• 回答数

    4

  • 浏览数

    264

许小丹丹丹
首页 > 论文问答 > 地质钻探技师论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

缌喵喵喵

已采纳
浅谈煤田地质勘探前沿发展趋势摘要:本文根据中国煤炭生产方针、煤田地质特点及世界先进技术发展现状,讨论了中国煤田地质勘探前沿问题,从提高勘探精度,开展动态地质研究等方面加以论述。并且展望了煤田地质勘探技术发展的趋势。关键词:地质勘探勘探技术发展趋势0引言20世纪,煤炭在世界能源中占主要地位,进入21世纪,煤炭在世界一次能源中仍将占主要地位,在我国尤其如此。在我国,1500m左右的煤炭总资源量约4万亿吨,已探明保有储量达1万亿吨。而石油、天然气,由于资源赋存条件与勘探、开发困难等原因,一个时期内难于大幅度增产。但是,随着开放与市场经济发展,煤炭要有竟争力才能在市场上站住脚,经济、安全、高效采煤就成为煤炭工业发展的关键。因此,世界上所有采煤国家都需要继续开展煤田地质勘探工作,而且,煤田勘探技术要迅速发展才能满足生产要求。1我国煤田地质勘探前沿问题从我国煤田地质特点及世界先进技术的发展现状来看,我们可以看出,近年来我国煤田地质勘探前沿问题可概括为以下几个方面。1从完善矿井水防治与保水采煤研究方面来看我国东部一些矿井,随着采深增大,突水事故经常出现,突水量也日益增大。由于这些煤田水文地质条件特别复杂,加之采深不断增大,浅部矿井水治理获得的一些认识往往不适应深部矿井水动力条件。因此,我国煤矿水害防治技术的发展趋势是:深入研究矿区深部岩溶水形成与运移特征,深部矿井底板岩溶水突出机理,开发突水预测预报技术;开发适应现代机械化开采的采掘区无水险水害防治技术。2从开展动态地质研究方面来看常见的岩煤突出、瓦斯突出、冲击地压、突水、井筒破裂等井下灾害,实际上是一种动力地质现象。这些现象均与岩体应力场有关。主要起因于岩煤采掘后,原有自然条件下各种地质因素之间的平衡遭受破坏,岩体应力再分配,从而引发或诱发出这类灾害性地质现象。通过研究这些现象形成的地质机理,事先测定出采掘阶段岩体应力随时空的动态变化,就有可能预测上述动力地质现象是否会形成,确定并采取消除或减弱这些灾害的措施。3从加强环境地质勘查与灾害地质防治方面来看由于矿区在天然条件下以及因开发而使地质体系遭受破坏,从而可能形成一系列环境问题,如耕地破坏、水源污染、沙化,粉尘、一氧化碳、二氧化硫造成的大气污染等以及更具破坏性的灾害地质现象,如地裂、地表塌陷、滑坡乃至诱发地震。由于历史原因及煤矿不断开发,旧帐未清,新帐纷至,所产生的问题相当严重,煤矿环境问题是制约煤炭工业可持续发展的关键因素之一,今后矿区环境评价与治理将成为开发部门重要的工作内容。4从提高勘探精度来看连续作业是煤炭工业现代化或采掘机械化和自动化的特点。这要求开发前查明所采煤层的细微变化,如煤层厚度、结构和灰分的局部细小变化。煤层及其顶底板岩石物理力学性质的局部变化等。但是,世界各国的煤炭证实储量及我国的探明储量均只主要说明煤炭的原地埋藏数量,并未充分甚至没有提供满足现代开采技术要求的开采地质信息,为适应现代机械化开采,普遍需要补充勘探。5从攻克煤层气开发难关来看近年来许多国家正在把煤层气作为一种能源进行研究,已有20多个国家开展了煤层气研究、勘探和开发活动。在煤层气试验开发中,目前所遇到的问题是:多数井煤层气产率低、衰减快,钻井冲洗液污染煤层,完井后坍塌堵孔,水力压裂效果不明显,裂缝短,所占比例低,完井后采气效果差等。显然,研究我国煤层渗透率低的原因、渗透率变化规律、煤层气富集和高产因素、煤层力学稳定性和破坏规律,开发适于我国低渗率煤层的钻井、完井、采气和增产实用技术,探索我国煤层气开发有利区段的评价选择模式就成为技术攻关的重点。2煤田地质勘探技术发展趋势用发展眼光看,近年来钻探仍将成为获取“第一性”地质资料的重要手段。物探仪器日新月异,性能改进与更新迅速,向高灵敏度、高分辨率、高精确度、遥控、计算机实时控制、处理、数据分析和三维图形显示方向发展;物探方法向多维、多参数测量、多方法组合发展;计算机和信息技术将普及到地质勘探的各个专业、各个作业单元,乃至管理整个勘探系统。近年来,值得注意的煤田地质勘探技术发展趋势如下。1开发井下勘探技术根据国内外资料,落差小于5m、长度小于150m的小断层及小型褶曲,近期不可能用地面勘探方法查明。因此,国内外普遍认为,应在采区开采前,在井下开展采区勘探或工作面勘探,其方法包括矿井物探和沿煤层钻进。基于煤层密度比上下围岩小,煤层是一个明显的低速槽,国外在70年代末首先采用槽波地震勘探技术在井下探测煤层构造。近年来,探地雷达技术发展迅速。最近南非开发出一种Rock雷达系统,能定量研究岩体,准确确定断裂带深度、巷道周围裂隙带特征。显然,煤矿井下物探技术将大有作为,是一重要发展方向。2发展水平钻进技术20世纪80年代以来,技术先进的采煤国家愈来愈重视采用水平钻进方法沿煤层钻进,并采用与之相配合的随钻测斜技术。水平钻进技术是由受控定向钻进发展而来的。近年来,这种钻进技术发展迅速,不仅能在井下沿煤层钻进,还能在地面沿垂直一圆弧一水平线轨迹进入煤层钻进。地面水平钻进,在煤炭部门是80年代后期才从石油部门引进的。3加强综合勘探据有关材料说明,英国煤矿区尽管用三维地震勘探曾解释出小至煤厚落差的断层,但英国深部煤矿公司仍然重视钻孔研究。近年来,他们在已经评价的赋存经济可采储量的井田,按400一500m网度布无心孔,用组合测井方法勘探。他们开发了一种岩层显微扫描仪,通过人机联作能解释几十厘米落差的断层、裂隙、沉积和构造特征,以及应力方向。借助专用软件,用组合测井可确定出岩石类型、岩石强度、孔隙度或渗透率、倾角、孔径、分析水和烃等。据说,通过这一综合勘探方法,“可提供一份详细、实用的构造及应力场图”“,从而使矿山设计切实可行”,可提供最佳施工方向和合理地选定开采方法。这表明,选用合适手段、采用多手段综合勘探,是深部煤矿勘探的发展方向。4研究动态地质勘探技术如前所述,危害矿井安全的动力地质现象由采掘活动诱发而形成。它们具有动态特性。因此,预测动力地质现象的形成及其强度,不能简单地只凭反映原始地质条件的静止数据,而应主要分析基于岩煤层应力或其物性随时间变化的动态特征资料。高产高效采煤推进速度快,进行动态勘探,即在采掘期间连续多次勘探采区的应力或物性随时间变化很有必要。5加快发展信息技术计算机和信息技术现已在煤田地质勘探各个专业推广应用,发展较快。由于引入了许多高新技术,如并行分布式处理、大容量存储、工作站、多媒体、人工智能和神经网络技术等,目前已能用人机对话方式处理、分析、解释和显示地质勘探数据,一些物探仪器自动化程度高,能在现场作预处理,控制各项操作和质量,选择有关参数。3结语根据相关资料分析表明,除少数几个发展中国家外,各主要产煤国家的煤田地质勘探工作量自80年代以来均明显减少,但用于开发勘探、工作面勘探的工作内容和工作量却明显增多,勘探精度大大提高。从煤炭现代化生产要求角度看,我国煤田地质勘探技术与世界先进技术相比尚存在较大差距,因此,必须把握时机,加快我国煤田地质勘探技术的发展,才能满足我国高产高效采煤的需求。参考文献:[1]储绍良矿井物探应用北京:煤炭工业出版社[2]李夫忠走向精确勘探的道路[M]北京:石油工业出版社146~
290 评论

