panel detector,FPD):数字X 线摄影中用来代替屏-

医学影像技术在近十多年来取得了突飞猛进的发展。新技术、新设备不断涌现。320排螺旋CT、超高场强磁共振、分子影像、功能影像、多模态融合成像等技术大大丰富了医生的诊断手段,提高了疾病的诊断效果,但是同时也带来了一定的问题:1)高端影像设备价格昂贵,动辄数百万到数千万元,很多医院简单地将设备档次作为体现医疗水平的标准,竞相引进高端设备,导致医疗成本居高不下;2)医学影像设备一次扫描能产生数百至数千幅图像,病人带走的胶片只包含其中极少一部分图像,且无法进行参数调节和三维、动态显示,诊断价值大打折扣。下面我们就和大家通过一篇医学影像毕业论文来探讨一下这方面的知识。  摘要:骨再生是由一组连续的骨诱导和骨传导的生物过程所组成,临床通过检测骨密度和血管化两个指标对骨再生进行评价,目前发展最为迅速且有效的检测手段是医学影像技术。对于骨密度测定现应用得最多的是显微CT技术,定量超声技术虽具有无放射性损伤、经济负担小等显着优势,但有待进一步推广使用。血管化检测以磁共振成像和超声造影技术最为可靠。因为普通X线检查、CT扫描及磁共振检查只能提供形态和解剖上的变化,而超声造影可动态成像能更直观地反映血管化程度。未来,需进一步改进医学影像技术,以便更精准、安全、快速地评估骨再生过程。  关键词:骨再生;医学影像技术;骨密度;血管化医学影像毕业论文参考范例 配图  骨再生一般发生于创伤、炎症、肿瘤等原因导致的骨缺损或骨折愈合过程。目前,解决骨缺损的有效途径是将骨移植材料作为信号因子和细胞的载体或模板来诱导成骨,或从周围骨组织募集细胞使其趋化生长分化,最终形成成骨。因此,准确评估移植骨材料对骨再生是否有效显得尤为重要,而医学影像技术是目前最常用的评估手段。X线自发现开始,其首先应用于医学领域,并第一次无创的为人类提供了人体内部器官组织的解剖形态图像。由于计算机的融入、医学影像设备的不断更新,医学影像技术飞速发展,随后出现了CT扫描、定量超声技术、磁共振成像等。骨量是指单位体积内,骨组织内的骨矿物质和骨基质含量。而骨密度是指单位体积内骨矿质的含量,其能够比较客观地反映骨量,对骨再生过程的评估具有重要意义。检测骨量和骨密度可以预估骨折的发生及判断骨愈合状况。骨是高度血管化的组织,它与血管和骨细胞之间密切联系,共同维系骨骼的完整性。因此,血管生成在骨骼发育和骨折修复中发挥着举足轻重的作

看这样行不:【摘要】 目的:明确5种MRI征象对膝关节盘状半月板的诊断价值。方法:分析532例经关节镜证实的膝关节MRI图像,其中包括43例盘状半月板及其不同程度损伤的MRI图像。在不告知关节镜结果的条件下, 由2名有经验的放射科医生分别对诊断盘状半月板的5个征象及其不同程度损伤进行评价,差异协商解决。分别计算出每种征象的敏感性。结果:冠状面上外侧半月板中部最窄处>15 mm或与外侧平台关节面的比值>50%;矢状面上(层厚4 mm)半月板的前后角相连形成“领结样”改变达四层或四层以上。此两种征象的敏感性分别为0%和1%,诊断率最具可靠性。盘状半月板常合并变性、撕裂,且不同程度的损伤可影响盘状半月板征象的准确判断。结论:盘状半月板在MRI有多种征象,各种征象对诊断的能力有所不同。当合并不同程度损伤时亦会影响其征象的正确判断。 【关键词】 膝关节 盘状半月板 核磁共振 MR imaging of Discoid Menisci of the knee: evaluation with signs LI Pei, ZHENG Zhuo-qing, YUAN Liang( The third affiliated hospital of Xinxiang medical college, Henan 453000, China; The third affiliated hospital of Beijing university) 【Abstract】 Objective:To determine the value of five MRI imaging signs in diagnosing discoid menisci and injury of the Methods:MRI imaging of 532 knees with subsequent attenuated exams were retrospectively evaluated, based on the results of arthroscopy of 43 discoid wo radiologist evaluated each MRI exam independently with discrepancies resolved by Each MRI exam was analyzed for the five sign, sensitivity for diagnosing discoid menisci were calculated for the presence of each individual Results: The ratio of width of meniscus to that of tibia plateau was over 50% On the sagittal plane, there were consecutive 4 layers or more showed"tie"change which derived form the connection of anterior and posterior The sensitivities of there two signs ranged was 0% and 1% The following two signs had higher Discoid menisci were often combined with degeneration and laceration, different injure can affect the accurate judgment of signs in discoid Conclusions: Discoid menisci have many signs on MRI imaging, different signs have different diagnosing The accurate judgment of signs can be affected when combined with different 【Key words】Knee; Discoid menisci; MRI 盘状半月板作为一种先天畸形改变了膝关节的正常解剖,容易导致半月板的损伤。MRI是目前诊断半月板病变的最佳手段。分析532例经关节镜证实的43例盘状半月板膝关节图像,致力于明确MRI各个征象对诊断盘状半月板的价值,且合并损伤后,明确其损伤程度的诊断价值。 1 材料与方法 1 一般资料 对象2005年6月至2006年6月间检查并经关节镜证实的532例膝关节图像,其中盘状半月板43例, 25例女性,18例男性,年龄11~70岁,有3人为双膝,右膝19 例,左膝 24例,均为外侧半月板。 2 MRI检查方法 所有病例均使用德国西门子5T MRI扫描仪(Vislon)常规包裹或表面线圈。患者伸直位,所有膝关节接受常规MRI扫描,至少扫描矢状面和冠状面。矢状面采用自旋回波T1WI(SET1WI TR=440 TE=12 ms)快速自旋回波T2WI(TSET T2WI:TR=3 094 TE=96 ms)或快速小角度激发(FLASH:TR=425 TE=11 ms 翻转角为20°或90°),冠状面采用脂肪饱和抑制SE双回波(TR=3500 ms,TE=16/96 ms)所扫层厚均为4 mm,间距为4 mm。 3 资料分析方法 在不告知关节镜结果的条件下由两名经验丰富的放射科医生分别阅片,差异协商解决。 1 评价文献中诊断盘状半月板的5个常用标准〔1-4〕。 1 前后角连续性 在矢状面上以4 mm层厚扫描,有四层或四层以上显示半月板前后角连续性呈“领结样”改变。 2 矢状面后角与前角最大高度差≥2 mm。 3 内外侧半月板高度差 冠状位盘状半月板外侧缘的最大高度高于对侧>2 mm。 4 半月板宽度或冠状面上侧块最小宽度:半月板最窄处的宽度>15 mm或超过胫骨一侧平台一半以上。 5 矢状面上半月板次外层最小厚度>2 mm。 2 分别测量前角、体部及后角的高度和宽度 2 结果 在532例膝关节MRI图像中,经关节镜确诊43例盘状半月板,两位医生对其盘状半月板的5种征象分析如下:(1)前后角连续性达四层或四层以上,有31例出现此征象,敏感性为1%;(2)矢状面后角与前角最大高度差≥2 mm,有24例出现此征象,敏感性为8%;(3)内外侧半月板高度差,15例出现此征象,敏感性9%;(4)半月板宽度或冠状面上侧块最小宽度>15 mm或超过胫骨一侧平台一半以上,有37例出现此征象,敏感性0%;(5)矢状面上半月板次外层最小厚度>2 mm,有 6例出现此征象,敏感性9%。同时出现以上5种征象的有4例,5种都没出现的有5例,出现第(1)种和第(4)种征象的有31例,出现2种或2种以上征象的有35例。此组病例经关节镜证实有40例合并不同程度损伤,其中半月板变性3例,半月板撕裂37例,发生桶柄状撕裂的有11例,半月板囊肿形成1例。表1 43例盘状半月板前角、体部、后角高度及宽度范围及平均值测量(略)

