首页 > 论文期刊知识库 > 材料力学的核心内容是什么

材料力学的核心内容是什么

发布时间:

材料力学的核心内容是什么

材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。一般是机械工程和土木工程以及相关专业的大学生必须修读的课程,学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。材料力学的研究对象主要是棒状材料,如杆、梁、轴等。对于桁架结构的问题在结构力学中讨论,板壳结构的问题在弹性力学中讨论。

1、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。2、切应力等于零的截面称为主平面,主平面上的正应力称为主应力;各个面上只有主应力的单元体称为主单元体。3、横截面的形心在垂直梁轴线方向的线位移称为该截面的挠度,横截面绕中性轴转动的角位移称为该截面的转角;挠曲线上任意一点处切线的斜率,等于该点处横截面的转角。4、由弯曲正应力强度条件可知,设法降低梁内的最大弯矩,并尽可能提高梁截面的抗弯截面系数,即可提高梁的承能力。5、由弯曲正应力强度条件可知,设法降低梁内的最大弯矩,并尽可能提高梁截面的抗弯截面系数,即可提高梁的承能力。

材料力学(mechanics of materials)研究材料在各种外力作用下产生的应变、应力、强度、刚度和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。

理论力学顾名思义,就是纯理论的东西,理想化的东西。它主要研究的是质点,刚体,并且以牛顿定律为主导思想来研究物体。它主要分为三大部分,静力学,运动学和动力学。质点和刚体都是理想化的模型,真实世界中不可能存在,但是在研究宏观低速的物质世界是,往往可以把所研究的对象进行简化,这就是物理建模。理论力学的作用就是把客观存在的一些现象物理化,是一个物理建模的过程,然后再用数学的方法来解答。 材料力学主要研究的是杆件,板料、壳体也有涉及但不是主要的。材料力学主要是从理论力学的静力学发展而来,应为刚体是不会变形的,所以在理论力学中是不可能解释变形体的问题的,但实际上物体没有不发生形变的,材料力学就是研究物体在发生形变以后的一些问题,比如说刚度,强度,稳定性等等。理论力学无法解答超静定问题,但是在材料力学中可以根据变形协调方程或者一些边界约束条件可以解答超静定问题,这是材料力学比理论力学更丰富的地方。而且材料力学在解释实际生活中的问题时时把问题工程化。另外动载荷和疲劳失效问题材料力学中也有涉及但不是重点。

材料力学的核心内容是

理论力学顾名思义,就是纯理论的东西,理想化的东西。材料力学主要研究的是杆件,板料、壳体也有涉及但不是主要的。材料力学主要是从理论力学的静力学发展而来,应为刚体是不会变形的,所以在理论力学中是不可能解释变形体的问题的,但实际上物体没有不发生形变的,材料力学就是研究物体在发生形变以后的一些问题,比如说刚度,强度,稳定性等等。扩展资料理论力学(theoreticalmechanics)是研究物体机械运动的基本规律的学科。力学的一个分支。它是一般力学各分支学科的基础。理论力学通常分为三个部分:静力学、运动学与动力学。静力学研究作用于物体上的力系的简化理论及力系平衡条件;运动学只从几何角度研究物体机械运动特性而不涉及物体的受力;动力学则研究物体机械运动与受力的关系。动力学是理论力学的核心内容。理论力学的研究方法是从一些由经验或实验归纳出的反映客观规律的基本公理或定律出发,经过数学演绎得出物体机械运动在一般情况下的规律及具体问题中的特征。理论力学中的物体主要指质点、刚体及刚体系,当物体的变形不能忽略时,则成为变形体力学(如材料力学、弹性力学等)的讨论对象。静力学与动力学是工程力学的主要部分。理论力学建立科学抽象的力学模型(如质点、刚体等)。静力学和动力学都联系运动的物理原因——力,合称为动理学。有些文献把kinetics和dynamics看成同义词而混用,两者都可译为动力学,或把其中之一译为运动力学。此外,把运动学和动力学合并起来,将理论力学分成静力学和动力学两部分。理论力学依据一些基本概念和反映理想物体运动基本规律的公理、定律作为研究的出发点。例如,静力学可由五条静力学公理演绎而成;动力学是以牛顿运动定律、万有引力定律为研究基础的。理论力学的另一特点是广泛采用数学工具,进行数学演绎,从而导出各种以数学形式表达的普遍定理和结论。参考资料理论力学(基本定义)_百度百科