细细粒的宝贝

张金昌 ,男,汉族,中共党员,河北唐县人,1959年1月生,教授级高级工程师,中国地质大学(北京)兼职教授,中国地质科学院研究生院硕士生导师。现任中国地质科学院勘探技术研究所所长,党委副书记,兼任中国地质科学院勘探技术研究所学术委员会委员,专业核心期刊《探矿工程(岩土钻掘工程)》编委。教育及工作经历 :1981年毕业于河北地质学院探矿工程专业获学士学位。1984年毕业于中国地质大学(北京)探矿工程专业获硕士学位。1985年1月分配到勘探所钻机三室从事科研工作。1987年7月任工程师专业技术职务。1987年6月---1991年12月在勘探所从事科研工作,任研究室副主任。1992年1月---1994年8月在勘探所从事科研工作。1992年12月被评聘为高级工程师。1994年9月---1995年9月到美国进修学习。1995年10月---2000年3月在勘探所设备工程室从事科研工作。1996年7月--2000年3 月任研究室主任(正处级),并担任党支部书记。2000年4月至2009年1月,任勘探所副所长(副司局级)、党委委员,分管所科研管理工作。2001年12月被评聘为探矿工程专业教授级高级工程师。2001年1月---2005年12月任第七届中国地质学会探矿工程专业委员会副主任委员。2006年1月起任第八届中国地质学会探矿工程专业委员会常务副主任委员。2003年7月起任全国标准化技术委员会委员。2006年5月---2006年7月在国家行政学院参加第七期国土资源厅局长培训班。2006年8月起任科技部国际合作重点及重大项目评审专家。2006年12月被廊坊市委、市政府聘为廊坊市第三届专家咨询服务委员会委员。2009年1月至2010年11月,任勘探所副所长(主持工作)、党委委员。2010年12月至今,任勘探所所长、党委副书记 。 研究方向:从事地质岩心钻探、水文水井和工程施工设备设计、工艺研究以及科研管理工作。 主持或参与完成的科研项目达16项,其中部级课题10项。国家863重点项目:2000m地质岩心钻探关键技术与装备 负责人地质调查科研计划项目:2000m以内地质钻探技术研究和应用示范 负责人深部探测技术与实验研究专项:科学超深井钻探技术方案预研究 负责人 作为主要成员先后参加或主持完成了部、院、所及横向市场科研项目16项,其中获部科技成果三等奖一项、二等奖二项、一等奖一项。参与完成的“水文水井气举钻探新技术”研究成果推广应用到全国30个省、市、区,并广泛应用于国外水井钻进工程中,产生经济效益数十亿元,1993年度获得原地质矿产部科技成果一等奖(排名第六);主持完成的“CG1900型全套管冲抓成孔设备、器具及施工工艺研究”项目,是原地质矿产部“九五”地勘高新技术研究开发项目,已于2001年通过部级鉴定。该项研究成果是我国自行设计制造的第一台大口径全套管冲抓施工设备,成果总体水平达到了国际同类技术先进水平,已广泛应用于国内外桩基施工中。2005年“CG型全套管冲抓成孔设备”入选国家重点新产品。2006年以来,又研制成功四种型号的旋挖搓管机,并出口俄罗斯、乌克兰等国,2011年又成功进入北美市场。2001年5月,担任编委副主任编辑完成的《天然气水合物勘探与开发技术译文集》是我国第一部主要介绍天然气水合物勘探与开发技术的译文集,对我国天然气水合物的勘探开发研究工作起到了积极的推动作用。2008—2009年,在青海省木里海拔4200米的高原冻土区成功实施“祁连山冻土区天然气水合物DK-1—DK-4科学钻探实验孔”,在130-170米之间发现了3个天然气水合物层。在高原冻土地区钻获天然气水合物在世界上尚属首次,标志着我国天然气水合物调查研究和取样钻探技术达到国际先进水平。2006—2007年开始担任863重点项目“2000m地质岩心钻探关键技术与装备”及地质调查计划项目“2000m以内地质钻探技术研究和应用示范”负责人。带领课题组,利用“2000米地质岩心钻探关键技术与装备”在山东乳山金青顶金矿区成功实施一倾角80度终孔深度达8米的生产示范孔,标志着我国第一套具有自主知识产权的2000m深孔全液压动力头地质钻机系统研制成功,其中多项技术已走在世界前列,将大幅度提升我国深部岩心钻探装备设计、制造和配套实力,打破西方少数国家对深部地质岩心钻探装备市场的垄断。这两个项目的成功实施,使我国2000m以内全液压动力头钻机形成了系列化(300米—2000米),解决了长期制约我国地质岩心钻探效率提高的关键工艺技术问题,使我国地质岩心钻探技术和装备水平上了一个大台阶。筹划“十二·五”2000—5000m地质岩心钻探技术与装备相关课题的研究工作。负责的“深部探测技术与实验研究专项”课题12000—15000m“科学超深井钻探技术方案预研究”进展顺利。1、兀型钻架(桅杆)静动载及稳定性研究。2、SPC-150型水文水井钻机。3、SHB140/100气举反循环双壁钻具。4、SPJC-300型水文水井钻机。5、水文水井气举钻探新技术研究。6、SJ-1500型水文水井钻机。7、CG1900型全套管冲抓成孔设备及施工艺研究。