首页 > 论文期刊知识库 > 电气化铁路论文题目

电气化铁路论文题目

发布时间:

电气化铁路论文题目

电力机车由牵引电动机驱动车轮的机车。电力机车因为所需电能由电气化铁路供电系统的接触网或第三轨供运行中的电力机车给,所以是一种非自带能源的机车。电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。

铁道信号频率的实时高精度检测对于列车运行安全、绘制列车运行曲线图有非常重要的作用。其中,基带低频和上下边频是铁道信号检测主要的测量对象,是列车控制系统中主要的研究内容。我国铁路信号主要有两种制式,从兼容性方面来讲,需要可以同时检测两种制式信号低频和边频的算法;从实时高精度检测来讲,需要复杂度低,易于实现的算法。但铁道信号频率高精度检测,尤其是上下边频的检测尤为困难。目前对于铁道信号频率检测的检测方法中,基于欠采样技术的检测方法虽能提高频率分辨率,但采样波形失真度大,频率检测精度受到影响;基于数字正交I、Q双通道处理并重采样法,此法不能兼容我国铁路主要的两种制式。而现有的FFT检测方法,边频检测没有用到低频检测的结果,导致算法复杂;低频和边频的频谱校正法不同,校正算法不能通用;边频检测时,采用相位不变性判断边频边界,抗噪声性能太差。上述所有方法,基带低频与上下边频完全独立检测。针对以上算法的兼容性差、低频和边频检测独立进行这两个问题,本文提出了一种基频和边频频率检测相结合的铁道信号检测方法,算法中边频的检测充分利用低频检测结果。为提高检测精度,在频谱分析时,采用抑制频谱泄露性能较高的全相位FFT。为简化算法的复杂度,选取了同时适用于基频和边频的频率校正方法,有利于实时检测。低频检测时,针对采样频率增加了抽取算法,保证低频与边频在同一采样频率下检测信号频率。该法可以满足两种制式,其实用价值较高。铁道信号边频检测的难点是边界点的判断,针对这一问题,提出了一种新的边界检测算法。本文利用基带低频的抽取序列,设计了根据低频信号幅值跳变来判断铁道信号的上下边频的边界。然后根据低频的频率检测结果,计算出稳定的边频采样序列。改进后的边界判断算法,比基于“相位不变性”的边界检测算法减少一次FFT变换,算法复杂度明显降低,且抗噪性能只受低频幅值影响,边界识别性能优良。在Matlab和Quartus平台上模拟铁道信号,验证上述设计算法的可行性,分析了影响频率检测精度的原因。实验证明,在信噪比为8dB的情况下,仍能准确高精度的判断低频和载频频率,抗噪性能优越。 [1] 陈宏,孙俊杰,韩捷,郝伟 基于极值法和重心法的离散频谱校正方法[J] 振动测试与诊断 2012(S1)[2] 孙玉梅 基于FPGA的FSK调制解调器的设计及实现[J] 电子科技 2009(05)[3] 郜洪民,徐意,陈广山 DDS直接数字频率合成技术在铁路信号系统中的应用[J] 电子产品世界 2008(09)[4] 黄翔东,何宇清,李长滨 一种检测铁路2FSK信号频率的新方法[J] 天津大学学报 2007(09)[5] 袁博,宋万杰,吴顺君 基于FPGA的MATLAB与QuartusⅡ联合设计技术研究[J] 电子工程师 2007(01)[6] 吴宗慧,李杭生 铁路系统车载FSK信号检测系统的实现[J] 铁路计算机应用 2005(10)[7] 魏敏 VHDL硬件仿真结果的MATLAB分析法[J] 计算机应用与软件 2003(08)[8] 郜洪民,贾学祥,赵海东 铁路专用2FSK调制信号生成方法的研究[J] 中国铁道科学 2002(04)[9] 王庆文,孟宪德 车载FSK信号的实时高精度检测与DSP实现[J] 通信学报 2001(09)[10] 孙艳朋,贾利民,范明 小波包方法在车载FSK信号中的应用[J] 铁道学报 2001(02)

我也在找啊 呜呜~~~ 咱写半天又没人看 妈妈滴

电气化铁路论文选题

可以在网上尤其是有关铁路方面的论坛中找一些资料

铁道通信可以写隧道内信号增强或者相关的领域。之前我也苦于写不出,还是学长给的文方网,写的《浅谈网络技术在铁道通信中的应用》,很快就过关了关于电气化铁道通信电磁防护措施的研究高职铁道通信信号专业顶岗实习现状与对策研究浅谈铁道通信信号专业的课程改革与实践电气化铁道通信线路的电磁防护浅析高职铁道通信信号专业教学质量的提高交流电气化铁道通信电磁防护的研究铁道通信信号专业实践教学体系构建的研究与实践高职铁道通信信号专业人才培养方案的研究与实践铁道通信用直埋式综合光缆湖南铁路科技职业技术学院铁道通信信号校企合作为例铁道通信信号专业相对动态教学计划的实践用“双闭环”控制理论指导铁道通信信号专业中高职衔接人才培养方案建设用“以岗导学、岗学融合”原则构建高职铁道通信技术专业课程体系铁道通信信号专业实践条件建设利旧情况探讨

