首页 > 论文期刊知识库 > 关于雷达技术的论文

关于雷达技术的论文

发布时间:

关于雷达技术的论文

稀疏成份分析及在雷达成像处理中的应用稀疏成份分析是一种新兴的信号分析方法。它以过完备词典为基础,能从有限的观测数据中获得信号的稀疏表示,有效地挖掘信号的自然属性和本质的驱动源,提高变换域的分辨率,为信号处理提供了有力的工具。作为信号处理的重要组成部分,雷达成像技术无论在军事还是民用上都有巨大的应用潜力。雷达成像本质上就是一个信号表示过程,由于高频区雷达目标散射行为具有局部特性,用稀疏成份分析方法能提高雷达图像的质量,有利于图像分析和目标识别。针对雷达成像的应用背景,本文研究了稀疏成份分析中稀疏性度量函数构造的一般准则等理论问题,以及基于稀疏成份分析的雷达成像算法,包括一维距离像、二维逆合成孔径雷达成像和多频段雷达信号综合技术等。研究了稀疏成份分析中度量函数的构造和算法分析等理论问题。利用稀疏成份分析方法研究了高分辨一维距离像稀疏表示的原子构造与相关算法,并对算法的参数估计性能进行了理论分析。研究了基于稀疏成份分析的逆合成孔径雷达成像算法。根据雷达目标散射信号的稀疏表示模型,研究了多频段多分辨雷达信号综合技术。根据雷达目标的理想点散射体模型和几何绕射模型,分析了多频段雷达回波观测信号的联系与差别,并利用稀疏成份分析方法提出了高分辨一维距离像的多频段信号综合成像技术。针对多频段窄带组网雷达检测海上目标的应用背景,根据雷达目标在低分辨回波中的稀疏分布特性和海杂波的分布特性,提出了多雷达距离分辨率匹配处理技术,提高了雷达回波的距离分辨率并实现了多雷达距离分辨率的匹配统一,为多频段窄带雷达信号综合提供了统一的基础。

你不应该这这问吧

同学,我是田雨,请你独立完成作业,如果有不懂的可以直接来问我

关于雷达技术的论文英文

推荐一个地址给你参考!_jsp?bbs_sn=969885&bbs_page_no=1&bbs_id=9999

能不能翻译出来啊?我翻译不准确。谢了

你不应该这这问吧

关于雷达技术的论文题目

同学,我是田雨,请你独立完成作业,如果有不懂的可以直接来问我

稀疏成份分析及在雷达成像处理中的应用稀疏成份分析是一种新兴的信号分析方法。它以过完备词典为基础,能从有限的观测数据中获得信号的稀疏表示,有效地挖掘信号的自然属性和本质的驱动源,提高变换域的分辨率,为信号处理提供了有力的工具。作为信号处理的重要组成部分,雷达成像技术无论在军事还是民用上都有巨大的应用潜力。雷达成像本质上就是一个信号表示过程,由于高频区雷达目标散射行为具有局部特性,用稀疏成份分析方法能提高雷达图像的质量,有利于图像分析和目标识别。针对雷达成像的应用背景,本文研究了稀疏成份分析中稀疏性度量函数构造的一般准则等理论问题,以及基于稀疏成份分析的雷达成像算法,包括一维距离像、二维逆合成孔径雷达成像和多频段雷达信号综合技术等。研究了稀疏成份分析中度量函数的构造和算法分析等理论问题。利用稀疏成份分析方法研究了高分辨一维距离像稀疏表示的原子构造与相关算法,并对算法的参数估计性能进行了理论分析。研究了基于稀疏成份分析的逆合成孔径雷达成像算法。根据雷达目标散射信号的稀疏表示模型,研究了多频段多分辨雷达信号综合技术。根据雷达目标的理想点散射体模型和几何绕射模型,分析了多频段雷达回波观测信号的联系与差别,并利用稀疏成份分析方法提出了高分辨一维距离像的多频段信号综合成像技术。针对多频段窄带组网雷达检测海上目标的应用背景,根据雷达目标在低分辨回波中的稀疏分布特性和海杂波的分布特性,提出了多雷达距离分辨率匹配处理技术,提高了雷达回波的距离分辨率并实现了多雷达距离分辨率的匹配统一,为多频段窄带雷达信号综合提供了统一的基础。

利用微波波段电磁波探测目标的电子设备。雷达是英文radar的音译,意为无线电检测和测距。雷达概念形成于20世纪初,在第二次世界大战前后获得飞速发展。雷达的工作原理,是设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。雷达分为连续波雷达和脉冲雷达两大类。脉冲雷达因容易实现精确测距,且接收回波是在发射脉冲休止期内,所以接收天线和发射天线可用同一副天线,因而在雷达发展中居主要地位。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。目标方位是利用天线的尖锐方位波束测量。仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。当雷达和目标之间有相对运动时,雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面显示了很好的应用潜力。