8、高压旋喷注浆技术研究与开发。 1 全液压动力头水井钻机国产化若干问题 臧臣坤; 张金昌; 冯起赠 探矿工程 2009-02-252 地质岩心钻探技术及其在资源勘探中的应用 张金昌 探矿工程(岩土钻掘工程) 2009-08-253 2000m地质岩心钻探成套装备研制工作进展 张金昌 探矿工程(岩土钻掘工程) 2009-06-154 CG型全套管搓管成孔设备的研究和应用 宋志彬; 冯起赠; 和国磊; 王年友; 张金昌 探矿工程(岩土钻掘工程) 2009-06-155 再接再厉,创新钻掘技术 甘行平; 傅秉锋; 张金昌; 刘三意 探矿工程(岩土钻掘工程) 2006-02-256 回顾与展望 甘行平;张金昌; 刘三意 探矿工程(岩土钻掘工程) 2007-09-257 钻探技术面临的新形势、新机遇和新任务 张金昌; 冉恒谦; 刘芳霞 探矿工程 2007-09- 258 CG型全套管冲抓成孔设备及施工工艺 宋志彬; 冯起赠; 王年友; 张金昌 探矿工程 2007-09- 259 国产旋挖钻机市场现状分析及发展建议 周红军; 蒋国盛; 张金昌 探矿工程 2008-08-2610 岩溶地区水文水井钻探新技术 张金昌; 宋志彬; 冯起增 西部探矿工程 2005-12-3011 我国水文水井钻机发展综述 张金昌 探矿工程(岩土钻掘工程) 2005-09-3012 防渗加固高压旋喷注浆技术的研究与应用 宋志彬; 张金昌; 冯起增; 杨大根; 孙正基; 王年友 探矿工程(岩土钻 掘工程) 2003-01-2513 探矿工程(岩土钻掘工程)技术与可持续发展 张金昌 探矿工程(岩土钻掘工程) 2004-02-2514 江河堤坝垂直防渗高压喷射灌浆技术 张金昌; 宋志彬; 杨大根; 王年友 探矿工程 2000-09-2515 CG1900型全套管冲抓成孔设备、器具及施工工艺的研究和应用 张金昌; 宋志彬; 王年友; 杨大根 探矿工程(岩土钻掘工程) 2001-11-2516 我国水文水井钻机发展综述 张金昌 第十三届全国探矿工程学术研讨会论文专辑 2005-09-0117 2004年亚、非、拉水文水井钻探技术培训情况介绍 张金昌; 冉恒谦; 孟庆鸿; 张林霞 “十五”重要地质科技成果暨重大找矿成果交流会材料四——“十五”地质行业重要地质科技成果资料汇编 2006-12-0118 钻探技术新进展 张金昌 第十四届全国探矿工程(岩土钻掘工程)学术研讨会论文集 2007-10-0119 全液压动力头水井钻机国产化若干问题 臧臣坤 张金昌 《探矿工程》2009年2期 2009-02-0120 地质岩心钻探技术及其在资源勘探中的应用 张金昌 《探矿工程》2009年8期 2009-08-0121 中国地质钻探技术的发展及应用 张金昌 《矿业装备》2009年10月号 2009-10-0122 2000m地质岩心钻探成套装备研制工作进展 张金昌 《探矿工程》增刊 2009-10-0123 科学超深井钻探技术国内外现状 张金昌《地质学报》2010年6期 2010-06-01 1993年度获得原地质矿产部科技成果一等奖。2003年被国家教育部评为“优秀留学回国人才”。2008年、2010年获国土资源科学技术二等奖各一项。张金昌——中国社会科学院研究员张金昌,甘肃天水人,现为中国社会科学院工业经济研究所研究员,中国社会科学院研究生院教授,北京智泽华软件公司董事长。先后出版《财务分析与决策》、《现代企业经营理财》、《企业经济学》(合著)、《21世纪的企业治理结构和组织变革》(合著)、《国际竞争力评价的理论与方法》、《打造国际竞争力》、《财务分析学教程》等专著。主持“加强我国企业竞争力研究”、“21世纪公司治理结构和企业组织变革展望”、“企业资金链断裂的成因和对策研究”等课题研究,在国内外刊物上发表重要论文100多篇,其中 “中国企业开拓国际市场的战略思考”(香港,《中国评论》杂志,2000年6期)、“中国养老保险部分积累模式的可行性分析”(〈 International social Security Review, M USA VOL 53,2000 N4〉、“中国的劳动生产率:是高还是低?”(USA-China Economics Review,2, New york,中国工业经济2002年4期)等论文在国内外产生了一定反响。主持开发了《智能化财务分析系统》(2001)、《中国建设银行财务顾问专家系统》(2008)、《财务危机预警系统》(2006)、《中国农业银行财务风险分析预警系统》(2009)等软件。1986年毕业于西安建筑科技大学管理工程专业,1986-1993年在首都钢铁公司从事企业管理专业工作,期间考入南开大学研究生班并派往法国尼斯大学深造,获得法国DESS-CAAE学位。1993年回国到社科院从事企业管理、财务分析、竞争力方面的研究工作,主要研究领域为企业管理、国际竞争力与社会保障问题。2001年获得管理学博士学位。2008-2009在美国布鲁克大学以研究教授级访问学者名义进行国际合作研究。