铁道信号频率的实时高精度检测对于列车运行安全、绘制列车运行曲线图有非常重要的作用。其中,基带低频和上下边频是铁道信号检测主要的测量对象,是列车控制系统中主要的研究内容。我国铁路信号主要有两种制式,从兼容性方面来讲,需要可以同时检测两种制式信号低频和边频的算法;从实时高精度检测来讲,需要复杂度低,易于实现的算法。但铁道信号频率高精度检测,尤其是上下边频的检测尤为困难。目前对于铁道信号频率检测的检测方法中,基于欠采样技术的检测方法虽能提高频率分辨率,但采样波形失真度大,频率检测精度受到影响;基于数字正交I、Q双通道处理并重采样法,此法不能兼容我国铁路主要的两种制式。而现有的FFT检测方法,边频检测没有用到低频检测的结果,导致算法复杂;低频和边频的频谱校正法不同,校正算法不能通用;边频检测时,采用相位不变性判断边频边界,抗噪声性能太差。上述所有方法,基带低频与上下边频完全独立检测。针对以上算法的兼容性差、低频和边频检测独立进行这两个问题,本文提出了一种基频和边频频率检测相结合的铁道信号检测方法,算法中边频的检测充分利用低频检测结果。为提高检测精度,在频谱分析时,采用抑制频谱泄露性能较高的全相位FFT。为简化算法的复杂度,选取了同时适用于基频和边频的频率校正方法,有利于实时检测。低频检测时,针对采样频率增加了抽取算法,保证低频与边频在同一采样频率下检测信号频率。该法可以满足两种制式,其实用价值较高。铁道信号边频检测的难点是边界点的判断,针对这一问题,提出了一种新的边界检测算法。本文利用基带低频的抽取序列,设计了根据低频信号幅值跳变来判断铁道信号的上下边频的边界。然后根据低频的频率检测结果,计算出稳定的边频采样序列。改进后的边界判断算法,比基于“相位不变性”的边界检测算法减少一次FFT变换,算法复杂度明显降低,且抗噪性能只受低频幅值影响,边界识别性能优良。在Matlab和Quartus平台上模拟铁道信号,验证上述设计算法的可行性,分析了影响频率检测精度的原因。实验证明,在信噪比为8dB的情况下,仍能准确高精度的判断低频和载频频率,抗噪性能优越。 [1] 陈宏,孙俊杰,韩捷,郝伟 基于极值法和重心法的离散频谱校正方法[J] 振动测试与诊断 2012(S1)[2] 孙玉梅 基于FPGA的FSK调制解调器的设计及实现[J] 电子科技 2009(05)[3] 郜洪民,徐意,陈广山 DDS直接数字频率合成技术在铁路信号系统中的应用[J] 电子产品世界 2008(09)[4] 黄翔东,何宇清,李长滨 一种检测铁路2FSK信号频率的新方法[J] 天津大学学报 2007(09)[5] 袁博,宋万杰,吴顺君 基于FPGA的MATLAB与QuartusⅡ联合设计技术研究[J] 电子工程师 2007(01)[6] 吴宗慧,李杭生 铁路系统车载FSK信号检测系统的实现[J] 铁路计算机应用 2005(10)[7] 魏敏 VHDL硬件仿真结果的MATLAB分析法[J] 计算机应用与软件 2003(08)[8] 郜洪民,贾学祥,赵海东 铁路专用2FSK调制信号生成方法的研究[J] 中国铁道科学 2002(04)[9] 王庆文,孟宪德 车载FSK信号的实时高精度检测与DSP实现[J] 通信学报 2001(09)[10] 孙艳朋,贾利民,范明 小波包方法在车载FSK信号中的应用[J] 铁道学报 2001(02)