遥感影像分类方法论文

罗小波1 刘明培1,2(重庆邮电大学计算机学院中韩GIS研究所,重庆,400065;西南大学资源环境学院,重庆,400065)摘要:在网络结构给定的情况下,利用遗传算法的全局寻优能力得到一组权值和阈值作为BP神经网络的初始权值和阈值,来避免BP神经网络易陷入局部极小的缺陷,同时也可以提高网络的收敛速度。然后再利用BP神经网络的局部寻优能力,对权值和阈值进行进一步的精细调整。实验结果表明,把这种基于遗传算法的BP神经网络应用于遥感影像监督分类,具有较高的分类精度。关键词:BP神经网络;遗传算法;遥感影像分类1 引言随着遥感技术的快速发展,遥感技术已经广泛应用于各个领域。其中,遥感影像分类是其重要组成部分。近年来,随着人工神经网络理论的快速发展,神经网络技术日益成为遥感影像分类中的有效手段,特别是对高光谱等影像数据,更是具有许多独特的优势。一般我们把采用BP (Back-propogation)算法的多层感知器叫做BP 神经网络,它是目前研究得最完善、应用最广泛的神经网络之一。与经典的最大似然法相比,BP神经网络最大的优势就是不要求训练样本正态分布。但是,它具有结构难以确定、容易陷入局部极小、不易收敛等缺陷。在本文中,网络的结构由用户根据问题的复杂度确定。在进行网络训练之前,利用遗传算法的全局寻优能力确定网络的初始权值和阈值;然后利用BP学习算法的局部寻优能力对网络进行进一步的精细调整。最后利用训练后的网络进行遥感影像监督分类。结果表明,基于遗传算法的BP神经网络进行遥感影像监督分类,具有较高的分类精度。2 BP 神经网络1 网络结构BP神经网络的结构一般包括输入层、中间隐层、输出层。在模式识别中,输入层的神经元个数等于输入的特征个数,输出层的神经元个数等于需要分类的类别数。隐层可以为一层或多层,但一般的实际应用中一层隐层就可以满足要求。而各隐层的神经元个数需要根据实际问题的复杂度而定。以单隐层为例,其结构示意图如图1。为了实现一种通用的遥感影像分类手段,除了提供默认的网络结构外,还为使用者提供了根据实际问题的复杂度自行确定网络隐层数与各隐层神经元数的功能。这为一些高级用户提供了灵活性,但这种灵活性在一定程度上增加了使用的难度,有时也需要一个实验的过程,才能取得满意的效果。图1 BP 神经网络结构2 BP 学习算法算法的基本步骤如下:(1)将全部权值与节点的阈值预置为一个小的随机数。(2)加载输入与输出。在n个输入节点上加载一n维向量X,并指定每一输出节点的期望值。每次训练可以选取新的同类或者异类样本,直到权值对各类样本达到稳定。(3)计算实际输出y1,y2,…,yn。(4)修正权值。权值修正采用了最小均方(LMS)算法的思想,其过程是从输出节点开始,反向地向第一隐层传播由总误差诱发的权值修正。下一时刻的互连权值Wij (t+1)由下式给出:土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集式中,j为本节点的输出;i则是隐层或者输入层节点的序号; 或者是节点i的输出,或者是外部输入;η 为学习率;α为动量率;δj为误差项,其取值有两种情况:A若j为输出节点,则:δj=yj(1 -yj)(tj -yj)其中,tj为输出节点 j 的期望值,yj为该节点的实际输出值;B若j为内部隐含节点,则:土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集其中k为j节点所在层之上各层的全部节点。(5)在达到预定的误差精度或者循环次数后退出,否则,转(2)。3 基于遗传算法的网络学习算法遗传算法具有全局寻优、不易陷入局部极小的优点,但局部寻优的能力较差。而BP学习算法却具有局部寻优的优势。因此,如果将两种算法结合起来构成混合训练算法,则可以相互取长补短获得较好的分类效果。主要思路如下:(1)利用遗传算法确定最优个体A把全部权值、阈值作为基因进行实数编码,形成具有M个基因的遗传个体结构,其中M等于所有权值、阈值的个数。B设定种群规模N,随机初始化这N个具有M个基因的结构。C适应度的计算:分别用训练样本集对N组权值、阈值进行训练,得出各自网络期望输出与网络实际输出的总误差e,适应度f=0-e。D进行遗传算子操作,包括选择算子、交叉算子和变异算子,形成新的群体:其中,选择算子采用了轮盘赌的方法,交叉算子采用了两点交叉。E反复进行C、D两步,直到满足停止条件为止。停止条件为:超出最大代数、最优个体精度达到了规定的精度。(2)把经过 GA 优化后的最优个体进行解码操作,形成 BP 神经网络的初始权值和阈值。(3)采用BP学习算法对网络进行训练,直到满足停止条件。停止条件为:①达到最大迭代次数;②总体误差小于规定的最小误差。网络训练结束后,把待分数据输入训练好的神经网络,进行分类,就可以得到分类结果影像图。3 应用实例实现环境为VC+ +0,并基于Mapgis的二次开发平台,因为二次平台提供了一些遥感影像的基本处理函数,如底层的一些读取文件的基本操作。实验中使用的遥感影像大小为500×500,如图1所示。该影像是一美国城市1985年的遥感影像图。根据同地区的SPOT影像及相关资料,把该区地物类别分为8类,各类所对应的代码为:C1为水体、C2为草地、C3为绿化林、C4为裸地、C5为大型建筑物、C6为军事基地、C7为居民地、C8为其他生活设施(包括街道、道路、码头等)。其中,居民地、军事设施、其他生活设施的光谱特征比较接近。图1 TM 原始影像 (5,4,3 合成)在网络训练之前,经过目视解译,并结合一些相关资料,从原始图像上选取了3589个类别已知的样本组成原始样本集。要求原始样本具有典型性、代表性,并能反映实际地物的分布情况。把原始样本集进行预处理,共得到2979个纯净样本。这些预处理后的样本就组成训练样本集。网络训练时的波段选择为TM1、TM2、TM3、TM4、TM5、TM7 共6个波段。另外,由于所要分类的类别数为8,因此,网络结构为:输入层节点数为6,输出层节点数为8,隐层数为1,隐层的节点数为10,然后用训练样本集对网络进行训练。在训练网络的时候,其训练参数分别为:学习率为05,动量率为5,最小均方误差为1,迭代次数为1000。把训练好的网络对整幅遥感影像进行分类,其分类结果如下面图2所示。图2 分类结果为了测试网络的分类精度,在分类完成后,需要进行网络的测试。测试样本的选取仍然采用与选取训练样本集一样的方法在原始影像上进行选取,即结合其他资料,进行目视判读,在原始图像上随机选取类别已知的样本作为测试样本。利用精度评价模块,把测试样本集与已分类图像进行比较,得到分类误差矩阵以及各种分类精度评价标准,如表1 所示:表1 分类误差矩阵总体精度:91,Kappa系数:90。从表1 可以看出,采用测试样本集进行测试,大部分地物的分类精度都达到了 9以上,只有居民地和其他生活设施的精度没有达到,但也分别达到了89 和77,总的分类精度为91。Kappa系数在遥感影像分类精度评价中应用极为广泛,在本次测试中其值为90。从上面的分析可以看出,利用基于遗传算法的BP神经网络进行遥感影像分类,其分类精度较高,取得了令人满意的效果。4 结论与传统的基于统计理论的分类方法相比,BP神经网络分类不要求训练样本正态分布,并且具有复杂的非线性映射能力,更适合于日益激增的海量高光谱遥感数据的处理。但BP神经网络也有易陷于局部极小、不易收敛等缺陷。初始权值和阈值设置不当,是引起网络易陷于局部极小、不易收敛的重要原因。在实验中,利用遗传算法的全局寻优能力来确定BP网络的初始权值和阈值,使得所获取的初始权值和阈值是一组全局近似最优解。然后,利用BP学习算法的局部寻优能力对网络权值和阈值进行精细调整。这样,训练后的稳定网络,不但具有较强的非线性映射能力,而且总可以得到一组均方误差最小的全局最优解。实验表明,利用上述的基于遗传算法的BP神经网络进行遥感影像分类,只要所选取的训练样本具有代表性,能反映实际地物的分布情况,就能够得到较高的分类精度,具有较强的实际应用价值。参考文献HYang et al,A Back-propagation neural networkmfor mineralogical mapping fromAVIRIS data,IJRemote sensing,20 (1):97~110Arduti Alessandro,et Speed up learning and network optimization with extended back Neural Networks,1993,6:365~383Patrick PMinimization methods for training feed forward neural Neural Networks,1994,7:1~12Goldberg D EGenetic algorithms in Search Optimization and Machine LMA:Addison-Wesley,1989Rudolph GConvergence analysis of canonical genetic IEEE Transactions on Neural Networks,1994,5 (1);102~119Fang J,Xi YToward design based on evolutionary ArtificialIE,1997,11 (2):155~161Park Y R,et Prediction sun spots using layered perception neural IEEE T Neural Netorks,1996,7 (2):501~505杨行峻、郑君里人工神经网络与盲信号处理[M]北京:清华出版社,2003,23~40周成虎、骆剑成等遥感影像地学理解与分析[M]北京:科学出版社,2001,228~238王耀男卫星遥感图像的神经网络自动识别[J]湖南大学学报,1998,61~66江东,王建华人工神经网络在遥感中的应用与发展国土与资源遥感,1999,13~18