111 评论

豆豆侠3

钻探工程施工技术设计002  第一节 钻孔结构 一、概念  钻孔结构是指开孔至终孔孔身口径的变化。换径次数愈多,钻孔结构越复杂,反之越简单。钻孔结构的选择,要充分考虑矿区的岩石性质、水文地质条件、终孔口径、钻孔深度、钻进方法、钻孔用途等因素。  二、确定钻孔结构总的原则  以终孔直径做为拟定钻孔结构的标准,对照理想岩层剖面自下而上拟定各段的口径和开孔直径。在保证钻孔质量和安全钻进的前提下,尽可能地采用泥浆护孔从而减少或不下套管和少换径,最大限度地简化钻孔结构。  三、钻孔结构选择示例  勘探某金属矿床时,设计孔深700米, 采用金刚石钻进,地质剖面包括以下层位:(1)0至100米为可钻性1-7 级的岩石,该段全漏水不循环;(3)100至700米为可钻性9至10级的稳定岩石;(4)地质取样要求以59mm终孔。试确定该钻孔结构。[分析]从已知条件,自160米至终孔适于一径到底,不下套管;分析地质剖面,该钻孔下孔口管和一层套管即可;为封闭漏失层,套管下放深度为120-130米,管鞋伸进稳定层10至20米,套管直径为73mm,因此该孔段须用76mm钻进;孔口管长18至20米。直径89mm,因此开孔取91或110mm。据此可作出如上图的钻孔结构图。  在矿区钻探技术设计书中,值得注意的是应该将矿区的钻孔结构划分为简单钻孔结构和复杂钻孔结构二种类型加以作图说明,同时作图时应将各要素如直径、换径深度等标明。  第三节 钻进方法 目前岩心钻探工作中,一般根据各矿区地层岩石力学特性、结构与构造,结合钻探设备与护壁堵漏措施等因素,常采用合金与金刚石分层钻进的方法。一般地,开孔采用合金钻进至完整岩面3至5米,然后扩孔下孔口管隔离上部松散层、覆盖层等不稳定地层,然后改用金刚石钻进至终孔。因此,在此只介绍这二种钻进方法。  一、硬质合金钻进 1概念 将具有一定强度和形状的硬质合金,按钻进要求固定于钻头上,在一定的技术条件下,作为切削具破碎岩石的一种钻进方法。  2钻探对硬质合金的要求 合金钻进是靠固定在钻头体上的硬质合金来破碎岩石的,而各种岩石都具有一定的强度和研磨性,钻进时钻头上受力也很复杂,因此,所使用的硬质合金应具有如下性能:  ①硬度大且耐磨性强。便于钻头能有效地切入或压入岩石,并能抵抗岩石对硬质合金的磨蚀作用。  ②抗弯强度大且韧性好。便于能承受破碎岩石过程中各种变化的负荷而不至于崩刃和碎裂。  ③热硬性好而导热性高。钻进中孔底会产生很高的温度,因此要求较高的热硬性,而且在冲洗液中易于释放热量。④成型性好,容易镶焊在钻头体上。  地质勘探用的硬质合金主要是钨钴合金,这类合金其性能满足上述要求。  3硬质合金钻头 钻探用的硬质合金钻头的结构合理与否直接影响到钻进效率、钻头寿命、钻孔质量以及材料成本,因此要认真对待合金钻头的结构要素的研究与选择。它一般分为二大类:取心钻头和全面钻头。地质勘探中一般都只采用取心钻头。  ①钻头体:它是镶嵌切削具的基体,用D35或D45号无缝钢管制成,针状合金钻头的内外出刃应与相应的金刚石钻头一致,钻头体长度不得短于95mm,其中丝扣部分长度40mm,钻头钢体壁厚7至9mm,过厚克取岩石面积大,消耗功率多,过薄影响强度而容易变形。壁厚在保证足够强度与刚度的条件下力求减小,以使克取面积减少以提高钻进效率。  ②合金镶焊数目和排列形式:应根据岩石性质、钻头直径、合金质量、钻具强度和设备功率等因素来确定。钻头直径大、孔较深、岩石硬度大和研磨性较高时,合金数量要适当增加。地质勘探中常用的数量如下表所示。  钻头规格(mm)  合金数量(个)  岩石性质 36 46 59 76 91 110 130 150  研磨性较强的岩层 3-4 3-4 4-6 6 6-8 8-10 10-14 12-14  弱研磨性岩层 3-4 3-4 4 4-6 6 6-8 8 10  在排列形式上一般采用均匀单环排列。  ③切削具的出刃:主要是底、内、外三种出刃。其中底出刃起切入并破碎岩石的任务,大出刃利于破碎岩石和冲洗液流通,但过大容易造成崩刃与折断;内外出刃主要是形成环状间隙,以保证冲洗液流通,较大的内外出刃会导致钻头回转阻力增大,容易崩刃折断,但有利于排粉和减少岩心堵塞的机会,太小了则容易造成岩心堵塞和影响排粉效果甚至会造成糊钻等不良现象。因此,出刃的大小应根据岩石性质来考虑,实际工作中可参考下表进行选择。  岩石性质 内刃(mm) 外刃(mm) 底刃(mm)  松软、弱至中等研磨性岩石 5-5 5-3 2-3  中硬、强研磨性岩石 1-2 1-2 5-5  ④镶焊角:合金颗粒与钻头唇面的夹角,一般采用正前角镶焊,这种镶焊切削具有自磨作用也有利于排粉,但所需轴向压力要较其他方法大些。  ⑤水口及水槽:起到冲洗液流通冷却钻头和携带岩粉的作用,其形状与大小应根据岩层性质、钻头结构形式、冲洗液种类的不同而考虑。一般地,水口面积的总和要大于钻头与岩心之间或钻头与孔壁之间的环状面积,以减少循环阻力。  4合金钻进技术参数  合金钻进的技术参数主要包括钻压、转速和冲洗液量。它们对钻进效率、钻孔质量、磨料消耗、施工安全等直接有关系。在操作过程中,应根据岩石的物理机械性质、钻头结构、钻探设备和钻具的可能性以及钻孔质量要求等条件来合理掌握,并通过实践当中进行修正、总结出适合矿区的最优钻进技术参数。  ①钻压:合理的钻压应该既保证钻头耐久性又获得最大的平均机械钻速。在其它条件不变的情况下,在一定范围内,钻速随着钻压的增加而成比例地增加。实践证明:钻速的提高主要是依靠钻头压力的增加来实现。但压力过大会导致崩刃、钻具折断、钻孔弯曲、软岩层中容易烧钻等事故。钻压可通过下式进行计算:  钻头总压力 = 每颗切削具上应加的压力(如柱状合金70-120kgf/颗) X 钻头上切削具的颗数  实际工作中应该根据所钻的岩层性质而选择的合金切削具型式和钻头的排列与数目进行初步计算,同时在施工中不断总结出最优的钻压。  ②转速:钻具转速有二种表示方法,一是钻头每分钟的回转数(转/分),另一个是用钻头的圆周速度V(米/秒)来表示。 