电气化铁路供电系统论文题目

电气化铁道电能质量综合控制研究摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。关键词:电气化铁道;电网;电能质量;综合控制1 前言中国的电气化铁道总里程已经突破2·4万公里,跃居世界第二。电气化铁道具有运载能力强、行车速度快、节约能源、对环境污染小等优点,在现代国民经济发展中起着举足轻重的作用。但是,由于电气化铁道牵引负载所具有的随即波动性和不对称性,其给公共电网带来的诸如负序电流、谐波以及无功功率等电能质量问题也引起了极大的关注。研究如何利用有效手段治理电气化铁道牵引负载所带来的一系列电能质量问题,确保电网中其他电力设备的安全经济运行具有重大意义。2 电气化铁道牵引供电系统2·1 概述我国的动力供电电网电压一般为110kV或者220kV,通过牵引变压器转换为27·5kV作为牵引动力机车的供电。现在普遍流行的牵引变压器种类主要有单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引变压器、Scott变压器等。我国电气化铁道采用工频交流50Hz三相供电单相用电,其负荷牵引电力机车的功率大,速度、负载状况变化频繁,且具有不对称的特性,导致牵引电网具有功率因数低、谐波含量高、负序电流大等特点,不但自身损耗大,而且对公共电网及铁路沿线的其他电力设备也带来严重危害,必须采取有效措施加以治理[1]。2·2 单相变压器牵引供电网采用单相牵引变压器的牵引供电系统拓扑结构如图1所示[2]。单相接线牵引网采用单相变压器供电,供电方式又分为单相接线方式和V-V接线方式。单相接线牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。另外,单相牵引变压器要按全绝缘设计制造。而单相V-V接线将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。这时,两臂电压相位差60°接线,电流的不对称度有所减少。这种接线即通常所说的60°接线。2·3 三相Y-D11变压器牵引供电网采用三相Y-D11牵引变压器的牵引供电系统拓扑结构如图2所示[2]。三相Y-D11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27·5kV的a相和b相母线上。由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。3 SVC静止型动态无功补偿装置3·1 SVC的发展静止型动态无功补偿装置SVC是一种先进的高压电网动态功率因数补偿装置。它通过提高功率因数来节约大量的电能,同时又起到减少电网谐波、稳定电压、改善电网质量(环境)的作用。20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定3·2 SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图3。它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置。TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图3中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量[3]。TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。由于TSC中的电容器只是在两个极端的电流值之间切换,因此它不会产生谐波,但它对无功功率的补偿是阶跃的。TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。4 电网电能质量综合控制与治理4·1 谐波抑止与无功补偿利用SVC动态无功补偿装置对牵引供电系统的谐波和无功进行综合治理的关键是SVC最大无功补偿量的确定和滤波器支路的设计[3]。SVC最大无功补偿量Qsvc应该和设计线路牵引负荷的大小相适应,应该按电气化铁道牵引负荷的最大有功需求以及补偿后对装设地点功率因数或在最大无功冲击时的最大电压损耗的要求来确定,具体可以按照式(1)、(2)来计算。QSVC=(tanφ1-tanφ2)Pmax(1)式中,φ1、φ2分别为补偿前后110kV电源测功率因数角;Pmax为电铁负荷最大有功需求。QSVC=Qfmax-ΔU%Xs(2)式中,Qfmax为装设地点最大无功冲击;ΔU%为装设地点最大电压损耗要求;Xs为系统阻抗。要想达到理想的谐波抑止效果,必须综合考虑FC滤波支路的设计,既要保证装置的安全运行,又要达到预计的理想效果。在实际设计中,首先需要根据供电臂中所含的谐波分量来确定FC滤波支路的组成。由于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大的比重,所以FC滤波支路一般由3、5、7次单调谐滤波器构成。当最大无功补偿容量和滤波支路的组成确定后,如何将需补无功容量合理分配到各滤波支路中,这是非常重要的问题。如果各滤波支路的容量分配不合理,一方面会使设备安装总容量偏大,另一方面有可能因为某此滤波回路补偿功率偏小而发生过负荷,对设备安全运行造成影响。一些著名的电气公司采用的一些算法如下[6]:如西门子公司的无功功率补偿按式(3)分配Qc(h)=QSVCIh/h∑Ih/h(3)式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih为供电臂第h次谐波电流。BBC电气公司按照式(4)分配无功功率Qc(h)=QSVC∑Ih(4)AEG电气公司则按照式(5)分配无功Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、13次滤波支路分配的补偿容量。4·2 负序电流补偿牵引电力机车产生的大量负序电流给电网中其他的电力设备的安全、经济运行带来极大影响。SVC静止动态无功补偿装置在补偿负序和末端电压上有着相当高的效率。工程应用上可以选择在电网系统和负荷上都安装SVC[5]。在电网系统端安装应用SVC来补偿负序电流的原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采用哪一种牵引变压器,负序补偿的实现分为如下两步:(1)电力因数修正。通过安装电容器件,使得每相负荷都为电阻性。(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA相的电感性负荷G/ 3互相对称。电流环路图和相位图分别如图4、5所示:从图5可以明显看到线电流I·A,I·B,I·C是对称且正序的,BC相和CA相之间的阻抗负载也可以做到类似的对称,因此系统中的所有负序电流都可以被补偿而消除。现在问题的关键是如何随着牵引负荷的起伏动态地控制补偿需要的电容和电感器组。急于数字信号处理器(DSP)的固定电容(FC)和晶闸管控制的电抗器(TCR)的组合得以广泛应用,如图6所示。得益于DSP对数据信息的快速处理,补偿所需的电容和电感参数可以被快速、精确计算得到。5 结论与展望本文提出的基于静止动态无功补偿装置(SVC)的电气化铁道牵引电网电能质量综合控制与治理原理与方案具有重要的工程意义。电气化铁道的电能质量是一个突出且严峻的课题与难题,要求我们不断探求新的综合补偿方法,来综合控制与治理影响电能质量的无功、谐波、负序等因素,以提高电网电能质量,确保电网安全、经济运行。参考文献[1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S][3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社,[4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对策[J]山东电力技术, 2005, (4): 16-[6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁道, 2008(4)