用ENVI软件直接搞

影像方面的论文

先天性胆总管囊肿的CT、MRI诊断【摘要】目的分析先天性胆总管囊肿的影像学表现,旨在提高对本病的认识。方法回顾20例经过手术病理证实的先天性胆总管囊肿进行影像学分析,所有病例均行CT、MRI平扫及CT增强扫描。结果男性6例,女性14例,年龄8-26岁,胆管囊肿I型11例,II型1例,III型2例,IV型3例,V型3例,所有病例均表现为肝内外胆管薄壁囊状扩张,直径1-0cm,肿块无包膜,大多数形态呈类圆形,增强扫描不强化。结论熟悉胆总管囊肿的发病部位、形态、大小、年龄特点,CT、MRI是一种有价值、无损伤的检查手段。【关键词】先天性胆总管囊肿体层摄影术X线计算机磁共振成像太多了,这是原文收录网站:

也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。  核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。  MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。  MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。  MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。  磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。  磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。  像PET和SPET一样,用于成像的磁共振信号直接来自于物体本身,也可以说,磁共振成像也是一种发射断层成像。但与PET和SPET不同的是磁共振成像不用注射放射性同位素就可成像。这一点也使磁共振成像技术更加安全。  从磁共振图像中我们可以得到物质的多种物理特性参数,如质子密度,自旋-晶格驰豫时间T1,自旋-自旋驰豫时间T2,扩散系数,磁化系数,化学位移等等。对比其它成像技术(如CT 超声 PET等)磁共振成像方式更加多样,成像原理更加复杂,所得到信息也更加丰富。因此磁共振成像成为医学影像中一个热门的研究方向。  核磁共振成像原理:原子核带有正电,许多元素的原子核,如1H、19FT和31P等进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之能进行空间分辨,就得到运动中原子核分布图像。原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。它所需的时间叫弛豫时间。弛豫时间有两种即T1和T2,T1为自旋-点阵或纵向驰豫时间T2,T2为自旋-自旋或横向弛豫时间。  磁共振最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血液和脑脊液的流动;(d)顺磁性物质(e)蛋白质。磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小,从白色、灰色到黑色。各种组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈黑色。  核磁共振的另一特点是流动液体不产生信号称为流动效应或流动空白效应。因此血管是灰白色管状结构,而血液为无信号的黑色。这样使血管很容易软组织分开。正常脊髓周围有脑脊液包围,脑脊液为黑色的,并有白色的硬膜为脂肪所衬托,使脊髓显示为白色的强信号结构。核磁共振已应用于全身各系统的成像诊断。效果最佳的是颅脑,及其脊髓、心脏大血管、关节骨骼、软组织及盆腔等。对心血管疾病不但可以观察各腔室、大血管及瓣膜的解剖变化,而且可作心室分析,进行定性及半定量的诊断,可作多个切面图,空间分辨率高,显示心脏及病变全貌,及其与周围结构的关系,优于其他X线成像、二维超声、核素及CT检查。在对脑脊髓病变诊断时,可作冠状、矢状及横断面像。  检查目的:颅脑及脊柱、脊髓病变,五官科疾病,心脏疾病,纵膈肿块,骨关节和肌肉病变,子宫、卵巢、膀胱、前列腺、肝、肾、胰等部位的病变。  优点:1.MRI对人体没有损伤;  2.MRI能获得脑和脊髓的立体图像,不像CT那样一层一层地扫描而有可能漏掉病变部位;  3.能诊断心脏病变,CT因扫描速度慢而难以胜任;  4.对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT。  缺点:1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断;  2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多;  3.对胃肠道的病变不如内窥镜检查;  4.体内留有金属物品者不宜接受MRI。   危重病人不能做  妊娠3个月内的  带有心脏起搏器的  核磁共振检查的注意事项  由于在核磁共振机器及核磁共振检查室内存在非常强大的磁场,因此,装有心脏起搏器者,以及血管手术后留有金属夹、金属支架者,或其他的冠状动脉、食管、前列腺、胆道进行金属支架手术者,绝对严禁作核磁共振检查,否则,由于金属受强大磁场的吸引而移动,将可能产生严重后果以致生命危险。一般在医院的核磁共振检查室门外,都有红色或黄色的醒目标志注明绝对严禁进行核磁共振检查的情况。  身体内有不能除去的其他金属异物,如金属内固定物、人工关节、金属假牙、支架、银夹、弹片等金属存留者,为检查的相对禁忌,必须检查时,应严密观察,以防检查中金属在强大磁场中移动而损伤邻近大血管和重要组织,产生严重后果,如无特殊必要一般不要接受核磁共振检查。有金属避孕环及活动的金属假牙者一定要取出后再进行检查。  有时,遗留在体内的金属铁离子可能影响图像质量,甚至影响正确诊断。  在进入核磁共振检查室之前,应去除身上带的手机、呼机、磁卡、手表、硬币、钥匙、打火机、金属皮带、金属项链、金属耳环、金属纽扣及其他金属饰品或金属物品。否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示;而且由于强磁场的作用,金属物品可能被吸进核磁共振机,从而对非常昂贵的核磁共振机造成破坏;另外,手机、呼机、磁卡、手表等物品也可能会遭到强磁场的破坏,而造成个人财物不必要的损失。  近年来,随着科技的进步与发展,有许多骨科内固定物,特别是脊柱的内固定物,开始用钛合金或钛金属制成。由于钛金属不受磁场的吸引,在磁场中不会移动。因此体内有钛金属内固定物的病人,进行核磁共振检查时是安全的;而且钛金属也不会对核磁共振的图像产生干扰。这对于患有脊柱疾病并且需要接受脊柱内固定手术的病人是非常有价值的。但是钛合金和钛金属制成的内固定物价格昂贵,在一定程度上影响了它的推广应用。  编辑词条  开放分类:  医疗、医学影像  参考资料:  医学影像技术  贡献者:  wtrecamel、yo不动、waterone83、袖吞乾坤小武侯、dairui725  本词条在以下词条中被提及:  海洛因、肌肉萎缩性脊髓侧索硬化症、原发性肝癌  “MRI”在英汉词典中的解释(来源:百度词典):  MRI     = Magnetic Resonance Imaging 【医】磁共振造影   = Machine Readable Information 【电脑】机读信息

