• 回答数

    4

  • 浏览数

    280

毛毛球英子
首页 > 论文问答 > 土木工程英语文献

4个回答 默认排序
  • 默认排序
  • 按时间排序

evenmaosir

已采纳
Civil Engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works such as bridges, roads, canals, dams and Civil engineering is the oldest engineering discipline after military engineering, and it was defined to distinguish non-military engineering from military It is traditionally broken into several sub-disciplines including environmental engineering, geotechnical engineering, structural engineering, transportation engineering, municipal or urban engineering, water resources engineering, materials engineering, coastal engineering, surveying, and construction Civil engineering takes place on all levels: in the public sector from municipal through to federal levels, and in the private sector from individual homeowners through to international History of civil engineeringCivil engineering is the application of physical and scientific principles, and its history is intricately linked to advances in understanding of physics and mathematics throughout Because civil engineering is a wide ranging profession, including several separate specialized sub-disciplines, its history is linked to knowledge of structures, materials science, geography, geology, soils, hydrology, environment, mechanics and other Throughout ancient and medieval history most architectural design and construction was carried out by artisans, such as stone masons and carpenters, rising to the role of master Knowledge was retained in guilds and seldom supplanted by Structures, roads and infrastructure that existed were repetitive, and increases in scale were One of the earliest examples of a scientific approach to physical and mathematical problems applicable to civil engineering is the work of Archimedes in the 3rd century BC, including Archimedes Principle, which underpins our understanding of buoyancy, and practical solutions such as Archimedes' Brahmagupta, an Indian mathematician, used arithmetic in the 7th century AD, based on Hindu-Arabic numerals, for excavation (volume) 土木工程是一门学科,专业工程的设计,施工和维护自然的物理和环境建设,包括桥梁,道路,河渠,堤坝和建筑物的工程协议。土木工程是最古老的军事工程后,工程学科,它被定义为区分军事工程非军事工程。这是传统分解成若干子学科包括环境工程,岩土工程,结构工程,交通工程,市政工程或城市,水资源工程,材料工程海岸工程,测量,施工工程。土木工程需要在所有层次上进行:在从市政公用部门通过联邦的水平,并在私营部门,个别业主通过向国际公司土木工程的历史土木工程是物理和科学原理的应用,它的历史是错综复杂的联系在物理学和数学的了解整个历史的进步。由于土木工程是一个广泛的行业,包括一些独立的专门的子学科,它的历史是联系在一起的结构,材料科学,地理,地质,土壤,水文,环境,机械和其他领域的知识。在整个历史上最古老的和中世纪的建筑设计和施工进行了如石匠和木匠手艺,上升到建筑师的角色。知识是保留在很少的行会和进步所取代。构筑物,道路和基础设施存在的重复,并在规模上升的增量。对科学方法的物理和数学问题适用于土木工程最早的例子之一是阿基米德在公元前3世纪,包括阿基米德的原则,巩固我们的浮力的认识,如阿基米德螺旋切实可行的解决办法的工作。婆罗门,印度数学家,用在公元7世纪算法的基础上,印度教,阿拉伯数字,挖掘(卷)计算。
135 评论

天下武功2016

随着我国对外政治、经济、技术和文化交往的日益频繁,工程技术也加大了对外开放的步伐。在世界经济一体化和中国加入WTO这一背景下,开展对土木工程理论与实践的深入全面研究,积极稳妥地促进中国土木工程与国际土木工程的接轨势在必行。相应地,社会对既懂土木工程专业知识又具有娴熟的英语技能的复合型人才的需求越来越迫切。《土木工程英语》课程正是从培养高级应用型人才的总体目标出发,结合学生毕业后的工作实际,力求向学生尤其是英语或土木类专业学生提供其未来工作岗位所需要的专业英语知识和技能。培养学生学习、阅读和翻译材料工程、道路工程、桥梁工程、水利水电工程、隧道工程和国际土木项目管理等专业文献能力的同时,通过在课堂上采用内容教学法提高其在该领域的英语交际能力。通过对本课程的学习,学生在现有的英语和有关财经理论与实务知识的基础上,将掌握土木工程英语专业文章的内容和语言文字特征,在阅读和翻译实践中培养并提高他们理解和研究土木工程设计、施工和管理等信息的能力,同时扩大和深化其语言和专业知识并锻炼理论联系实际的思维能力。