V = [π(D + D1)n ]/(2X60)  生产实践表明:在一定条件下,提高钻头转速可增大钻速,但超过最优值后反而随转速的增高而使钻速降低。一般情况下,在软至中硬岩中钻进时,可采用较高的转速;在坚硬和强研磨性岩石或非均质和裂隙发育的岩石中钻进,则应降低转速;深孔或大口径钻进也应降低转速。  ③冲洗液量:冲洗液量的大小应根据岩石性质和钻孔直径等因素而定。一般地,在软岩层中钻进因进尺快所产生的岩粉多而选择较大的冲洗液量;在岩石颗粒粗比重大的岩层钻进也应相应加大冲洗液量;在大直径孔、深孔钻进时,钻杆和孔壁渗漏多也应加大冲洗液量;而在松散、破碎地层钻进,为防止冲蚀岩心和冲垮孔壁,应选择较小的冲洗液量。冲洗液量Q的大小一般用经验公式进行计算:Q = KD K—经验系数(6—15l/in)D—钻头直径(cm)  实际钻进工作当中,各参数之间有着密切的联系,要达到合理的配合,其配合关系大致如下:  岩石 钻压 转速 冲洗液量  研磨性大的硬岩石 大 小 小  裂隙岩层 小 小 相应地小  软岩 小 大 相应地大  设计中可根据下面的技术参数表的数据范围内根据矿区地层岩性特点加以选择,同时应在实际工作中摸索出适合矿区地层的最优技术参数。  不同岩层钻进技术参数范围表  岩石级别 钻进技术参数  钻头压力 转速  (rpm/min) 泵量  (L/min)  取心钻头  (kg/粒) 刮刀钻头  (kg/cm)  1~4级 50~60 100~120 200~350 >80  5~6部分7级 80~120 120~150 150~250 >80  注:(1)针状硬质合金块每块能承受的压力为150~200kg;  (2)100型钻机的泵量,以水泵最大有效排水量送给。  (3)刮刀钻头单位压力(kg/cm)中的cm,系指钻头直径。  5 合金钻进注意事项  采用合金钻进,除了合理选用钻头结构和钻进技术参数外,还必须有正确的操作方法,才能达到提高钻进效率和钻头使用寿命的目标。因此,应注意以下几方面:  ①新钻头入孔内,应离孔底5米以上并轻压慢转扫至孔底,以防止新钻头被挤夹住。扫孔时速度要慢,以防止合金崩刃或因孔底有残留岩心而堵塞。  ②要经常保持孔底清洁。孔内的岩粉、崩落的合金须及时捞取,孔内有残留岩心在5米以上或有脱落岩心时不得下入新钻头。  ③为保持孔径一致,钻头应排队使用。原则是先用外径大内径小,后用外径小内径大的。  ④正常钻进压力要均匀,不得无故提动钻具,并随着合金的磨钝逐步加大压力。发现岩心堵塞时要及时处理,无效时立即提钻以防止孔内事故。  ⑤合理掌握好回次进尺时间。合金钻进时因磨料逐渐磨钝而出现钻孔缩径和钻速逐步下降,因此,为避免下一回次的扩孔、起下钻时间和提高回次效率,应当确定合理的回次进尺时间,这是提高钻速的有效措施之一。可通过计算法或作图法进行现场确定,各矿区地层情况不一,在此无法具体给出数据。  回次钻速= (回次累计进尺)/(钻进时间累计 + 起下钻时间)  二、金刚石钻进  1 金刚石钻进的优点:与其它方法相比具有如下优点:  ①钻进效率高;②钻孔质量好(采取率可达90%以上,岩矿心代表性好,岩矿心光滑完整、无选择性磨损和富矿流失、污染等现象,钻孔弯曲小);③事故少;④劳动强度低;⑤成本低;⑥应用范围广。  2 金刚石钻头  在这里我们要了解和掌握金刚石钻头的组成、类型和规格及其结构等知识,才能在进行设计或审查设计时对矿区所选择使用的钻头是否合理做出一个评价。  ①钻头的组成:由三个部分组成,即金刚石、胎体、钻头体。  金刚石:分底刃、边刃、侧刃金刚石。底刃用于克取岩石,要选择晶形较好的金刚石;边刃主要用于克取岩石并要保内外径。因此要选择质量最好的金刚石;侧刃仅用于保内外径,可选择较次质量的金刚石。  胎体:是钻头底部包镶金刚石的一圈假合金,采用粉末冶金法或电镀法制成各种需要的形状,用来包镶金刚石颗粒并牢固地与钻头体焊接在一起。胎体部分开有水口,供冲洗液流通之用。金刚石钻头胎体硬度一般在HRC20—50之间,要根据矿区岩性研磨性、破碎程度等因素来合理选择钻头胎体硬度。  钻头体:钻头钢体部分,用中碳钢制作,上部车有丝扣,用来与扩孔器连接。  3、合理选择金刚石钻头与磨料  生产实践证明,金刚石钻头并非能全部顺利钻进各类岩石,在某些岩层中钻进钻速非常低甚至不进尺(如俗称的“打滑地层”)。因此,必须根据岩石的硬度、强度、研磨性、完整度进行合理的选择,做到钻头分层选用“对号入座”,以充分发挥金刚石钻进的优越性。如果选择不当,不但不能发挥其效能,相反会增加金刚石的消耗量使钻探成本增加、事故增多、效率低、质量差,因此必须在设计与实际工作中重视这项工作。  1分层钻进的选择原则  ①在中硬至坚硬岩层以及中、强研磨性岩层、破碎岩层中宜采用孕镶钻头钻进。  2金刚石钻头选择的基本原则  1钻头型式的选择原则  应根据岩石研磨性、完整度和可钻性进行选择。表镶钻头适用于软的、中硬完整岩层钻进;孕镶钻头适用于硬的、坚硬的、破碎的和软硬不均的、裂隙性的岩层钻进。  2钻头胎体的选择原则:在研磨性强,很破碎、较软、颗粒度粗的岩层钻进所选择的胎体硬度应大;反之,研磨性弱、均质完整、硬度大、颗粒度细的岩层所选用的胎体硬度应偏软;而在研磨性强、硬度特硬的岩层不应选用偏软胎体,而是要选择特硬的胎体,否则胎体很快被岩层磨损使钻头失去工作能力。  3具体选择条件:根据上述原则,目前常用的人造孕镶金刚石钻头的金刚石浓度、粒度和胎体硬度的具体设计和使用时可按下表从不同厂家生产的钻头中选择适合矿区地层的钻头。  岩石性质 坚硬 中硬 软  金刚石粒度 细  100目 80—46目 粗  46目  金刚石浓度 低  50% 50—75% 高  100%  胎体硬度 较软  HRC30± HRC40 较硬  HRC40—50  4合理使用金刚石钻头与扩孔器  目的在于以最小的金刚石消耗量,取得最高的机械钻速和最长的钻头使用寿命,达到降低成本。其原则是:先用外径大的,后用外径小的。