医学影像文献检索方法

1:影像学专业除了学习专业的X放射,CT,磁共振,B超,核素等之外,医学方面的基础科目基本都要学,大概10+门吧,就是侧重点不同,当然内科,外科,妇产科,儿科是基础中的重点,一定要掌握好,因为以后工作后碰到很多考试内外妇儿占比例比较大。2:学医学的最有别于其他的试验当然就是解剖了,但一般跟临床不一样,不会太多的切切割割,大多是看。还有很多小动物试验,如兔子等,另外还有电子试验。3:4年学校上课结束后有1年时间在大的医院实习,跟正式工作差不多了多少,就是没有工资,医生会把实习的当成免费劳动力。实习大多时间在影像科室边工作边学习,少数时间在临床科室转,学习一些临床知识。学习累不累那要看自己怎么学了。4:影像的就业还算可以,但随便什么工作的就业形式都在变差,几年后怎样还不好说。只要你在学校把英语4级最好是6级过了,考个计算机等级证书,把所有科目考过了拿满学分,这样找个地方医院一般还是可以的,大医院想进比较难,现在很多招研究生了。

课程知识主要课程设置英语、计算机、人体解剖学、组织学和胚胎学、影像电子学基础、生理学、病理学、放射物理与防护、诊断学、内科学、外科学、医学影像设备学、医学影像设备管理、医学影像成像原理、医学影像检查技术、医学影像诊断学、超声诊断学、介入医学、核医学、放射治疗技术及营销等。毕业生应具备的知识和能力掌握基础医学、临床医学、电子学的基本理论、基本知识掌握医学影像学范畴内各项技术(包括常规放射学、CT、核磁共振、DSA、超声医学、核医学、介入医学等)及计算机的基本理论和操作技能具有运用各种影像诊断技术进行疾病诊断的能力熟悉有关放射防护的方针、政策和方法,熟悉相关的医学伦理学了解医学影像学各专业分支的理论前沿和发展动态掌握文献检索、资料查询、计算机应用的基本方法,具有一定的科学研究和实际工作能力。

课程知识主要课程设置英语、计算机、人体解剖学、组织学和胚胎学、影像电子学基础、生理学、病理学、放射物理与防护、诊断学、内科学、外科学、医学影像设备学、医学影像设备管理、医学影像成像原理、医学影像检查技术、医学影像诊断学、超声诊断学、介入医学、核医学、放射治疗技术及营销等。毕业生应具备的知识和能力掌握基础医学、临床医学、电子学的基本理论、基本知识掌握医学影像学范畴内各项技术(包括常规放射学、CT、核磁共振、DSA、超声医学、核医学、介入医学等)及计算机的基本理论和操作技能具有运用各种影像诊断技术进行疾病诊断的能力熟悉有关放射防护的方针、政策和方法,熟悉相关的医学伦理学了解医学影像学各专业分支的理论前沿和发展动态掌握文献检索、资料查询、计算机应用的基本方法,具有一定的科学研究和实际工作能力。

分三类。分别是:基础医学、临床医学、医学影像学。基础医学现代医学的基础。基础医学是研究人的生命和疾病现象的本质及其规律的自然科学。其所研究的关于人体的健康与疾病的本质及其规律为其他所有应用医学所遵循。临床医学是研究疾病的病因、诊断、治疗和预后,提高临床治疗水平,促进人体健康的科学。临床”即“亲临病床”之意,它根据病人的临床表现,从整体出发结合研究疾病的病因、发病机理和病理过程,进而确定诊断,通过预防和治疗以最大程度上减弱疾病、减轻病人痛苦、恢复病人健康、保护劳动力。临床医学是直接面对疾病、病人,对病人直接实施治疗的科学。医学影像学是研究借助于某种介质(如X射线、电磁场、超声波等)与人体相互作用,把人体内部组织器官结构、密度以影像方式表现出来,供诊断医师根据影像提供的信息进行判断,从而对人体健康状况进行评价的一门科学,包括医学成像系统和医学图像处理两方面相对独立的研究方向。医学成像又称卤化银成像,因为从前的菲林(胶卷)是用感光材料卤化银化学感光物成像的。扩展资料:医学影像学需要具备的能力:掌握基础医学、临床医学、电子学的基本理论、基本知识。掌握医学影像学范畴内各项技术(包括常规放射学、CT、核磁共振、DSA、超声学、核医学、影像学等)及计算机的基本理论和操作技能。具有运用各种影像诊断技术进行疾病诊断的能力。熟悉有关放射防护的方针,政策和方法,熟悉相关的医学伦理学。了解医学影像学各专业分支的理论前沿和发展动态。掌握文献检索、资料查询、计算机应用的基本方法,具有一定的科学研究和实际工作能力。参考资料:百度百科-医学影像学专业