电气化铁道电能质量综合控制研究 摘要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不 容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止 无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。 关键词:电气化铁道;电网;电能质量;综合控制 1 前言 中国的电气化铁道总里程已经突破2·4万公里, 跃居世界第二。电气化铁道具有运载能力强、行车速 度快、节约能源、对环境污染小等优点,在现代国民经 济发展中起着举足轻重的作用。 但是,由于电气化铁道牵引负载所具有的随即波 动性和不对称性,其给公共电网带来的诸如负序电流、 谐波以及无功功率等电能质量问题也引起了极大的关 注。研究如何利用有效手段治理电气化铁道牵引负载 所带来的一系列电能质量问题,确保电网中其他电力 设备的安全经济运行具有重大意义。 2 电气化铁道牵引供电系统 2·1 概述 我国的动力供电电网电压一般为110kV或者 220kV,通过牵引变压器转换为27·5kV作为牵引动力 机车的供电。现在普遍流行的牵引变压器种类主要有 单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引 变压器、Scott变压器等。我国电气化铁道采用工频交 流50Hz三相供电单相用电,其负荷牵引电力机车的 功率大,速度、负载状况变化频繁,且具有不对称的特 性,导致牵引电网具有功率因数低、谐波含量高、负序 电流大等特点,不但自身损耗大,而且对公共电网及铁 路沿线的其他电力设备也带来严重危害,必须采取有 效措施加以治理[1]。 2·2 单相变压器牵引供电网 采用单相牵引变压器的牵引供电系统拓扑结构如 图1所示[2]。 单相接线牵引网采用单相变压器供电,供电方式 又分为单相接线方式和V-V接线方式。单相接线牵 引变压器的原边跨接于三相电力系统中的两相;副边 一端与牵引侧母线连接,另一端与轨道及接地网连接。 牵引变压器的容量利用率高,但其在电力系统中单相 牵引负荷产生的负序电流较大,对接触网的供电不能 实现双边供电。所以,这种结线只适用于电力系统容 量较大,电力网比较发达,三相负荷用电能够可靠地由 地方电网得到供应的场合。另外,单相牵引变压器要 按全绝缘设计制造。而单相V-V接线将两台单相变 压器以V的方式联于三相电力系统每一个牵引变电 所都可以实现由三相系统的两相线电压供电。两变压 器次边绕组,各取一端联至牵引变电所两相母线上。 而它们的另一端则以联成公共端的方式接至钢轨引回 的回流线。这时,两臂电压相位差60°接线,电流的不 对称度有所减少。这种接线即通常所说的60°接线。 2·3 三相Y-D11变压器牵引供电网 采用三相Y-D11牵引变压器的牵引供电系统拓 扑结构如图2所示[2]。 三相Y-D11结线牵引变压器的高压侧通过引入 线按规定次序接到110kV或220kV,三相电力系统的高 压输电线上;变压器低压侧的一角c与轨道,接地网连 接,变压器另两个角a和b分别接到27·5kV的a相和b 相母线上。由两相牵引母线分别向两侧对应的供电臂 供电,两臂电压的相位差为60°,也是60°接线。因此,在 这两个相邻的接触网区段间采用了分相绝缘器。 3 SVC静止型动态无功补偿装置 3·1 SVC的发展 静止型动态无功补偿装置SVC是一种先进的高 压电网动态功率因数补偿装置。它通过提高功率因数 来节约大量的电能,同时又起到减少电网谐波、稳定电 压、改善电网质量(环境)的作用。20世纪70年代以 来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容 器(TSC)以及二者的混合装置(TCR+TSC)等主要形 式组成的静止无功补偿器(SVC)得到快速发展。SVC 可以看成是电纳值能调节的无功元件,它依靠电力电 子器件开关来实现无功调节。SVC作为系统补偿时可 以连续调节并与系统进行无功功率交换,同时还具有 较快的响应速度,它能够维持端电压恒定 3·2 SVC的工作原理及在电网中应用 TCR+TSC型SVC的基本拓扑结构见图3。它由 1台TCR、2台TSC以及2个无源滤波器组成,在实际 系统中,TSC及无源滤波的组数可根据需要设置。 TCR的工作原理是通过控制与相控电抗器连接 的反并联晶闸管对的移相触发脉冲来改变电抗器等效 电纳的大小,从而输出连续可变的无功功率。图3中 两个晶闸管分别按照单相半波交流开关运行,通过改 变控制角α可以改变电感中通过的电流。α的计量以 电压过零点为基准,α在90°~180°之间可部分导通, 导通角增大则电流基波分量减小,等价于用增大电抗 器的电抗来减小基波无功功率。导通角在90°~180° 之间连续调节时电流也从额定到0连续变化,TCR提 供的补偿电流中含有谐波分量[3]。 TSC的工作原理是根据负载感性无功功率的变化 通过反并联晶闸管对来切除或者投入电容器。这里, 晶闸管只是作为投切开关,而不像TCR中的晶闸管起 相控作用。在实际系统中,每个电容器组都要串联一 个阻尼电抗器,以降低非正常运行状态下产生的对晶 闸管的冲击电流值,同时避免与系统产生谐振。用晶 闸管投切电容器组时,通常选取系统电压峰值时或者 过零点时作为投切动作的必要条件。由于TSC中的 电容器只是在两个极端的电流值之间切换,因此它不 会产生谐波,但它对无功功率的补偿是阶跃的。 TCR和TSC组合后的运行原理为:当系统电压低 于设定的运行电压时,根据需要补偿的无功量投入适 当组数的电容器组,并略有一点正偏差(过补偿),此 时再利用TCR调节输出的感性无功功率来抵消这部 分过补偿容性无功;当系统电压高于设定电压时,则切 除所有电容器组,只留有TCR运行。 4 电网电能质量综合控制与治理 4·1 谐波抑止与无功补偿 利用SVC动态无功补偿装置对牵引供电系统的 谐波和无功进行综合治理的关键是SVC最大无功补 偿量的确定和滤波器支路的设计[3]。 SVC最大无功补偿量Qsvc应该和设计线路牵引负 荷的大小相适应,应该按电气化铁道牵引负荷的最大 有功需求以及补偿后对装设地点功率因数或在最大无 功冲击时的最大电压损耗的要求来确定,具体可以按 照式(1)、(2)来计算。 QSVC=(tanφ1-tanφ2)Pmax(1) 式中,φ1、φ2分别为补偿前后110kV电源测功率 因数角;Pmax为电铁负荷最大有功需求。 QSVC=Qfmax-ΔU%Xs(2) 式中,Qfmax为装设地点最大无功冲击;ΔU%为装 设地点最大电压损耗要求;Xs为系统阻抗。 要想达到理想的谐波抑止效果,必须综合考虑FC 滤波支路的设计,既要保证装置的安全运行,又要达到 预计的理想效果。在实际设计中,首先需要根据供电 臂中所含的谐波分量来确定FC滤波支路的组成。由 于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大 的比重,所以FC滤波支路一般由3、5、7次单调谐滤 波器构成。 当最大无功补偿容量和滤波支路的组成确定后, 如何将需补无功容量合理分配到各滤波支路中,这是 非常重要的问题。如果各滤波支路的容量分配不合 理,一方面会使设备安装总容量偏大,另一方面有可能 因为某此滤波回路补偿功率偏小而发生过负荷,对设 备安全运行造成影响。 一些著名的电气公司采用的一些算法如下[6]: 如西门子公司的无功功率补偿按式(3)分配 Qc(h)=QSVCIh/h∑Ih/h(3) 式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih 为供电臂第h次谐波电流。 BBC电气公司按照式(4)分配无功功率 Qc(h)=QSVC∑Ih(4) AEG电气公司则按照式(5)分配无功 Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5) 式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、 13次滤波支路分配的补偿容量。 4·2 负序电流补偿 牵引电力机车产生的大量负序电流给电网中其他 的电力设备的安全、经济运行带来极大影响。SVC静 止动态无功补偿装置在补偿负序和末端电压上有着相 当高的效率。工程应用上可以选择在电网系统和负荷 上都安装SVC[5]。 在电网系统端安装应用SVC来补偿负序电流的 原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采 用哪一种牵引变压器,负序补偿的实现分为如下两步: (1)电力因数修正。通过安装电容器件,使得每 相负荷都为电阻性。 (2)参照斯坦梅茨法则(Steinmetz′s laws),AB相 的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA 相的电感性负荷G/ 3互相对称。 电流环路图和相位图分别如图4、5所示: 从图5可以明显看到线电流I·A,I·B,I·C是对称 且正序的,BC相和CA相之间的阻抗负载也可以做到 类似的对称,因此系统中的所有负序电流都可以被补 偿而消除。 现在问题的关键是如何随着牵引负荷的起伏动态 地控制补偿需要的电容和电感器组。急于数字信号处 理器(DSP)的固定电容(FC)和晶闸管控制的电抗器 (TCR)的组合得以广泛应用,如图6所示。得益于 DSP对数据信息的快速处理,补偿所需的电容和电感 参数可以被快速、精确计算得到。 5 结论与展望 本文提出的基于静止动态无功补偿装置(SVC)的 电气化铁道牵引电网电能质量综合控制与治理原理与 方案具有重要的工程意义。电气化铁道的电能质量是 一个突出且严峻的课题与难题,要求我们不断探求新 的综合补偿方法,来综合控制与治理影响电能质量的 无功、谐波、负序等因素,以提高电网电能质量,确保电 网安全、经济运行。 参考文献 [1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道 出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S] [3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社, [4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵 引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对 策[J]山东电力技术, 2005, (4): 16- [6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁 道, 2008(4)希望采纳