理论力学顾名思义,就是纯理论的东西,理想化的东西。它主要研究的是质点,刚体,并且以牛顿定律为主导思想来研究物体。它主要分为三大部分,静力学,运动学和动力学。质点和刚体都是理想化的模型,真实世界中不可能存在,但是在研究宏观低速的物质世界是,往往可以把所研究的对象进行简化,这就是物理建模。理论力学的作用就是把客观存在的一些现象物理化,是一个物理建模的过程,然后再用数学的方法来解答。 材料力学主要研究的是杆件,板料、壳体也有涉及但不是主要的。材料力学主要是从理论力学的静力学发展而来,应为刚体是不会变形的,所以在理论力学中是不可能解释变形体的问题的,但实际上物体没有不发生形变的,材料力学就是研究物体在发生形变以后的一些问题,比如说刚度,强度,稳定性等等。理论力学无法解答超静定问题,但是在材料力学中可以根据变形协调方程或者一些边界约束条件可以解答超静定问题,这是材料力学比理论力学更丰富的地方。而且材料力学在解释实际生活中的问题时时把问题工程化。另外动载荷和疲劳失效问题材料力学中也有涉及但不是重点。

主要区别在于研究对象不同:理论力学主要研究刚体的力学性能及运行规律,是力学的基础学科,由静力学、运动学和动力学三大部分组成。主要研究对象为简单物体,包括质点、质点系、刚体和刚体系。 研究内容主要是对简单物体进行受力分析。静力学研究作用于物体上的力系的简化理论及力系平衡条件;运动学只从几何角度研究物体机械运动特性而不涉及物体的受力;动力学则研究物体机械运动与受力的关系。动力学是理论力学的核心内容。材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学学科任务: 研究材料在外力作用下破坏的规律 ; 为受力构件提供强度,刚度和稳定性计算的理论基础条件; 解决结构设计安全可靠与经济合理的矛盾。拓展资料:理论力学的基础是牛顿三定律:第一定律即惯性定律;第二定律给出了质点动力学基本方程;第三定律即作用与反作用定律,在研究质点系力学问题时具有重要作用。第一、第二定律对于惯性参考系成立。在一般问题中,与地球固结的参考系或相对于地面作惯性运动的参考系,可近似地看作惯性参考系。 材料力学的研究内容包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆(见柱和拱)、受弯曲(有时还应考虑剪切)的梁和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。参考资料:1、百度百科-理论力学2、《材料力学I 第六版》 第一章 刘鸿文 高等教育出版社

大学里面有前三大力学是:《理论力学》《材料力学》《结构力学》,剩下两个叫《流体力学》《弹性力学》,"流体力学"又叫做《水力学》。前三大力学是必须要掌握的,后两大力学会计算运用就行(要考研的话就很重要了)

材料力学的核心内容

都没人来的快递单号查询价单独行动

1、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。2、切应力等于零的截面称为主平面,主平面上的正应力称为主应力;各个面上只有主应力的单元体称为主单元体。3、横截面的形心在垂直梁轴线方向的线位移称为该截面的挠度,横截面绕中性轴转动的角位移称为该截面的转角;挠曲线上任意一点处切线的斜率,等于该点处横截面的转角。4、由弯曲正应力强度条件可知,设法降低梁内的最大弯矩,并尽可能提高梁截面的抗弯截面系数,即可提高梁的承能力。5、由弯曲正应力强度条件可知,设法降低梁内的最大弯矩,并尽可能提高梁截面的抗弯截面系数,即可提高梁的承能力。

理论力学顾名思义,就是纯理论的东西,理想化的东西。它主要研究的是质点,刚体,并且以牛顿定律为主导思想来研究物体。它主要分为三大部分,静力学,运动学和动力学。质点和刚体都是理想化的模型,真实世界中不可能存在,但是在研究宏观低速的物质世界是,往往可以把所研究的对象进行简化,这就是物理建模。理论力学的作用就是把客观存在的一些现象物理化,是一个物理建模的过程,然后再用数学的方法来解答。 材料力学主要研究的是杆件,板料、壳体也有涉及但不是主要的。材料力学主要是从理论力学的静力学发展而来,应为刚体是不会变形的,所以在理论力学中是不可能解释变形体的问题的,但实际上物体没有不发生形变的,材料力学就是研究物体在发生形变以后的一些问题,比如说刚度,强度,稳定性等等。理论力学无法解答超静定问题,但是在材料力学中可以根据变形协调方程或者一些边界约束条件可以解答超静定问题,这是材料力学比理论力学更丰富的地方。而且材料力学在解释实际生活中的问题时时把问题工程化。另外动载荷和疲劳失效问题材料力学中也有涉及但不是重点。