红外成像论文

使用经验 三大数码照片格式 数码相机三大存储格式就是RAW、TIFF和JPEG,了解这三种格式的特点您才能够在拍摄时正确地选择存储格式。 首先是高级数码相机支持的RAW图像格式,这是一种将数码相机感光元件成像后的图像数据直接存储的格式,不经过压缩也不会损伤数码照片的质量,而且由于存储的是感光元件的原始图像数据,以后您还可以对图像的正负两级的曝光调整、色阶曲线、白平衡、锐利度等参数进行调整;缺点是RAW需要特殊的软件来处理,同时在拍摄时,数码相机的液晶屏幕上只能看到RAW文件的专门为预览提供的JPEG副本,而且为了避免浪费存储空间,这个副本的压缩比大,图像质量比较差。这也是部分数码相机用户误以为RAW格式的效果比JPEG还差的原因。 如果拍摄的数码照片是用于印刷出版,那么只有RAW和采用无损压缩格式的TIFF格式的照片的效果会比较理想。TIFF格式是目前大部分数码相机都支持的格式,其优点是质量好而且兼容性比RAW高,不会受到处理软件的限制,但TIFF格式的缺点也非常明显,那就是图像的文件大而且在存储时也需要更多的时间。 JPEG是三种格式中“体积”最小的,如果您追求更快的存储速度和更高的软件兼容性,那么JPEG是最好的选择。但需要注意,JPEG是一种有损压缩格式,也就是它在压缩的过程中丢掉了原始图像的部分数据,而且这些数据是无法恢复的。 使用了数码变焦拍摄并存储为JPEG格式的照片,数码变焦的效果优于后期电脑软件的插值放大效果,而对于无损的TIFF或RAW格式图像而言,后期软件处理比数码变焦的效果要好一些。 使用经验 正确使用RAW格式 高级数码相机支持使用RAW图像格式,但是不少用户都不太明白应该怎么去使用它。这种原始图像数据存储格式类似传统相机的数字底片,是专业摄影师的首选格式。如果您也想使用单反数码相机代替专业传统胶片相机,那么您也会需要这种能够最大限度地保留了成像时的各项细节和数据的图像格式。 但要使用这种图像格式,需要专门的图像处理工具软件,RAW文件是CCD或CMOS感光部件在拍摄时所记录下的原始数据文件,是以一组8位或10位的二进制数据记录的数据,只反映照射到感光单元上光线的强度,本身并不包含色彩等直观的图像信息,而且它是和硬件密切相关的,不知道CCD或CMOS的感光单元行列排布、滤色镜排列等物理参数就无法将它转换成图像,所以处理RAW文件的图像处理工具还需要支持您的数码相机。 一般情况下,推荐您首选数码相机厂商附送的软件,例如,如果您使用佳能公司的EOS 10D数码相机,可以选择该公司附送的RAW文件浏览器“File Viewer Utility”,这样就可以在电脑上浏览拍摄的照片,查看所有相关的相机设置。更为重要的是,它可以让您调整RAW格式的图像,包括正负两级的曝光调整、色阶曲线、白平衡、锐度等参数。 另外,您也可以考虑使用Photoshop的数码相机RAW插件,该插件支持佳能、富士等多家数码相机厂商的数码相机。 使用经验 恢复误删的数码照片 使用数码相机时,我们将数码照片存储在存储媒介上,常见的存储媒介有CF、SM、SD卡和记忆棒等。另外,我们还会将数码照片拷贝到电脑上,有时因为主观或者客观的种种原因,会出现误操作而将有用的照片或者其他数据文件误删除。此时,您大可不必捶胸顿足,无论是存储在存储卡上的还是拷贝到硬盘上的数码照片,误删除后大部分情况下都是可以恢复的。 对于电脑上被误删除的数据可以恢复这一点,相信大多数比较熟悉电脑的用户都没有异议,但大部分用户都误以为存储卡上的数据是不一样的。实际上,数码相机都是遵循DCIM标准的,存储卡上的数据存储格式和操作方式都和电脑操作磁盘数据时一样。所以,基于磁盘等磁介质的数据恢复原理,从理论上讲,存储卡上的数码照片和已经拷贝到电脑上的数码照片一样,不但是可以恢复的,而且是很容易实现的。使用电脑上常用的数据恢复软件,例如Easy Recovery、Get Data Back、Final Data、R-Studio等,都可以轻易地恢复存储卡上的数码照片。 使用经验 拍摄时分辨率的影响 分辨率越大,图像的精度越高,尽量使用高分辨率进行拍摄是许多数码相机用户的一种错误的认识。理论上讲,高分辨率可以获得高精度的图像,但数码照片要以图像文件的形式记录,随着分辨率的提高,图像文件也将增大,数码相机处理图像的时间随之增多。所以使用的分辨率越高,拍摄时需要的处理时间越多,拍摄时需要占用的存储空间也越大。使用数码相机拍摄时存储器件的容量是有限的,使用的分辨率越高所能拍摄的张数自然也就越少。另外,由于处理的时间长,在抓拍时使用过高的分辨率将有可能错过精彩的镜头。 即使您不在意存储空间的浪费和处理时间的增加,分辨率的选择也应当以够用为限,否则当您做后期处理时,您会发现,用较高分辨率拍摄的图像利用软件缩小成低分辨率,与用较低分辨率直接拍摄的图像视觉效果几乎相同,而且后者的图像锐度似乎还会更好一些。 使用经验 拍摄时分辨率的选择 目前,大多数数码相机都有几级分辨率可供选择,如何决定应该选择多大的拍摄分辨率呢?拍摄后的图像用途是影响需要选择哪一级别分辨率进行拍摄的主要原因。如果数码照片只是用于网页制作上,那么不需要太高的分辨率,如果只是在显示器上显示用,必须记住,图像像素和显示器显示设置存在相互对应的关系。所以若想让图像全屏显示到标准640×480像素的显示屏上,那么您需要的仅仅是一幅640×480像素的图像。如果屏幕显示设置为1280×960像素,那么640×480像素的图像只会占到屏幕的一半空间。不需要考虑每英寸的像素数目,显示器仅仅在意水平和垂直像素的数目。 如果您的数码照片将用于打印输出,那么您需要记住,屏幕显示和打印、印刷输出是两回事,您需要了解两个词汇并记住它们之间的关系,图像分辨率是描述图像的总像素数(PPI)的,以PPI为单位。而决定图像输出质量的是图像的输出分辨率,描述的是设备输出图像时每英寸可产生的点数(DPI),以DPI为单位。两者有联系但并不相等,“图像分辨率÷输出分辨率=图像输出尺寸”。以杂志印刷为例,输出分辨率最低要求为300 DPI,16开满版图片也就需要约3200×2400的分辨率。 使用经验 冲印尺寸与拍摄参数 目前数码冲印系统可以为您提供小至1寸,大至16寸的10种不同规格的冲印服务,不同规格的冲印尺寸对数码照片有不同的要求。 要得到好的照片,数码相机的有效像素最好在300万以上,同时,拍摄的数码照片分辨率也有一定要求。一般情况下,在数码冲印时有一个简单的计算方法,可以计算多大分辨率的数码照片合适冲印多大的照片,分辨率为1600×1200的数码照片,通过1600÷250 = 4四舍五入后为6的计算方法,计算出合适的冲印照片尺寸是6寸,那么您可以将6乘以250,就可以得出选择1600×1200的分辨率是比较合适的。 要注意,不同数码相机的选择方法是不同的,大部分数码相机提供了比较详细的分辨率选项,但有的则只提供Large、Medium、Low三级选择,此时您需要参照数码相机的说明书等资料了解对应的分辨率大小。 使用经验 白平衡的使用 在数码摄影中,要达到准确的色彩还原,解决相机不能正确识别各种不同性质的光源颜色的问题,必须正确设置白平衡。 各厂家的数码相机既有自动进行白平衡的,也有手动进行的。自动白平衡虽然方便,但准确度有限,所以,现在的数码相机除了自动白平衡之外,还有日光、阴天、白炽灯、日光灯等多种预定义的白平衡。但即使如此,现实生活中光线条件是多种多样的,不同的数码相机,预定义的白平衡和自动白平衡的修正能力也是有限的。另外,在使用自动白平衡时还容易由于前一个景物的颜色特别偏向某一种颜色,引起之后的照片都偏向某一种色的问题。 因此,在选购时,您最好选择具有手动白平衡功能的数码相机,给自己留下更多的调整空间。仔细观察,反复揣摩,熟练地使用白平衡功能将会拍摄出更优美的照片,给您带来意想不到的乐趣。 不要太过于局限于专家或者传统的使用方法,例如佳能G2数码相机的用户大多按WB按钮切换到白平衡设置,选择最后一项的手动设置然后将镜头对着大面积的纯白色对象按下“*”按钮来设置白平衡。