电气化铁路论文

你能付多少钱?

关于火车的行不?我是司机,是技术性的论文,关于柴油机飞车的

每条铁路的开通都能够促进经济的发展。为人们的生活带来便利。是最有用的交通工具之一。举例:青藏铁路为西藏老百姓创造了很多的就业机会。据专家估计,青藏铁路的建设投资,给西藏带来的直接经济和间接经济收入达40亿元。 青藏铁路带给西藏最直接、最明显的好处,应该是对旅游业的推动。雪域高原壮丽的自然风光和神秘的人文景观,向来吸引着中外游客的眼球。2004年,进藏游客首次突破百万人次大关。去年超过180万人次,旅游总收入19.3亿元。 青藏铁路通车后,货物运输方式将发生重大变化,进出藏货物量将会大幅度提升。专家预计,75%的货运量将由铁路承担,进出藏物资运输成本会大大降低,商品零售价和物价总水平将随之下降,居民消费支出减少,实际生活水平得到提高。 目前中印贸易大部分通过海运,而西藏的外贸绝大部分经由天津港,两地相距数千公里。青藏铁路通车后走乃堆拉山口,拉萨经亚东至加尔各答等印度港口的距离就可缩短至约1200公里。保护铁路是为了我们自己的利益。1、学习《铁路法》,遵守《铁路法》,宣传《铁路法》,确保铁路大动脉安全畅通。 2、从我做起,树立爱护铁路的责任感和守法的自觉性。 3、保护铁路设施,不拆卸、不损坏、不拿摸、不盗窃、不收购铁路器材配件。 4、遵守铁路规则,不无票乘车,不爬乘货车,不随车围车叫卖,不携带危险品进站上车。 5、加强铁路安全防范,不非法设置道口,不在铁路上行走滞留,不抢越道口,不在铁路两旁边放牧、取砂、采石、挖渠、铲草皮。 6、维护铁路治安秩序,不偷摸哄抢运输物资,不在线路上放置障碍物,不击打列车,不拦截列车,不占道经营影响站场秩序。 7、敢于劝阻、制止危及铁路行车安全的违法行为,同破坏铁路治安秩序的坏人坏事作斗争 爱护铁路,从我做起 爱护铁路、呵护生命 日前,皋埠镇中心小学新桥完全小学在学生中进行“爱护铁路、呵护生命”的主题教育活动。学校通过开学生会议、发告家长书等形式,教育学生从小爱护铁路,养成良好的交通安全习惯。 希望全校学生利用课余时间了解更多的一些铁路安全常识,并请家长配合学校在日常生活中经常教育孩子做到以下几点: 1、不在铁路上行走、坐卧。因为火车速度快、声音小、惯性大不易停下等特点,在铁路上行走坐卧容易发生伤亡事故,给个人和家庭造成难以挽回的损失。 2、上学放学过铁路时做到”一停二看三通过”。要求过铁路前先停下来,再观察有无列车经过,确定无列车经过时,马上过铁路线,不要在铁路路基上逗留 3、因为电气化铁路电压极高,所以严禁攀爬铁路旁的高压电杆,不用弹弓等击打高压线,不用棍棒或绳索等连接、碰挂接触网导线,避免因高压电触电造成伤亡。 4、爱护列车和铁路设备,不在铁路道心和钢轨上放置杂物,不击打列车和击打铁路信号灯等设备。