材料力学(mechanicsofmaterials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。一般是机械工程和土木工程以及相关专业的大学生必须修读的课程,学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。材料力学的研究对象主要是棒状材料,如杆、梁、轴等。对于桁架结构的问题在结构力学中讨论,板壳结构的问题在弹性力学中讨论。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。

材料科学的核心内容是什么

材料科学与工程是研究材料组成、结构、生产过程、材料性能与使用性能以及他们之间关系的学科。因而把组成与结构、合成与生产过程、性质以及使用效能称之为材料科学与工程的四个基本要素。上述四个要素是基本的,缺一不可的,对材料科学与工程的发展来说,这四个要素必须是整体的。材料的四要素反映了材料科学与工程研究的共性问题,其中合成和加工、使用性能是两个普遍的关键要素,这是在这四个要素上,各种材料相互借鉴、相互补充、相互渗透。抓住了这四个要素,就抓住了材料科学与工程研究的本质。而各种材料,其特征所在,反映了该种材料与众不同的个性。如果我们这样去认识,则许多长期困扰科技工作者的问题都将迎刃而解。

材料科学就是从事对材料本质的发现、分析认识、设计及控制等方面研究的一门科学。其目的在于揭示材料的行为,给予材料结构的统一描绘或建立模型,以及解释结构与性能之间的内在关系。材料科学的内涵可以认为是由五大要素组成,他们之间的关联可以用一个多面体来描述(图1-1)。其中使用效能是材料性能在工作状态(受力、气氛、温度)下的表现,材料性能可以视为材料的固有性能,而使用效能则随工作环境不同而异,但它与材料的固有性能密切相关。理论及材料与工艺设计位于多面体的中心,它直接和其它5个要素相连,表明它在材料科学中的特殊地位。材料科学的核心内容是结构与性能。为了深入理解和有效控制性能和结构,人们常常需要了解各种过程的现象,如屈服过程、断裂过程、导电过程、磁化过程、相变过程等。材料中各种结构的形成都涉及能量的变化,因此外界条件的改变也将会引起结构的改变,从而导致性能的改变。因此可以说,过程是理解性能和结构的重要环节,结构是深入理解性能的核心,外界条件控制着结构的形成和过程的进行。材料的性能是由材料的内部结构决定的,材料的结构反映了材料的组成基元及其排列和运动的方式。材料的组成基元一般为原子、离子和分子等,材料的排列方式在很大程度上受组元间结合类型的影响,如金属键、离子键、共价键、分子键等。组元在结构中不是静止不动的,是在不断的运动中,如电子的运动、原子的热运动等。描述材料的结构可以有不同层次,包括原子结构、原子的排列、相结构、显微结构、结构缺陷等,每个层次的结构特征都以不同的方式决定着材料的性能。物质结构是理解和控制性能的中心环节。组成材料的原子结构,电子围绕着原子核的运动情况对材料的物理性能有重要影响,尤其是电子结构会影响原子的键合,使材料表现出金属、无机非金属或高分子的固有属性。金属、无机非金属和某些高分子材料在空间均具有规则的原子排列,或者说具有晶体的格子构造。晶体结构会影响到材料的诸多物理性能,如强度、塑性、韧性等。石墨和金刚石都是由碳原子组成,但二者原子排列方式不同,导致强度、硬度及其它物理性能差别明显。当材料处于非晶态时,与晶体材料相比,性能差别也很大,如玻璃态的聚乙烯是透明的,而晶态的聚乙烯是半透明的。又如某些非晶态金属比晶态金属具有更高的强度和耐蚀性能。此外,在晶体材料中存在的某些排列的不完整性,即存在结构缺陷,也对材料性能产生重要影响。我们在研究晶体结构与性能的关系时,除考虑其内部原子排列的规则性,还需要考虑其尺寸的效应。从聚集的角度看,三维方向尺寸都很大的材料称为块体材料,在一维、二维或三维方向上尺寸变小的材料叫做低维材料。低维材料可能具有块体材料所不具备的性质,如零维的纳米粒子(尺寸小于100nm)具有很强的表面效应、尺寸效应和量子效应等,使其具有独特的物理、化学性能。纳米金属颗粒是电的绝缘体和吸光的黑体。以纳米微粒组成的陶瓷具有很高的韧性和超塑性。纳米金属铝的硬度为普通铝的8倍。具有高强度特征的一维材料的有机纤维、光导纤维,作为二维材料的金刚石薄膜、超导薄膜等都具有特殊的物理性能。