关于雷达技术的论文选题

同学,我是田雨,请你独立完成作业,如果有不懂的可以直接来问我

地质雷达在水利工程质量检测中的应用1 前言 地质雷达作为近十余年来发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图象显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在工程探测领域发挥着愈来愈重要的作用。而地质雷达技术用于堤防隐患的探测尚属初步阶段,通过广大物探技术人员的共同努力,达到了解和掌握不同隐患类型在雷达图像上的反映特征,在不断总结探测经验的基础上,提高异常的判断能力和精度,较确切地推定堤防工程隐患的性质和位置,以便指导有关管理单位加强堤防工程重点部位的维护和防范,提高和巩固堤防工程的运行周期和防洪能力。本文以永定河堤防工程护砌质量检测为实例,说明地质雷达技术在堤防工程探测中的应用情况,以此与同行进行切磋,推动堤防工程探测技术的发展,不妥之处,敬请批评指正。2 基本原理地质雷达与探空雷达相似,利用高频电磁波(主频为数十数百乃至数千兆赫)以宽频带短脉冲的形式,由地面通过发射天线(T)向地下发射,当它遇到地下地质体或介质分界面时发生反射,并返回地面,被放置在地表的接收天线(R)接收,并由主机记录下来,形成雷达剖面图。由于电磁波在介质中传播时,其路径、电磁波场强度以及波形将随所通过介质的电磁特性及其几何形态而发生变化。因此,根据接收到的电磁波特征,既波的旅行时间(亦称双程走时)、幅度、频率和波形等,通过雷达图像的处理和分析,可确定地下界面或目标体的空间位置或结构特征。雷达波(电磁波)在界面上的反射和透射遵循Snell定律。实际观测时,由于发射天线与接收天线的距离很近,所以其电磁场方向通常垂直于入射平面,并近似看作法向入射,反射脉冲信号的强度,与界面的反射系数和穿透介质的衰减系数有关,主要取决于周围介质与反射目的体的电导率和介电常数,对于以位移电流为主的介质,既大多数岩石介质属非磁性、非导电介质,常常满足σ/ωε<<1,于是衰减系数(β)的近似值为:既衰减系数与电导率(σ)及磁导率(μ)的平方根成正比,与介电常数(ε)的平方根成反比。而界面的反射系数为:式中Z为波阻抗,其表达式为:显然,电磁波在地层中的波阻抗值取决于地层特性参数和电磁波的频率。由此可见,电磁波的频率(ω=2πf)越高,波阻抗越大。对于雷达波常用频率范围(25~1000MHz),一般认为σ<<ωε,因而反射系数r可简写成:上式表明反射系数r主要取决于上下层介电常数差异。应用雷达记录的双程反射时间可以求得目的层的深度H:式中:t为目的层雷达波的反射时间;c为雷达波在真空中的传播速度(3m/ns);εr为目的层以上介质相对介电常数均值。3 工程概况北京市界内永定河左、右堤防于清朝乾隆年间修筑,后经数次维修和加固形成现有规模,主体为梯形,顶宽约10m,可见堤高约5~6m,堤内坡坡度为1:5~1:0,外坡相对较缓为1: 0~1: 5。堤身为人工堆积,主要由粉细砂(中下游段)、卵砾石(上游段)组成。介质构成复杂多变,分布不均,且处于包气带中,极为干燥。堤基为第四系全新统地层,岩性以粉细砂为主,下游段出现黑色淤泥质粘土夹层,层厚约7~0m。地下水位埋深(自地表计):卢沟桥附近约0m,至下游逐渐变浅,达省/市界附近(石佛寺)一带约0m。永定河卢沟桥下游至省/市界左、右堤防共划定险工段12处23段,分布在左堤约60Km和右堤约30Km范围内,其险工段内坡为浆砌石(厚约40cm——原设计标准)结合铅丝石笼构成的护砌,并于1964~1989年间营建,浆砌石护坡除可见堤身部分露出外,其余部分与铅丝石笼水平护底均埋于河滩滩地以下,一般为0~0m,外铺0m的铅丝石笼护底。这些险工段在历史上均有决口或抢险加固的记载。