说得好泛泛,百度文库里好像有。

铁道电气化论文题目

幸会啊,这个专业的人还挺少的, 电气化铁道谐波过程分析与推荐限值制定思路研究,我的题目。开始也是费劲了心,搞不出来,还是同事给的莫文网,专家就是不一样啊,很快就搞定了   思路:将IEC61000-3-6与GB/T14549进行了比较,提出了制定或修订谐波国标时应该注意的几个问题:主要是谐波发送限值的确定。用户谐波发射限值的分配方法(涉及用户协议容量和供电容量的确定、多谐波源叠加指数的确定、多谐波源同时系数的确定)、限值评估的方法。   参考下吧

电气化铁道电能质量综合控制研究 摘要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不 容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止 无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。 关键词:电气化铁道;电网;电能质量;综合控制 1 前言 中国的电气化铁道总里程已经突破2·4万公里, 跃居世界第二。电气化铁道具有运载能力强、行车速 度快、节约能源、对环境污染小等优点,在现代国民经 济发展中起着举足轻重的作用。 但是,由于电气化铁道牵引负载所具有的随即波 动性和不对称性,其给公共电网带来的诸如负序电流、 谐波以及无功功率等电能质量问题也引起了极大的关 注。研究如何利用有效手段治理电气化铁道牵引负载 所带来的一系列电能质量问题,确保电网中其他电力 设备的安全经济运行具有重大意义。 2 电气化铁道牵引供电系统 2·1 概述 我国的动力供电电网电压一般为110kV或者 220kV,通过牵引变压器转换为27·5kV作为牵引动力 机车的供电。现在普遍流行的牵引变压器种类主要有 单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引 变压器、Scott变压器等。我国电气化铁道采用工频交 流50Hz三相供电单相用电,其负荷牵引电力机车的 功率大,速度、负载状况变化频繁,且具有不对称的特 性,导致牵引电网具有功率因数低、谐波含量高、负序 电流大等特点,不但自身损耗大,而且对公共电网及铁 路沿线的其他电力设备也带来严重危害,必须采取有 效措施加以治理[1]。 2·2 单相变压器牵引供电网 采用单相牵引变压器的牵引供电系统拓扑结构如 图1所示[2]。 单相接线牵引网采用单相变压器供电,供电方式 又分为单相接线方式和V-V接线方式。单相接线牵 引变压器的原边跨接于三相电力系统中的两相;副边 一端与牵引侧母线连接,另一端与轨道及接地网连接。 牵引变压器的容量利用率高,但其在电力系统中单相 牵引负荷产生的负序电流较大,对接触网的供电不能 实现双边供电。所以,这种结线只适用于电力系统容 量较大,电力网比较发达,三相负荷用电能够可靠地由 地方电网得到供应的场合。另外,单相牵引变压器要 按全绝缘设计制造。而单相V-V接线将两台单相变 压器以V的方式联于三相电力系统每一个牵引变电 所都可以实现由三相系统的两相线电压供电。两变压 器次边绕组,各取一端联至牵引变电所两相母线上。 而它们的另一端则以联成公共端的方式接至钢轨引回 的回流线。这时,两臂电压相位差60°接线,电流的不 对称度有所减少。这种接线即通常所说的60°接线。 2·3 三相Y-D11变压器牵引供电网 采用三相Y-D11牵引变压器的牵引供电系统拓 扑结构如图2所示[2]。 三相Y-D11结线牵引变压器的高压侧通过引入 线按规定次序接到110kV或220kV,三相电力系统的高 压输电线上;变压器低压侧的一角c与轨道,接地网连 接,变压器另两个角a和b分别接到27·5kV的a相和b 相母线上。由两相牵引母线分别向两侧对应的供电臂 供电,两臂电压的相位差为60°,也是60°接线。因此,在 这两个相邻的接触网区段间采用了分相绝缘器。 3 SVC静止型动态无功补偿装置 3·1 SVC的发展 静止型动态无功补偿装置SVC是一种先进的高 压电网动态功率因数补偿装置。它通过提高功率因数 来节约大量的电能,同时又起到减少电网谐波、稳定电 压、改善电网质量(环境)的作用。20世纪70年代以 来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容 器(TSC)以及二者的混合装置(TCR+TSC)等主要形 式组成的静止无功补偿器(SVC)得到快速发展。SVC 可以看成是电纳值能调节的无功元件,它依靠电力电 子器件开关来实现无功调节。SVC作为系统补偿时可 以连续调节并与系统进行无功功率交换,同时还具有 较快的响应速度,它能够维持端电压恒定 3·2 SVC的工作原理及在电网中应用 TCR+TSC型SVC的基本拓扑结构见图3。它由 1台TCR、2台TSC以及2个无源滤波器组成,在实际 系统中,TSC及无源滤波的组数可根据需要设置。 TCR的工作原理是通过控制与相控电抗器连接 的反并联晶闸管对的移相触发脉冲来改变电抗器等效 电纳的大小,从而输出连续可变的无功功率。图3中 两个晶闸管分别按照单相半波交流开关运行,通过改 变控制角α可以改变电感中通过的电流。α的计量以 电压过零点为基准,α在90°~180°之间可部分导通, 导通角增大则电流基波分量减小,等价于用增大电抗 器的电抗来减小基波无功功率。导通角在90°~180° 之间连续调节时电流也从额定到0连续变化,TCR提 供的补偿电流中含有谐波分量[3]。 TSC的工作原理是根据负载感性无功功率的变化 通过反并联晶闸管对来切除或者投入电容器。这里, 晶闸管只是作为投切开关,而不像TCR中的晶闸管起 相控作用。