材料科学与工程是研究材料组成、结构、生产过程、材料性能与使用性能以及他们之间关系的学科。因而把组成与结构、合成与生产过程、性质以及使用效能称之为材料科学与工程的四个基本要素。上述四个要素是基本的,缺一不可的,对材料科学与工程的发展来说,这四个要素必须是整体的。材料的四要素反映了材料科学与工程研究的共性问题,其中合成和加工、使用性能是两个普遍的关键要素,这是在这四个要素上,各种材料相互借鉴、相互补充、相互渗透。

材料专业一般分为金属方向、高分子复合方向、腐蚀方向、材料加工方向。课程的设置取决于你研究的材料方向,另外还会设置相应方向的综合实验。

材料力学的核心内容研究的是

材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限的学科。 一般是机械工程和土木工程以及相关专业的大学生必须修读的课程,学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。材料力学的研究对象主要是棒状材料,如杆、梁、轴等。对于桁架结构的问题在结构力学中讨论,板壳结构的问题在弹性力学中讨论。

材料力学的任务:材料力学是固体力学的一个分支,主要研究构件在外力作用下的变形、受力与破坏或失效的规律,为合理设计构件提供有关强度、刚度与稳定性分析的基本理沦与方法。材料力学的研究对象:材料力学的主要研究对象是杆件,以及由若干杆件组成的简单杆系。同时也研究一些形状与受力均比较简单的板与壳。至于一般较复杂的杆系与板壳问题,则属于结构力学与弹性力学等的研究范畴。工程实际中的构件,大部分属于杆件,而且,杆件问题的分析原理与方法,也是分析其他形式构件的基础。几个基本概念:变形:构件尺寸与形状的变化强度:构件抵抗破坏的能力刚度:构件抵抗变形的能力稳定性:构件保持原有平衡形式 的能力杆件:一个方向的尺寸远大于其它两个方向的尺寸的构件板件:一个方向的尺寸远小于其它两个方向的尺寸的构件

材料力学他认识我,我不认识他

材料力学研究方法:①简化计算方法。材料力学处理一维问题的基本方法。包括载荷简化、物性关系简化以及结构形状简化等。②平衡方法。杆件整体若是平衡的,则其上任何局部都一定是平衡的,这是分析材料力学中各类平衡问题的基础。确定内力分量及其相互关系、确定梁的剪应力、分析一点的应力状态等均以此为依据。③变形协调分析方法。对结构而言,各构件变形间必须满足协调条件。据此,并利用物性关系即可建立求解静不定(仅用静力平衡方程不能确定结构全部内力和支座反力)问题的补充方程。对于弹性构件,其各部分变形之间也必须满足协调条件。据此,分析杆件横截面上的应力时,通过“平面假设”,并借助于物性关系,即可得到横截面上的应力分布规律。④能量方法。将能量守恒定律、虚位移原理、虚力原理、最小势能原理与最小余能原理应用于杆件或杆件系统,得到若干分析与计算方法,包括导出平衡或协调方程、确定指定点位移或杆件位移函数的近似方法、判别杆件平衡稳定性并计算临界载荷、动载荷作用效应的近似分析等。⑤叠加方法。在线弹性和小变形的条件下,且当变形不影响外力作用时,作用在杆件或杆件系统上的载荷所产生的某些效应是载荷的线性函数,因而力的独立作用原理成立。据此,可将复杂载荷分解为若干基本或简单的情形,分别计算它们所产生的效果,再将这些效果叠加便得到复杂载荷的作用效果。可用于确定复杂载荷下的位移、组合载荷作用下的应力、确定应力强度因子等。正确而巧妙地应用结构与载荷的对称性与反对称性,则是叠加法的特殊情形。⑥类比法。表示一些量之间关系的方程与另一些量之间的关系或相似时,通过其中之简单者较容易确定与之相似的那些量,称为类比法或比拟法。由此派生出图解解析法和图解法。如:应力圆法、共轭梁法、确定弹性位移和薄壁截面扇性面积几何性质的图乘法等。材料力学的研究通常包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆受弯曲(有时还应考虑剪切)的粱和受扭转的轴等几大类。(以下的话是解释,扩大思维范畴,你可以参考,希望开阔你的思路。) 杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为线弹性问题、几何非线性问题、物理非线性问题三类。 线弹性问题是指在杆变形很小,而且材料服从虎克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。几何非线性问题是指杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。物理非线性问题是指材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从虎克定律属于塑性变形)。解决这类塑性变形问题可利用卡氏第一定理、克罗蒂—恩盖塞定理或采用单位载荷法等。(一位长期从事结构设计工作者的话)

  • 索引序列
  • 材料力学的核心内容是什么
  • 材料力学的核心内容是
  • 材料力学的核心内容
  • 材料科学的核心内容是什么
  • 材料力学的核心内容研究的是
  • 返回顶部