同时也应考虑先用内径小的,后用内径大的。这样做的好处在于:  1使钻头的外径与孔底部位的孔径尽量吻合,避免扫孔;  2使钻头内径与卡簧内径和残留岩心外径尽量吻合,防止扫岩心而造成岩心堵塞或损坏钻头;  3防止钻头、扩孔器下不到底被挤卡造成事故;  4可防止单个钻头连续进行多回次钻进而形成“喇叭形“钻孔,造成长距离扫孔;  5可使钻头与扩孔器均匀磨损以延长寿命,降低成本。  5钻头与扩孔器、卡簧的配合  1扩孔器外径与钻头外径的配合  扩孔器外径过大,形成“台阶式”钻进,扩孔器易崩刃或过早磨损,导致钻进效率低;而扩孔器外径过小就起不到扩孔的作用导致钻头过早磨损。因此,扩孔器的外径与钻头外径的合理配合尺寸为:扩孔器外径比钻头外径大3—5mm,在坚硬岩层中不得大于3mm。  2钻头内径与卡簧自由内径的合理配合  卡簧内径是岩心进入内管的第一道“关口”,若卡簧内径过大,则取不上或卡不住岩心而造成岩心脱落或残留孔底过长;而卡簧内径过小,则会造成岩心堵塞或岩心顶死卡簧被迫提钻。因此,它们间的配合尺寸是:卡簧自由内径比钻头内径小3—4mm。现场机台使用时应有2至3种规格的卡簧供机台选择,在使用时先用内径小的后用大的。值得注意的是短节与卡簧座为过渡配合,卡簧座的下端与钻头内台阶应有4—5mm的间隙(防止岩心堵塞)。  6金刚石钻进常见事故的预防措施  1如何防止岩心堵塞  实际钻进中,当岩层节理发育、岩石破碎或因工艺规程不合理及操作不当,钻具配合不好等因素存在时,将容易导致岩心堵塞。采取单动双管钻具钻进或专门的取心工具来进行预防。单动双管的内管有扶正岩心、减少钻具旷动和容纳岩心的作用,同时卡簧座与钻头内台阶必须有3至4mm的间隙,以保证内管自由扶正岩心从而防止堵塞;而在节理发育、破碎倾角大的岩矿层中应设计带容纳管的或活塞式的等专门取心工具。另外要保证岩心顺利进入内管,主要的措施有:内管光滑平直;双管内设减振机构或加半合管;良好的卡簧自由内径和钻头内径的配合;精心操作,技术参数稳定,不无故提动钻具等。  2如何防止烧钻事故  当井底钻头得不到充分冷却时将会发生烧钻,烧钻事故严重时会伴随恶性卡钻和断钻杆等孔内事故,因此应该做好预防工作。  烧钻事故主要原因:钻杆中途渗漏,到达孔底冲洗液量不足;水泵工作不正常;岩心堵塞不及时提钻;孔底岩层漏水;钻速过快岩粉没及时排清等方面的原因都会引起烧钻事故。  事故征兆:泵压突然增高,返水变小;回转阻力增加,进尺变慢或不进尺;机械运转不正常;柴油机声音异常或电动机电流表值增高等均是发生烧钻事故的征兆。  预防措施:①要防止冲洗液从钻杆漏失。可在提钻时认真检查钻杆磨损情况,不合格都及时更换;下钻时钻杆接头丝扣缠棉纱等措施。  ②要防止泵量不足。可通过经常检查水泵、使用变量泵和抗震性能好的抗震压力表和随时检查水眼、水路是否畅通来实现;  ③较软地层控制钻速,不得盲目加压追求进尺。地层由硬变软时,压力要随之改小。  ④经常修磨水口、水槽。要求水口高度不小于3mm,水槽深不小于5mm。  ⑤精心操作。操作者随时观察泵压表、孔底压力表、电流表(使用电动机时),孔内返水情况,观察进尺速度和动力机的负荷变化,发现异常立即提钻。  ⑥下钻不能一次到孔底,必须离孔底5m以上开泵送水待循环畅通后再慢速回转下放钻具到孔底。  ⑦发现岩心堵塞或蹩泵时,应立即提钻。不得用加大压力或加快转速的办法来处理。  ⑧保持孔内清洁,残留孔底岩粉不得超过3m。同时也要经常清除清除冲洗液净化系统内的杂物异物和沉渣。  8金刚石钻进技术参数  在正确选择金刚石钻头的情况下,金刚石钻进效率取决于钻进规程参数的合理调节,即钻头轴向载荷、钻头转速和冲洗液量。许多可变因素对规程参数均有直接影响,如岩石物理机械性质、钻头类型、钻孔直径和深度、所用设备与钻具等。金刚石钻进所采用的是以高转速为主体的钻进规程,转速参数的变化影响钻进效果非常明显。评价所选择的钻进规程的合理性,主要是根据钻速、钻头进尺和单位进尺金刚石的消耗量(克拉/米),其中以单位进尺金刚石消耗量和钻头进尺尤为重要。在实际工作中应结合以下的分别论述根据矿区地层岩性特点和选择的设备、孔径和深度等因素,综合选定出自己所在矿区施工的技术参数范围,而不是盲目在设计中套用规程参数。  1钻压  是指钻进过程中直接加在钻头上的轴向压力。合适的钻压可保证金刚石钻头有效地破碎岩石,效率高、进尺多、金刚石消耗量少。钻压低于岩石抗压强度时,金刚石无法克取岩石而在岩石上滑动并迅速被抛光;钻压过大会造成孔底岩屑聚集而使钻头胎体磨损过快,金刚石消耗量大,导致钻速不高甚至糊钻和烧钻。  选择压力时要根据岩石的可钻性、研磨性、完整程度、钻头类型、金刚石的质量、数量和粒度以及钻头克取岩石的环状面积等,笼统地按钻头直径推荐钻压是不够全面的。一般地,从岩石性质的角度在软或弱研磨性岩层中用较小的钻压;在完整、中硬到坚硬或中等研磨性的岩层中适当加大钻压;在破碎裂隙和非均质的岩层中应视裂隙程度适当减小钻压(减少25—50%)。从钻头类型上看,口径大、壁厚、胎体较硬时,用较大的钻压,反之用较小的钻压,值得注意的是如果用表镶钻头时所采用的钻压要较孕镶钻头大,以利于金刚石能压入所钻岩石产生体积破碎。从钻头的成份看,当所有的钻头金刚石品级高、质量好,量多、粒度大时,钻压应大些,反之应小些。同时,在实际工作中,确定钻压时也应考虑钻头的新旧程度和估计好钻压在孔底的损失,新钻头在初磨阶段应用较小的钻压(200—300kgf)等正常出刃后方可用正常钻进压力;孔底损失主要是受孔深与泵压的影响,随着孔深的增加,钻柱与孔壁间的磨擦及泵压的增大抵消了部分钻压,因此也要相应地加大钻压以保证钻头有效地破碎岩石。  设计时,可根据下列公式进行计算:  表镶钻头的压力:P = (66—76)g m p  式中P—表镶钻头总压力(kgf);  g—钻头上的金刚石的克拉数;  m—金刚石粒度(粒/克拉);  p—经验单位压力(5—5kgf/粒);  66—76是系数,表示实际克取岩石的金刚石数量为钻头总克拉数的66—76%。