在实际系统中,每个电容器组都要串联一 个阻尼电抗器,以降低非正常运行状态下产生的对晶 闸管的冲击电流值,同时避免与系统产生谐振。用晶 闸管投切电容器组时,通常选取系统电压峰值时或者 过零点时作为投切动作的必要条件。由于TSC中的 电容器只是在两个极端的电流值之间切换,因此它不 会产生谐波,但它对无功功率的补偿是阶跃的。 TCR和TSC组合后的运行原理为:当系统电压低 于设定的运行电压时,根据需要补偿的无功量投入适 当组数的电容器组,并略有一点正偏差(过补偿),此 时再利用TCR调节输出的感性无功功率来抵消这部 分过补偿容性无功;当系统电压高于设定电压时,则切 除所有电容器组,只留有TCR运行。 4 电网电能质量综合控制与治理 4·1 谐波抑止与无功补偿 利用SVC动态无功补偿装置对牵引供电系统的 谐波和无功进行综合治理的关键是SVC最大无功补 偿量的确定和滤波器支路的设计[3]。 SVC最大无功补偿量Qsvc应该和设计线路牵引负 荷的大小相适应,应该按电气化铁道牵引负荷的最大 有功需求以及补偿后对装设地点功率因数或在最大无 功冲击时的最大电压损耗的要求来确定,具体可以按 照式(1)、(2)来计算。 QSVC=(tanφ1-tanφ2)Pmax(1) 式中,φ1、φ2分别为补偿前后110kV电源测功率 因数角;Pmax为电铁负荷最大有功需求。 QSVC=Qfmax-ΔU%Xs(2) 式中,Qfmax为装设地点最大无功冲击;ΔU%为装 设地点最大电压损耗要求;Xs为系统阻抗。 要想达到理想的谐波抑止效果,必须综合考虑FC 滤波支路的设计,既要保证装置的安全运行,又要达到 预计的理想效果。在实际设计中,首先需要根据供电 臂中所含的谐波分量来确定FC滤波支路的组成。由 于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大 的比重,所以FC滤波支路一般由3、5、7次单调谐滤 波器构成。 当最大无功补偿容量和滤波支路的组成确定后, 如何将需补无功容量合理分配到各滤波支路中,这是 非常重要的问题。如果各滤波支路的容量分配不合 理,一方面会使设备安装总容量偏大,另一方面有可能 因为某此滤波回路补偿功率偏小而发生过负荷,对设 备安全运行造成影响。 一些著名的电气公司采用的一些算法如下[6]: 如西门子公司的无功功率补偿按式(3)分配 Qc(h)=QSVCIh/h∑Ih/h(3) 式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih 为供电臂第h次谐波电流。 BBC电气公司按照式(4)分配无功功率 Qc(h)=QSVC∑Ih(4) AEG电气公司则按照式(5)分配无功 Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5) 式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、 13次滤波支路分配的补偿容量。 4·2 负序电流补偿 牵引电力机车产生的大量负序电流给电网中其他 的电力设备的安全、经济运行带来极大影响。SVC静 止动态无功补偿装置在补偿负序和末端电压上有着相 当高的效率。工程应用上可以选择在电网系统和负荷 上都安装SVC[5]。 在电网系统端安装应用SVC来补偿负序电流的 原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采 用哪一种牵引变压器,负序补偿的实现分为如下两步: (1)电力因数修正。通过安装电容器件,使得每 相负荷都为电阻性。 (2)参照斯坦梅茨法则(Steinmetz′s laws),AB相 的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA 相的电感性负荷G/ 3互相对称。 电流环路图和相位图分别如图4、5所示: 从图5可以明显看到线电流I·A,I·B,I·C是对称 且正序的,BC相和CA相之间的阻抗负载也可以做到 类似的对称,因此系统中的所有负序电流都可以被补 偿而消除。 现在问题的关键是如何随着牵引负荷的起伏动态 地控制补偿需要的电容和电感器组。急于数字信号处 理器(DSP)的固定电容(FC)和晶闸管控制的电抗器 (TCR)的组合得以广泛应用,如图6所示。得益于 DSP对数据信息的快速处理,补偿所需的电容和电感 参数可以被快速、精确计算得到。 5 结论与展望 本文提出的基于静止动态无功补偿装置(SVC)的 电气化铁道牵引电网电能质量综合控制与治理原理与 方案具有重要的工程意义。电气化铁道的电能质量是 一个突出且严峻的课题与难题,要求我们不断探求新 的综合补偿方法,来综合控制与治理影响电能质量的 无功、谐波、负序等因素,以提高电网电能质量,确保电 网安全、经济运行。 参考文献 [1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道 出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S] [3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社, [4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵 引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对 策[J]山东电力技术, 2005, (4): 16- [6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁 道, 2008(4)希望采纳