为满足北京市对永定河防洪设计的需要,保证该堤防渡汛万无一失,故进行地球物理勘探工作,以检测堤防工程的护砌质量,便于99年6月份之前进行加固处理。4 测试技术及资料处理为判断险工段堤内坡护险浆砌石质量的优劣,沿内坡坡脚布置一条雷达探测剖面,并按其走向连续测试。外业施测使用瑞典MALA地质仪器有限公司生产的RAMAC/GPR地质雷达系统,天线的中心频率为250MHz,收发天线的间距为6m。实测采用剖面法,且收发天线方向与测线方向平行。记录点距为2m,采样频率为3893MHz,单一记录迹线的采样点数为512,迭加次数为16,记录时窗为180ns,若取堤身土体的雷达波速为08~10m/ns,表层浆砌石的雷达波速为10~12m/ns,综合考虑该地层剖面特征,选取雷达波速中值为10m/ns,则此时该雷达系统的最小纵向分辨率为8~10cm。雷达资料的数据处理与地震反射法勘探数据处理基本相同,主要有:①滤波及时频变换处理;②自动时变增益或控制增益处理;③多次重复测量平均处理;④速度分析及雷达合成处理等,旨在优化数据资料,突出目的体、最大限度地减少外界干扰,为进一步解释提供清晰可辨的图像。处理后的雷达剖面图和地震反射的时间剖面图相似,可依据该图进行地质解释。5 成果分析地质雷达资料的地质解释是地质雷达探测的目的。由数据处理后的雷达图像,全面客观地分析各种雷达波组的特征(如波形、频率、强度等),尤其是反射波的波形及强度特征,通过同相轴的追踪,确定波组的地质意义,构制地质——地球物理解释模型,依据剖面解释获得整个测区的最终成果图。地质雷达资料反映的是地下地层的电磁特性(介电常数及电导率)的分布情况,要把地下介质的电磁特性分布转化为地质分布,必须把地质、钻探、地质雷达这三个方面的资料有机结合起来,建立测区的地质——地球物理模型,才能获得正确的地下地质结构模式。雷达资料的地质解释步骤一般为:⑴ 反射层拾取根据勘探孔与雷达图像的对比分析,建立各种地层的反射波组特征,而识别反射波组的标志为同相性、相似性与波形特征等。⑵ 时间剖面的解释在充分掌握区域地质资料,了解测区所处的地质结构背景的基础上,研究重要波组的特征及其相互关系,掌握重要波组的地质结构特征,其中要重点研究特征波的同相轴的变化趋势。特征波是指强振幅、能长距离连续追踪、波形稳定的反射波。同时还应分析时间剖面上的常见特殊波(如绕射波和断面波等),解释同相轴不连续带的原因等。下部架空时的图像,该剖面第三反射同相轴自剖面点4m处断开,形成“背斜”状的强反射层,此现象延续到剖面点8m处,此段浆砌石与下部土体分离导致架空,其范围与已知情况吻合。 通过雷达测试成果的地质解释共圈定出73处浆砌石存在不同程度的隐患或质量较差,这些隐患的类型一般为:①浆砌石厚度较薄;②浆砌石与下部土体分离形成架空;③浆砌石胶结不良或松散;④浆砌石出现裂缝等不良现象。 护砌整体质量较差的堤段多为年久失修严重,浆砌石与下部堤身土体接触差,多形成架(悬)空状态,造成护砌断裂、塌陷等不良现象较普遍,且多具一定规模。而造成上述现象存在的原因,笔者分析后认为浆砌石面存在许多缝隙,且砂浆质量差、少浆,下部又无防渗护层,堤身土体多由粉细砂组成,经降水入渗,粉细砂局部被冲刷淘失,在砌石与堤身土体之间形成空洞,并有继续扩大发展之趋势。该物探成果经开挖验证(见图4——开挖照片),完全符合客观实际,受到了甲方的赞誉。6 结语地质雷达以其高效快速、高精度在护险工程探测中能够发挥重要作用,取得了良好的应用效果,且对浅层或超浅层的工程探测中有着十分广阔的应用前景,然而地质雷达的探测深度和精度与所采用的天线频率有很大关系,天线的频率越低探测深度越大,则精度越低;而天线的频率越高,探测深度越浅,则精度越高。本次采用中心频率250MHz的天线进仅供参考,请自借鉴。希望对您有帮助。