孕镶钻头压力的计算:P = F p 式中:P——钻头总压力(kgf); F——钻头环状克取面积(cm2),F=π/4 (D2 – d2)  D——钻头外径(cm)d——钻头内径(cm)  2转速  转速是主要技术参数之一,金刚石钻进破碎岩石时切入深度小(百分之一到千分之一毫米),想获得高的钻速就必须采用较高的转速。生产试验研究表明,在一定范围内,转速越高,钻速也越高。因此,在实际工作当中,当岩层比较完整、管材有足够的强度和稳定性、配有润滑剂、设备能力允许的情况下,应该选用较高的转速。值得注意的是,当转速超过一定的限度时钻速会下降且严重影响钻头寿命,国内长寿命钻头一般均在800rpm/min下获得。一般地,孕镶钻头出刃很小,切入岩石的深度更小,为获得较高钻速,要求线速度达到5—0m/s;表镶钻头的出刃较孕镶钻头大,转速过高时容易引起振动而损伤金刚石,因此表镶钻头的线速度要求在0—0m/s。  转速的选择应从钻孔深度、设备能力、钻孔结构及岩石性质等方面综合考虑。深孔钻进时,钻具重量大受力情况复杂,钻具回转所消耗的功率也大,受功率和钻具强度的限制以及在泵压和泵量不足时,转速应该降低;浅孔钻进可选用较高的转速;钻孔结构简单,钻具级配合理时,适当采用高转速;反之,钻孔结构复杂,钻杆与孔壁间隙大时,钻具稳定性差,则不宜开高转速。在完整岩层应采用高转速;在岩层破碎、裂隙发育、软硬不均时钻具振动大,容易损坏金刚石,应降低转速。转速的划分为高、中、低三个范围,高转速一般在700—800rpm/min甚至1000rpm/min以上;中转速一般在400—600rpm/min;低转速一般在200—300rpm/min,最低速100rpm/min左右。那么在设计和实际工作中,可根据上面的这些选择原则,先确定采用多大的线速度,通过V = πDn/60 进行换算出转速n,式中:V是线速度(m/s)、D钻头平均直径(m)、n是钻头转数(rpm/min)。同时根据钻孔深度、设备能力和岩石性质等因素综合考虑后确定合理的转速。  3冲洗液量  一般地说,金刚石钻进要求不大的泵量和较高的泵压,同时也要求泵量均匀连续,有较高的流速。其原因在于孔底与孔壁间隙小加之岩粉颗粒细,必须要有较高的上返流速和较大的冲洗液压力才能克服流动阻力。因此,钻探工作中要求使用变量泵作为冲洗液的输送设备。确定泵量时考虑因素是岩石性质、钻杆与钻孔的环状间隙、钻头类型、金刚石粒度、胎体性能等主要因素。泵量的确定原则如下:  从岩石性质角度看:钻进坚硬、颗粒细的岩层时,因钻速低、颗粒细岩粉少,可用较小的冲洗液量;软的、中硬、颗粒粗的岩层。因钻速较高,冲洗液早应用大些;在裂隙、轻微漏失的岩层中钻进,为补偿一些漏失应用较大的冲洗液量;钻进研磨性高的岩层摩擦产生的热量多,用较大的冲洗液量,但注意如果太大会在强烈的液流作用下冲蚀钻头胎体而使金刚石颗粒过早暴露导致崩刃脱落。  从钻头类型看:孕镶钻头钻进时用大的冲洗液量,原因是转速高需要及时冷却胎体避免金刚石损伤和防止胎体磨损过快。表镶钻头出刃量较孕镶钻头大,排粉和冷却条件好,冲洗液量较孕镶钻头小。  从环状间隙看:钻孔环状间隙内岩粉的下沉速度一般在1m/s,冲洗液的上返流速超过下沉速度时方可携带岩粉至孔口。因此,金刚石钻进时要求冲洗液上返流速在3—5m/s。当冲洗液上返流速超过5m/s时,会冲刷岩石和孔壁上不稳固的岩石,容易导致事故的发生。  从钻孔深度看:孔深的增加,钻杆接头处的渗漏也增加,泵量应适当增加。  泵量的计算可用经验公式:Q = K D  式中:Q——泵量(l/min);D——钻头直径(cm);K——经验系数,取5至8。  根据上述,在设计或实际工作中,可先从直径大小初步计算出冲洗液量,再结合所在矿区的钻进岩石性质、钻孔深度、采用的钻头类型、钻具级配等方面综合考虑确定合理的冲洗液量。  关于泵压问题:金刚石钻进钻孔环状间隙小,钻头水口窄,过水断面小,因此流动阻力大从而泵压较高。泵压的损失包括地表管路、钻杆内孔、双管、钻头和环状间隙几部分,其中地表管路(包括高压胶管、水龙头、主动钻杆等)、双管和钻头的压力损失大约8个大气压;每百米钻杆约损失2个大气压。设计时在设备选择中应该将这些因素考虑在内。同时,在实际工作中,可根据泵压的变化来判断孔内情况作出相应的处理对策。一般地,钻进过程中泵压发生小幅度的上升或下降现象,是孔底换层的征兆,这时要注意进尺情况和钻具响声,必要时可调整钻进参数(包括三个参数),以防岩心堵塞;泵压如果大幅度增高,是发生严重堵塞的反映,要尽快将钻具提高孔底以防止发生烧钻;如果泵压大幅度下降,多半是钻杆折断或脱扣,应立即停车检查。因此,钻进过程中经经常观察泵压的变化,严防送水中断和中途泄漏,同时也要配备性能良好的泵压表,以便帮助迅速地判断孔内情况。  4技术参数的合理配合  钻压、转速、泵量三者间是相互配合与相互制约的一种关系。在一定条件下存在最优的配合关系,这种最优关系称最优钻进规程。只有在最优的规程下钻进。才能在以最小的金刚石消耗量获得最高和钻速和较长的钻头寿命,达到优质、高效、低成本和安全的目的。  一般地,在较软地层钻进,采用高转速、大泵量和适当的压力;在坚硬的研磨性强的岩层钻进,则采用大钻压和适当的转速和泵量;在裂隙发育的破碎岩层和研磨性强的岩层钻进,则采用最小限度的钻压、转速中低和适当的泵量;在“打滑层”中钻进,应用大钻压、中低转速和适当的泵量。  总之,各参数的合理配合要结合实际情况加以摸索、总结,不断积累经验,逐步丰富和完善矿区的钻进工艺规程。  绳索取心钻进规程参数较普通金刚石钻进参数大些,这主要取决于钻头唇面的不同而引起的,其钻压较普通外头大些,转速在动力条件允许情况下宜选择高转速,而水量因环状间隙很小应采用比普通双管要小(一般35—35升/分),具体在此就不讲了。  9钻具的的选择  目前我区钻探中除了开孔使用单管外,换径后一般均采用双管钻具进行钻进,双管钻具分单动双管和双动双管钻具,各矿区可根据所钻地层岩性特点与取心难易来灵活选择。  ………… 写个设计吧 ——余下一点写不下了!