电气化铁道电能质量综合控制研究摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。关键词:电气化铁道;电网;电能质量;综合控制1 前言中国的电气化铁道总里程已经突破2·4万公里,跃居世界第二。电气化铁道具有运载能力强、行车速度快、节约能源、对环境污染小等优点,在现代国民经济发展中起着举足轻重的作用。但是,由于电气化铁道牵引负载所具有的随即波动性和不对称性,其给公共电网带来的诸如负序电流、谐波以及无功功率等电能质量问题也引起了极大的关注。研究如何利用有效手段治理电气化铁道牵引负载所带来的一系列电能质量问题,确保电网中其他电力设备的安全经济运行具有重大意义。2 电气化铁道牵引供电系统2·1 概述我国的动力供电电网电压一般为110kV或者220kV,通过牵引变压器转换为27·5kV作为牵引动力机车的供电。现在普遍流行的牵引变压器种类主要有单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引变压器、Scott变压器等。我国电气化铁道采用工频交流50Hz三相供电单相用电,其负荷牵引电力机车的功率大,速度、负载状况变化频繁,且具有不对称的特性,导致牵引电网具有功率因数低、谐波含量高、负序电流大等特点,不但自身损耗大,而且对公共电网及铁路沿线的其他电力设备也带来严重危害,必须采取有效措施加以治理[1]。2·2 单相变压器牵引供电网采用单相牵引变压器的牵引供电系统拓扑结构如图1所示[2]。单相接线牵引网采用单相变压器供电,供电方式又分为单相接线方式和V-V接线方式。单相接线牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。另外,单相牵引变压器要按全绝缘设计制造。而单相V-V接线将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。这时,两臂电压相位差60°接线,电流的不对称度有所减少。这种接线即通常所说的60°接线。2·3 三相Y-D11变压器牵引供电网采用三相Y-D11牵引变压器的牵引供电系统拓扑结构如图2所示[2]。三相Y-D11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27·5kV的a相和b相母线上。由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。3 SVC静止型动态无功补偿装置3·1 SVC的发展静止型动态无功补偿装置SVC是一种先进的高压电网动态功率因数补偿装置。它通过提高功率因数来节约大量的电能,同时又起到减少电网谐波、稳定电压、改善电网质量(环境)的作用。20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定3·2 SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图3。它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置。TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图3中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量[3]。TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。由于TSC中的电容器只是在两个极端的电流值之间切换,因此它不会产生谐波,但它对无功功率的补偿是阶跃的。TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。4 电网电能质量综合控制与治理4·1 谐波抑止与无功补偿利用SVC动态无功补偿装置对牵引供电系统的谐波和无功进行综合治理的关键是SVC最大无功补偿量的确定和滤波器支路的设计[3]。SVC最大无功补偿量Qsvc应该和设计线路牵引负荷的大小相适应,应该按电气化铁道牵引负荷的最大有功需求以及补偿后对装设地点功率因数或在最大无功冲击时的最大电压损耗的要求来确定,具体可以按照式(1)、(2)来计算。QSVC=(tanφ1-tanφ2)Pmax(1)式中,φ1、φ2分别为补偿前后110kV电源测功率因数角;Pmax为电铁负荷最大有功需求。QSVC=Qfmax-ΔU%Xs(2)式中,Qfmax为装设地点最大无功冲击;ΔU%为装设地点最大电压损耗要求;Xs为系统阻抗。要想达到理想的谐波抑止效果,必须综合考虑FC滤波支路的设计,既要保证装置的安全运行,又要达到预计的理想效果。在实际设计中,首先需要根据供电臂中所含的谐波分量来确定FC滤波支路的组成。由于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大的比重,所以FC滤波支路一般由3、5、7次单调谐滤波器构成。当最大无功补偿容量和滤波支路的组成确定后,如何将需补无功容量合理分配到各滤波支路中,这是非常重要的问题。如果各滤波支路的容量分配不合理,一方面会使设备安装总容量偏大,另一方面有可能因为某此滤波回路补偿功率偏小而发生过负荷,对设备安全运行造成影响。一些著名的电气公司采用的一些算法如下[6]:如西门子公司的无功功率补偿按式(3)分配Qc(h)=QSVCIh/h∑Ih/h(3)式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih为供电臂第h次谐波电流。BBC电气公司按照式(4)分配无功功率Qc(h)=QSVC∑Ih(4)AEG电气公司则按照式(5)分配无功Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、13次滤波支路分配的补偿容量。4·2 负序电流补偿牵引电力机车产生的大量负序电流给电网中其他的电力设备的安全、经济运行带来极大影响。SVC静止动态无功补偿装置在补偿负序和末端电压上有着相当高的效率。工程应用上可以选择在电网系统和负荷上都安装SVC[5]。在电网系统端安装应用SVC来补偿负序电流的原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采用哪一种牵引变压器,负序补偿的实现分为如下两步:(1)电力因数修正。通过安装电容器件,使得每相负荷都为电阻性。(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA相的电感性负荷G/ 3互相对称。电流环路图和相位图分别如图4、5所示:从图5可以明显看到线电流I·A,I·B,I·C是对称且正序的,BC相和CA相之间的阻抗负载也可以做到类似的对称,因此系统中的所有负序电流都可以被补偿而消除。现在问题的关键是如何随着牵引负荷的起伏动态地控制补偿需要的电容和电感器组。急于数字信号处理器(DSP)的固定电容(FC)和晶闸管控制的电抗器(TCR)的组合得以广泛应用,如图6所示。得益于DSP对数据信息的快速处理,补偿所需的电容和电感参数可以被快速、精确计算得到。5 结论与展望本文提出的基于静止动态无功补偿装置(SVC)的电气化铁道牵引电网电能质量综合控制与治理原理与方案具有重要的工程意义。电气化铁道的电能质量是一个突出且严峻的课题与难题,要求我们不断探求新的综合补偿方法,来综合控制与治理影响电能质量的无功、谐波、负序等因素,以提高电网电能质量,确保电网安全、经济运行。参考文献[1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S][3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社,[4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对策[J]山东电力技术, 2005, (4): 16-[6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁道, 2008(4)

  • 索引序列
  • 电气化铁路论文题目
  • 电气化铁路论文选题
  • 电气化铁路供电系统论文题目
  • 电气化铁路论文
  • 铁道电气化论文题目
  • 返回顶部