但事实上,我们可以按实际的需要进行设置,例如反向利用白平衡功能,这样不仅能够把晚霞拍摄得更红,而且还可以拍摄出像专业照片那样的摄影效果。 使用经验 测光方式的选择 几乎目前所有的数码相机都采用TTL测光方式经过镜头来测光。透过镜头测光的好处是能够直接反射所见景物光线的大小,也就是光线经于镜头投射在感光元件上,感光元件再将光信号传送给数码相机的处理芯片作分析。另外,部分半专业或者专业数码相机还提供多种测光方式供用户选择,在选择测光方式时,您首先要弄明白这些测光方式的特点。 目前,数码相机的测光方式有许多种,但实际上,可以将它们划分为平均测光、中央重点测光和点测光几种。 平均测光就是把画面的所有光线强度的平均值作为测光数值,其特点是不考虑画面主体,对于光照比较平均的画面,测光比较准确,适合于光照均匀,没有强烈反差对比的场合。平均测光有多种数据采集和计算方法,例如佳能的“分区评价测光”方式,将画面分割成35部分作评价测光,实际上这也是平均测光的一种,但是能令计算结果更趋合理。 中央重点测光是将画面中心及附近的画面按不同的加权系数进行计算得出的值作为测光数值,以中心的权数为最大,越接近画面边缘,权数越小。这是一种中庸的测光方式,既照顾到取景范围内整体的亮度,又考虑到摄影时的主体一般位于中央区域,适合主体比较突出又需要兼顾背景的场合。 点测光是比较专业的测光方式,取画面中心占1%的面积作为测光区域。这是一种比较极端的测光方式,适合于光线复杂或光比强烈需要突出主体的场合,营造特殊艺术效果。 使用经验 感光度的设定 ISO(International Standards Organization)是制定工业标准的国际标准组织的简称。胶片相机工业标准中,ISO标准衡量胶片对光线敏感程度,数值越低,胶片的曝光感应速度越慢。 数码相机中同样也采用ISO标准来衡量感光部件对光线的敏感程度,数值越大,感光部件越敏感。在传统相机中,您可以按需要的拍摄效果使用不同ISO标准的胶片来利用其不同的曝光感应速度。在数码相机中,您也可以通过调整ISO数值来设定改变感光部件的敏感程度。 在数码相机上提高ISO数值也就是提高感光度,由于感光度的提高,数码相机的快门速度会比较快,拍摄起来也比较容易。但是需要注意,因此也会产生一些不良的影响,例如,因为感光部件感光不足而使光信号转换为电信号后的电流强度减弱,照片的阴暗部分或者单色区域噪声色斑现象会比较明显。如果您希望获得画面干净利索的照片,那么您或者可以考虑采用低ISO数值来拍摄。不过,不同的相机感光度的设定还需要您自己实际去体验,建议您在还没有了解相机的特性时,在拍摄时一级一级地升高感光度来进行测试。 使用经验 快门的控制技巧 在摄影技术中,拍摄影像的最原始的质量来源于对曝光的控制。数码相机与传统相机一样,通过光圈和快门控制允许光线照射到感光元件或胶片上的量。其中,快门决定了拍摄影像的时间,其打开的时间就是根据设定的快门速度决定的。 通常,相机的快门速度范围有4秒、2秒、1秒等多种。控制快门的技巧首先是要注意安全快门的时间,如果在快门打开期间,相机因不稳而产生晃动,则拍摄所得的影像就会变得模糊不清。这就是为什么在拍摄时要保持机身的稳定,也正是为什么快门速度过慢更容易使影像模糊的原因。因此,一般情况下,选择的快门速度要比安全快门速度快,安全快门=1/镜头的焦距。例如,镜头的焦距是50mm,安全快门就是1/50秒,即要选1/60秒以上的快门速度才可避免因拍摄时手部震动而造成影像模糊的问题。 另外,在控制快门时,还需要特别注意快门的时滞问题。所谓快门时滞也就是按下快门和感光元件或胶片成像之间的时间,由于数码相机的快门时滞比传统相机长,只有顶级专业单镜头反光数码相机的快门时滞与传统相机相当,而绝大多数数码相机的时滞都是普通传统相机的2-3倍。如果使用液晶屏取景的话,时滞更加严重,时滞的时间虽然很短,但对于一个运动的物体来说,这便是很长的时间了,对于抓拍摄影,必然会错过最佳时机。而且不同相机的时滞都不同,您需要了解自己的相机,同时做大量的快速反应拍摄练习来避免时滞对您的影响。 使用经验 控制曝光量 不论是传统相机还是数码相机,拍摄时控制曝光量都是影响照片效果的关键。要控制好曝光量,首先要记住快门速度、光圈和ISO感光度三者之间的关系,即快门速度提高一倍,镜头的通光量就会减少一半;光圈每增加一档,和快门速度提高一倍时一样,通光量也会减少一半;ISO感光度增加一倍,通光量即使减半也能够用同样曝光量曝光。 如今大多数数码相机都配备了“曝光补偿”功能,将曝光补偿设置成+1档,就意味着快门速度减慢一半,或者光圈增大一倍。实际上,使用数码相机提供的预设模式时,相机会从光圈和快门速度两方面进行调节,以使通光量翻倍。 一般情况下,可以由相机来测定整个画面的光线亮度,并确定最佳曝光量。但相机的智能是有限的,例如在拍摄雪景等以白色为主的对象时,数码相机本身就会错误地认为光量充足,并自动减小曝光量,这样拍摄到的画面就较暗。而拍摄大面积黑色对象时,相机同样会认为光线不足。 要控制好曝光量,您需要具有曝光补偿的知识,这样才能拍摄到亮度和预想亮度一样的照片。在什么样的情况下,什么程度的补偿最合适,最终还是要由您本人的眼睛来掌握。这里无法给您一个准确的标准,但原则是,对于白色和高亮度区域多的对象应增加曝光补偿,黑色和昏暗的、区域广的对象,应减小曝光补偿。 使用经验 红外线拍摄效果 除了一般的闪光灯外,其他光线也可以应用在摄影技术上,例如,红外线和紫外线等。红外线摄影技术不管是在业余或者是专业领域,都有相当多的讨论和应用。想体验一下,您可以在拍摄时应用大功率的红外线灯照射主体,也可以在其他电子发光装置上装一个红外滤光片,这样,红外线会直接打在主体上再反射回镜头成像,这样就可以实现红外线拍摄效果。但传统摄影必须依赖红外线专用底片,而且底片保存、冲洗与运送都是一件麻烦事,所以一般用户都比较缺乏这方面的经验。但数码相机由于硅材质的感光元件对红外线的波长敏感,拍摄红外线照片会比传统相机简单。 另外,如果您的数码相机配备红外线辅助功能,例如SONY的F717,那么应用红外线摄影时,不仅能在微光的环境下继续操作拍摄生态写真,而且将之应用在风景摄影上也可创造出与众不同的特别效果,并且还可以有透视功能,但红外线的透视能力并不是100%。 使用经验 合理使用闪光灯 闪光灯是非常便捷且适合当作补充光源的一种工具。但一般来说,强调自动化的数码相机并没有太强的闪光灯,充其量是把闪灯功能加以程序化,提供“自动”、“强制”、“防红眼”、“慢速”等设定。 “自动”模式下,相机会自动判断拍摄场景的光线是否充足。如果不足,就会自动在拍摄时打开闪光灯进行闪光,以弥补光线;“防红眼”模式先让闪光灯快速闪烁一次或数次,使人的瞳孔适应之后,再进行主要的闪光与拍摄,避免照片中人眼睛发红的问题;“强制”模式即不管在明亮或弱光的环境中,都开启闪光灯进行闪光,通常用在拍摄背对光源的人物;“慢速”模式会延迟数码相机的快门释放速度,以闪光灯照明前景,配合慢速快门,如1/5秒,为弱光背景曝光,能够拍摄出前后景均得到和谐曝光的照片。 由于数码相机的智能程度有限,在不同设定下,闪光灯产生的效果很难确定,因此,要获得更好的拍摄效果,需要选购带手动功能的外接闪光灯的数码相机,通过人脑决定闪光灯的强度、大小、次数与频率,可以大大地增加摄影适用范围。一般,手动控制闪光灯需要进行大量的实践,因为使用的是数码相机,所以您可以多试拍几张以确定闪光灯的能量。需要注意的是,部分外接闪光灯使用低功率以减少光的输出时,色温会稍高。 使用经验 理解电脑屏幕的差异 使用数码相机的用户大多都会使用电脑对照片进行处理,或者是在电脑上存储、浏览照片。但同时,由于在电脑屏幕上浏览照片的效果与实际输出的照片效果不相同而引起的烦恼也困扰着大部分用户。 实际上,由于设备的不同,产生这种差异是非常正常的,您是否感觉到电脑上所呈现的影像比打印机输出的照片漂亮呢?