如果你肯吃我嚼过的馒头,并让我睡你媳妇替你生孩子的话我就给你

关于雷达技术的论文怎么写

跟踪雷达在跟踪高速目标时,需要有足够快的反应速度,这不仅对它自身的硬件系统的实时性要求较高,而且对相应软件系统的实时性要求也较高。用实时操作系统VxWorks作为跟踪雷达系统中的操作系统,可以满足软件对实时性需求。本系统中,跟踪雷达各分机设备在相应处理计算机、控制计算机控制下协调工作,完成对目标的跟踪和测量雷达的引导,各分控计算机之间通过以太网接口相互通讯。跟踪雷达软件按功能分为主控、显示、信号处理、伺服控制、高频控制、光电控制六个子系统,分别对应不同的计算机。其中主控、信号处理、伺服控制、高频控制、光电控制子系统上都使用VxWorks操作系统,如图1所示。1VxWorks简介目前市场上比较闻名的实时操作系统有:VxWorks、pSoS、Nucleus、VRTX、WindowsCE、PalmOS、QNX、PowerTV、JavaOS、LynxOS等。其中,VxWorks是美国WRS公司推出的一个具有微内核、可裁剪的高性能强实时操作系统,在实时操作系统市场上处于领导地位。它在航空、广播、运输、医疗、自动化生产和科学研究等领域中有着广泛的应用,尤其是在国防和军事上一些高精尖技术及实时性要求极高的领域中,体现出了其优越的性能。在1997年4月发射的火星探测器上也使用到了VxWorks。VxWorks的主要特点VxWorks具有高度可剪裁的微内核结构,它需要的存储器空间大约为8KB~488KB、620B~29。3KB。可见VxWorks有着极好的可伸缩性,用户可以利用工具或直接修改内核源文件来配置内核。VxWorks能进行高效的多任务调度,它支持中断驱动的优先级抢占式调度和时间片轮转调度,并具有确定的、快速的上下文切换能力,确定的、微秒级的中断延迟时间。这些使得内核具有非常强的实时性。VxWorks应用程序开发除了性能出众的操作系统外,WRS公司还提供了优秀的实时操作系统开发工具Tornado。Tornado包含三个高度集成的组件:Tornado工具,一套强大的交叉开发工具;VxWorks实时操作系统;一整套主机-目标间的通讯选项,例如以太网、串行线路、在电路仿真和ROM仿真等。图2是Tornado开发系统组成框图,左边的框代表Tornado集成开发环境,它运行在开发主机上,可以基于WIN9x、WINNT、DIGITALUNIX等主机操作系统。本文介绍的内容都是基于WIN9x系统的。右边的框代表目标机,目标机支持的CPU类型有MC680x0、PowerPc、SPARC、SPARClite、i960、x86、R3000、R4000、R4650等。目标机上运行VxWorks实时操作系统,其上层运行用户应用程序。Tornado集成了用于VxWorks应用程序开发和调试的各种工具。开发者在主机系统里,利用这个集成环境组织、编写、编译和调试应用程序,然后下载到目标机上运行、调试。编译在主机上完成,测试、调试需要主机目标机协调完成,流程如图3所示。2VxWorks在信号处理子系统中的应用信号处理子系统采用摩托罗位的COMPACTPCI计算机,它的CPU为PII233MMX。该信号处理子系统的主要任务是通过网络接收来自主控子系统的数据和命令,传送给信号处理板;并且还要读取信号处理板的处理结果,将其通过网络传送给主控子系统和显示子系统。信号处理子系统软件可分为两部分:一是驱动程序,负责对信号处理板的初始化、配置和访问,另外用中断方式来响应信号处理板;二是网络通讯程序,负责与主控机握手、接收数据报文和发送数据报文。它的组成如图4所示,当信号处理板产生数据后,发出一次中断,中断服务程序触发发送进程读取信号处理板上的数据,然后发送给网络。网络通讯程序主要由五个并发的进程组成:poopClient、BDPReceive、intProc20ms、intProcGate和messageHandle。PoopClient进行负责和主控子系统握手,获取主控机信息,以及传送本子系统信息。BDPReceive进程接收网络数据,然后送给messageHandle进程,经处理后再送到信号处理板上。IntProc20ms和intProcGate进程从信号处理板中读出数据,然后发送到网络中去。

雷达简介雷达概念形成于20世纪初,在第二次世界大战前后获得飞速发展。雷达的工作原理,是设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。雷达分为连续波雷达和脉冲雷达两大类。脉冲雷达因容易实现精确测距,且接收回波是在发射脉冲休止期内,所以接收天线和发射天线可用同一副天线,因而在雷达发展中居主要地位。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。目标方位是利用天线的尖锐方位波束测量。仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。当雷达和目标之间有相对运动时,雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面显示了很好的应用潜力。

本科还是专科

  • 索引序列
  • 关于雷达技术的论文
  • 关于雷达技术的论文英文
  • 关于雷达技术的论文题目
  • 关于雷达技术的论文选题
  • 关于雷达技术的论文怎么写
  • 返回顶部