87 评论

奋斗的小俊俊

给你共享资源,打开就可以。

313 评论

相关问答

  • 地质钻探技师论文

    给你共享资源,打开就可以。

    miumiu6571 3人参与回答 2024-05-15
  • 钻探工技师论文_钻探技师论文

    我国加入“WTO”后,石油钻采和石油化工设备制造业的市场发生了变化,在市场全球化大背景下,如何融入国际大市场参与世界同行业的竞争,是各企业面临的生死存亡问题。为

    淘气别闹 3人参与回答 2024-05-14
  • 地质勘探钻探专业论文

    因你的叙述的材料背景少,所以本人跟你几点参考,愿对你有帮助。题目的话你根据你做的重点来定题,作为金属矿产需要注意几个方面的分析:矿床(矿产)的等值线构造图的描绘

    北京青年123 4人参与回答 2024-05-16
  • 地质勘探钻探专业论文摘要

    摘要:简述雷达的基本原理,介绍了地质雷达在工程质量检测中的应用实例。关键词:地球;地质雷达;水利工程;质量;应用;必须把地质、钻探、地质雷达这三个方面的资料有机

    louisbellen 2人参与回答 2024-05-13
  • 地质勘探钻探专业论文题目

    因你的叙述的材料背景少,所以本人跟你几点参考,愿对你有帮助。题目的话你根据你做的重点来定题,作为金属矿产需要注意几个方面的分析:矿床(矿产)的等值线构造图的描绘

    shangbabayue 2人参与回答 2024-05-13