显示器的分辨率只有72dpi,但显示出的影像却比720dpi甚至1440dpi的打印机结果还要好,其原因就在于,电脑屏幕上输出的色彩采用模拟方式,当影像能以连续色调显示时,就算分辨率不怎么高,影像仍很逼真。但用喷墨或是激光打印机输出时,影像是以墨点来构成的。打印机仅能控制有无墨点,却无法控制其深浅变化。而且印刷采用的分辨率与电子影像的分辨率不同,以目前的技术要让打印机以同样精确的墨滴进行打印是相当困难的。 另外,还有许多类似的问题,例如,照片在数码相机上效果正常,但在电脑屏幕上看时却有点曝光不正常,这是由于数码相机的液晶显示和阴极射线式显示器的差异造成的,和打印机的问题一样是相当正常的。 那么应该如何解决这些问题呢?要解决打印机的问题,首先需要您调整电脑屏幕的颜色,使之显示的颜色能够与打印机的一致,同时学会计算打印输出不同质量的图像时需要的精度(可参考上面介绍的“拍摄时分辨率的选择”)。而数码相机液晶显示的问题比较简单,您只需要使用Photoshop打开图像,使用“图像”菜单“调整”中的“色阶”查看一下,如果色阶平均,则说明照片曝光正常,应该调节显示器亮度,如果色阶右边有空白的区域,则说明照片曝光不足,有了依据您就可以做出调整。 使用经验 保护Exif摄影信息 大部分数码相机都支持在照片上存储Exif摄影信息,这些摄影信息可以帮助我们方便地保存拍摄数据,在欣赏数码照片时,既可以回味拍摄时的感觉,还可以让我们总结拍摄经验,提高摄影水平。通过研读数码照片的摄影信息,比较同一主题的照片所采用的各种不同快门、光圈等相机设置和处理,我们可以更好地掌握拍摄此类照片时最佳的相机设置,从而提高自己的摄影水平。 Exif信息非常有用,但也很容易被破坏。如果您使用Windows XP的图像文件查看功能浏览您的数码照片,照片上的摄影信息将会被破坏。摄影信息就会被破坏,而且这些摄影信息一旦被破坏就无法恢复了。 另外,大部分电脑用户都喜欢使用通用的图像浏览软件(如ACDSee)来浏览数码照片,但是,您需要特别注意的是,如果您使用ACDSee旋转照片或者改变数码照片的分辨率,数码照片的摄影信息也会被更改,因此,在选择和使用管理数码照片的软件时,您需要特别小心。如果您的数码相机厂商随机附赠处理和浏览数码照片的软件,您应该首先选择它们,例如佳能数码相机的ZoomBrowser EX、PhotoStitch等随机附送软件。 维护保养 数码相机固件升级 我们需要不时地对电脑主板BIOS进行升级来获得更稳定的性能,数码相机也一样,通过固件(Firmware)的升级,可以提高系统的性能并改善其功能。数码相机的固件和电脑主板BIOS一样,是烧录在芯片上的。目前,大部分数码相机的固件采用了可擦写芯片,我们只需要利用一个简单的工具软件以及相应的数据,就可以对数码相机的固件进行升级。 以佳能的PowerShot G2为例,您可以首先从佳能公司的网站上查看和下载升级用的固件软件包。解压缩后您就会获得一个“fir”文件,这个文件就是G2的最新固件程序。接下来把这个文件拷贝到您的G2相机的存储卡中。您可以先通过读卡器拷贝文件到存储卡上,然后再将卡插到相机上。也可以用USB数据线把电脑和相机连接起来,将相机的模式转盘选择到播放档,再运行固件升级软件包中的UPLOADFIRMWAREEXE就可以把文件传输到存储卡中。 拷贝文件后,不需要连接电脑,将相机模式转盘保持在播放档,同时确保数码相机有充足的电力支持,可以考虑接上外接电源来保证足够的电能。打开可以在相机上调出播放档的菜单,选择菜单里多出来的“Firm Updated”选项,按下确认键,固件升级就开始执行了。约几十秒后,相机升级完毕,之后会伴随一声清脆的启动声音,液晶显示屏上会出现一个升级成功的提示“Updated already”,重新启动相机,整个固件升级工作就完成了。 维护保养 镜头的清洁技巧 相机镜头是非常精密的部件,其表面做了防反射的涂层处理,一定要注意不能直接用手去摸,因为这样就会粘上油渍及指纹,这对涂层非常有害,而且对数码相机拍摄出来的照片质量影响也很要大。 相机使用后,镜头多多少少也会沾上灰尘,最好的方法是用吹气球吹掉,或者是用软毛刷轻轻刷掉。如果吹不去也刷不掉,那就要使用专用的镜头布或者镜头纸轻轻擦拭,但要记住一个原则,那就是不到万不得已不要擦拭镜头。千万不要用纸巾等看似柔软的纸张来清洁镜头,这些纸张都包含有比较容易刮伤涂层的木质纸浆,一不小心会严重损害相机镜头上的易损涂层。在擦拭之前,要确保表面无可见的灰尘颗粒,以避免灰尘颗粒磨花镜头。擦拭时轻轻地沿着同一个方向擦拭,不要来回反复擦,以避免磨伤镜片。如果这样还是不行,市面上也有相机专用清洗液,但要注意,使用清洗液时,应该将清洗液沾在镜头纸上擦拭镜头,而不能够将清洗液直接滴在镜头上。 另外,绝对不能随便使用其他化学物质擦拭镜头,而且只有在非常必要时才使用清洗液,平时注意盖上镜头盖和使用相机包,以减少清洗的次数,清洗液多少还是会对镜头有害而且有可能带来一些潮湿问题。 维护保养 液晶屏的保护 彩色液晶显示屏是数码相机重要的特色部件,不但价格很贵,而且容易受到损伤,因此在使用过程中需要特别注意保护。首先要注意避免彩色液晶显示屏被硬物刮伤,彩色液晶显示屏的表面有的有保护膜,有的没有,没有保护膜的彩色液晶显示屏非常脆弱,任何刮伤,都会留下痕迹,您可以考虑使用掌上电脑屏幕使用的保护贴纸,这对保护彩色液晶显示屏有一定的作用。 另外,要注意不要让彩色液晶显示屏表面受重物挤压,同时还要特别注意避免高温对彩色液晶显示屏的伤害,随着温度的升高,彩色液晶显示屏会变黑,达到一定的温度后,即使温度降到正常的状态,彩色液晶显示屏也无法恢复。而有些彩色液晶显示屏显示的亮度会随着温度的下降而降低,温度相当低时,液晶显示屏显示的亮度将会很低,一旦温度回升,亮度又将自动恢复正常,这属于正常现象。 此外,彩色液晶显示屏的背后有一个无法从表面看到的灯,如果彩色液晶显示屏显示的影像变暗,或显示的影像上有斑斑点点,或根本就不能显示影像,多半是灯泡老化所致,遇到这种情况,一般只要更换相应的灯泡即可。如果彩色液晶显示屏表面脏了,清洁的方法可以参考清洁镜头的方法,清洁完后,应该用干燥的棉布擦干。 维护保养 存储卡的维护和保养 对于数码摄影而言,存储卡在摄影过程中扮演着相当重要的角色。但是,由于存储卡的使用比较简单,经常会由于用户漫不经心地使用、处理而导致存储卡损坏。 保护存储卡的首要原则是,永远只在数码相机已经关闭的情况下安装和取出存储卡。使用者常犯的错误是,急着要将储存卡从相机中取出,虽然电源已经关闭,但有些相机的储存速度较慢,或是图档较大要花较长的时间,相机也许看起来已经处于停止状态,但事实上,储存动作仍在继续,这时存到一半的档案毁了不说,还可能造成储存卡的永久毁损。因此,建议您关闭相机后等一会儿或注意相机的亮灯完全熄灭后再取出储存卡。 其次,平时不要随意格式化存储卡,在使用相机格式化存储卡时,注意相机是否有足够的电量;在使用电脑格式化存储卡时,注意选择准确的格式。如果您使用Windows XP之类的操作系统,需要注意,系统格式化时,默认的FAT32格式是不正确的,一般数码相机都采用FAT格式。 同时,还需要注意避免在高温、高湿度下使用和存放存储卡,不要将存储卡置于高温和直射阳光下。避免重压、弯曲、掉落、撞击等物理伤害,远离静电、磁场、液体和腐蚀性的物质。在拆卸存储卡时,避免触及存储卡的存储介质。如果长期使用后,存储卡插槽的接触点脏了,导致存储、读取信息的故障,这时您可以使用压缩空气去吹,而千万不要用小的棍棒伸进去擦,否则可能引起更大的问题。 维护保养 电池的使用和保养 数码相机和传统相机不同,数码相机对电力的需求特别大。因此,锂电池和镍氢电池这些可重复使用且电量也较大的电池越来越受到数码相机用户的欢迎。但不论是锂电池还是镍氢电池,各种电池的使用、保存、携带都有很多要注意的地方。 镍氢电池有记忆效应,这种效应会降低电池的总容量和使用时间。随着时间的推移,存储电荷会越来越少,电池也就会消耗得越来越快。因此,应该尽量将电力全部用完再充电。如果使用的?/ca> 参考资料:-10-24/shtml