341 评论

漫漫迷秋途

SCC formwork pressure: Influence of steel rebars  Abstract  The formwork pressure exerted by a given Self Compacting Concrete (SCC) depends on its thixotropic behavior, on the casting rate and on the shape of the It can moreover be expected that, in the case of a formwork containing steel rebars, these should also play a In first part, the specific case of a cylindrical formwork containing a single cylindrical steel rebar is In second part, a comparison of the theoretical predictions to the experimental measurements of the pressure drop, after the end of casting SCC, was determined and the proposed model was Finally, an extrapolation is suggested of the proposed method to the case of a rectangular formwork containing a given horizontal section of steel rebars, which could allow the prediction of the formwork pressure during   Keywords: Fresh concrete; Rheology; Workability; Formwork presure; Thixotropy   Introduction  In most of the current building codes or technical recommendations [1], [2], [3] and [4], the main parameters affecting formwork pressure during casting are the density of concrete, the formwork dimensions, the pouring rate of concrete, the temperature, and the type of   However, it was recently demonstrated that, in the case of SCC, the thixotropic behaviour of the material played a major role [5] P Billberg, Form pressure generated by self-compacting concrete, Proceedings of the 3rd International RILEM Symposium on Self-compacting Concrete, RILEM PRO33 Reykjavik, Iceland (2003), 271–[5], [6], [7] and [8] It can be noted that this influence is in fact indirectly taken into account in the above empirical technical recommendations via the effect of temperature and type of the binder, which are both strongly linked to the ability of the material to build up a structure at rest [9], [10] and [11]  During placing, the material indeed behaves as a fluid but, if is cast slowly enough or if at rest, it builds up an internal structure and has the ability to withstand the load from concrete cast above it without increasing the lateral stress against the It was demonstrated in [7] and [8] that, for a SCC confined in a formwork and only submitted to gravity forces, the lateral stress (also called pressure) at the walls may be less than the hydrostatic pressure as some shear stress τwall is supported by the It was also demonstrated that this shear stress reached the value of the yield stress, which itself increased with time because of Finally, if there is no sliding at the interface between the material and the formwork [8], the yield stress (not less or not more) is fully mobilized at the wall and a fraction of the material weight is supported (vertically) by the The pressure exerted by the material on the walls is then lower than the value of the hydrostatic   Based on these results, the model proposed by Ovarlez and Roussel [7] predicts a relative lateral pressure σ′ ( ratio between pressure and hydrostatic pressure) at the bottom of the formwork and at the end of casting equal to:  (1)and a pressure drop Δσ′(t) after casting equal to:  (2)where H is the height of concrete in the formwork in m, Athix the structuration rate in Pa/s [10], R is the casting rate in m/s, e is the width of the formwork in m, g is gravity, t is the time after the end of casting and ρ is the density of the   As it can be seen from the above, the key point for the pressure decrease is that the shear stress on each vertical boundary of the formwork equals the static yield stress of the It can then be expected that, in the case of a formwork containing steel rebars, the stress at the surface of the rebars should also play a It is the objective of this paper to start from the model developed by Ovarlez and Roussel [7] and extend it to the case of reinforced As the steel rebars should have a positive effect on formwork design ( decreasing the formwork pressure), this could allow for a further reduction of the formwork   In first part, the specific case of a cylindrical formwork containing a single cylindrical steel rebar is In second part, a comparison of the theoretical predictions to the experimental measurements of the pressure drop, after the end of casting SCC, is determined and the proposed model is Finally, an extrapolation is suggested of the proposed method to the case of a rectangular formwork containing a given horizontal section of steel rebars, which could allow the prediction of the formwork pressure during    Influence of a vertical steel bar on the pressure decrease inside a cylindrical formwork  In this paper, SCC is considered as a yield stress material (in first step, thixotropy is neglected), and, for stresses below the yield stress, SCC behaves as an elastic material [7] In the following, cylindrical coordinates are used with r in the radius direction; the vertical direction z is oriented downwards (see F 1) The top surface (upper limit of the formwork) is the plane z = 0; the formwork walls are at r = R The bottom of the formwork is located at z = H An elastic medium of density ρ is confined between the cylindrical formwork and an internal cylindrical steel rebar defined by the boundary (r = rb) For the boundary condition, the Tresca conditions are imposed everywhere at the walls ( it is assumed that the shear stress at the walls is equal to the yield stress τ00 as argued by Ovarlez and Roussel [7] and demonstrated in [8]) In order to compute the mean vertical stress σzz(z) in the formwork, the static equilibrium equation projected on the z axis on an horizontal slice of material confined between two coaxial rigid cylinders can be written:   Evaluation of the structuration rate of SCC at rest   The vane test  The yield stress of the studied SCC was measured using a concrete rheometer equipped with a vane The vane geometry used in this study consisted of four 10 mm thick blades around a cylindrical shaft of 120 mm The blade height was 60 mm and the vane diameter was 250 The gap between the rotating tool and the external cylinder was equal to 90 mm which is sufficiently large to avoid any scaling effect due to the size of the gravel (Dmax = 10 mm here)  Tests were performed for four different resting times after mixing on different samples from the same Of course, working with the same batch does not allow for the distinction between the non-reversible evolution of the behavior due to the hydration of the cement particles and the reversible evolution of the behavior due to thixotropy [9] and [10] It can however be noted that the final age of the studied system ( from the beginning of the mixing step to the last vane test measurement) was of the order of 70 Although Jarny et [13] have recently shown, using MRI velocimetry, that a period of around 30 min exists, for which irreversible effects have not yet become significant compared to reversible ones, the final age of the system in the present study was over this However, no strong stiffening nor softening of the sample was visually spotted nor measured as it will be shown Finally, the data analysis proposed by Estellé et [14] was used for the yield stress    The plate test  The plate test appears to be a very convenient method to monitor the apparent yield stress evolution of a thixotropic material with It was first developed and used in [8] but more details about its application to other materials than cement can be found in [15]  The device is composed of a plate rigidly attached below a The plate is lowered into a vessel containing the SCC ( F 2) The apparent mass of the plate is continuously monitored versus time by recording the balance output with a The balance measurements have an uncertainty of ± 01 The vessel was made of smooth PVC and was cylindrical with a diameter of 200 mm and 200 mm in The plate was placed along the cylinder During the tests, the vessel was filled with material to a height of 200 The plate used was 3 mm thick, 75 mm wide and 100 mm It was covered with sand paper with an average roughness of 200 µ The sand paper was used to avoid any slippage between the material and the plate [8] The distance between the plate and the vessel walls was large enough compared to the size of the constitutive particles that the material can be considered as homogeneous [16] and [17] The height H of the immersed portion of the plate was measured before the start of the To ensure that all tests start with the suspension in similar condition, vibration was applied (frequency of 50 Hz, amplitude of 5 mm) for 30 This step is critical in order to ensure tests Variations between tests performed on the same material in the same experimental conditions were then less than 5%  --------------------------------------------------------------------------------  Full-size image (22K)  F Schematic of the plate   View Within Article  The plate test analysis is based on the fact that the slight deformation of the cement paste under its own weight allows for the transfer of a part of this weight to the plate by the mobilization of a shear stress on the This shear stress is equal to the maximum value physically acceptable, which is the yield stress (more details were given in [8], [15], [16] and [17]) The variation in apparent yield stress with time can then be calculated from the measured apparent mass evolution of the plate with time using the following relation:  (9)Δτ0(t)=gΔM(t)/2Swhere ΔM(t) is the measured variation in the apparent mass of the plate and S is the immerged    Laboratory cylindrical formworks  Two columns were simultaneously filled with the studied SCC The columns were made of the same PVC covered with the same sand paper as the plate The columns inner diameters were equal to 100 Each column was 1300 mm The thickness of the plastic wall was 3 A 25 mm diameter steel bar was introduced in the second column (F 3)

234 评论

缌喵喵喵

backing up slowly, choosing to leave his gun trained on the man on the As Grouard inchedbackward, he could see the woman across the room raising her UV li

114 评论

相关问答

  • 土木工程英语文献

    backing up slowly, choosing to leave his gun trained on the man on the As Groua

    miumiu6571 3人参与回答 2024-04-26
  • 土木工程专业英语文献

    ;了

    sojisubyun 3人参与回答 2024-04-25
  • 土木工程英语论文

    土木工程的英文是Civil Engineering ,直译是民用工程,它是建造各种工程的统称。它既指建设的对象,即建造在地上,地下,水中的工程设施,也指应用的材

    红月光薇儿 4人参与回答 2024-04-25
  • 土木工程论文英语

    odic, or ill-directed labor; but faithful,

    无敌小肉 3人参与回答 2024-04-24
  • 土木工程文献英文

    土壤在压力和剪应力下出现的不同变化说明,我们要把压力和形变分成两部分:一部分描述压力,另一部分描述剪应力。本章将对此进行讨论,我们先不考虑膨胀性。1 应力与压力

    翻页作废啊 4人参与回答 2024-04-24