自然界中除了人眼看得见的光(通常称为可见光),还有紫外线、 红外线等非可见光。自然界中温度高于绝对零度(-273℃)的任何物体,随时都向外辐射出电磁波(红外线),因此红外线是自然界中存在最广泛的电磁波,并且热红外线不会被大气烟云所吸收。随着科技的日新月异,利用红外线这一特性,采用应用电子技术和计算机软件与红外线技术的结合,用来检测和测量热辐射。物体表面对外辐射热量的大小,热敏感传感器获取不同热量差,通过电子技术和软件技术的处理,呈现出明暗或色差各不相同的图像,也就是我们通常说的红外线热成像;将辐射源表面热量通过热辐射算法运算转换后,实现了热像与温度之间的换算。

摘 要图像融合是一门新兴的学术研究方向,多传感器图像融合是指将多元信道所采集的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成统一图像或综合图像特征以供观察或进一步处理。它是一门综合传感器、图像处理、信号处理、计算机视觉和人工智能等技术的现代高新技术。 图像融合工具箱是基于Matlab GUI界面,实现图像融合的可视化人机交互界面。图像融合工具箱的研制具有极其重要的意义,它不仅使图像融合变得更加直观,而且可以显示相应参数,为评价图像融合的效果提供了数据支持。本文主要是研究基于小波变换的彩色图像融合算法(包括2种融合规则:选择最大规则和加权系数规则)和融合方法性能评价,及matlab算法实现,并将其基于Matlab GUI的界面程序。这次设计主要编写了基于小波变换图像融合算法的程序以及完成若干个融合方法性能评价(主要有均方根误差、互信息、熵和交叉熵等),另外为使程序在能更加简单明了的呈现其特点,还设计了Matlab GUI的图像融合控制工具箱界面。关键词: 图像融合,小波变换,Matlab GUI目录前 言 1第1章 图像融合概述 1多传感器图像融合的基本概念 1多传感器数据融合 2从数据融合到图像融合 2 图像融合的分类及流程 3 图像融合技术的发展及应用 4 本章小结 7第2章 图像融合程序的算法及实现 1 图像融合算法 1图像融合算法概述 2 小波分析 3 基于小波变换的融合算法 2 图像融合算法的实现 1 原始图像的制作 2 融合算法的函数 3 实现融合算法的具体程序 3 图像融合效果的评价的及其实现 1 融合效果评价 2 图像融合效果评价的实现 4 图像融合算法的程序实现结果 5 本章小结 25第3章 图像融合程序的界面及实现 1 GUI图形用户界面 1 Matlab语言GUI图形用户界面概述 2图形对象简介 3 GUIDE的使用 2 GUI图形用户界面的实现 1 图像融合界面设计要求 2 图像融合界面的具体实现 3 GUI图形用户界面的实现结果 3 本章小结 43第4章 结论 44致 谢 45参考文献 46附录 47

  • 索引序列
  • 影像成像方法论文
  • 遥感影像分类方法论文
  • 影像方面的论文
  • 医学影像文献检索方法
  • 红外成像论文
  • 返回顶部