更全的杂志信息网

The Mitochondrial Genome of Pseudocalotes microlepis(Squamata: Agamidae) and its Phylogenetic Position in Agamids

更新时间:2016-07-05

1. Introduction

The genus Pseudocalotes (Draconinae; Agamidae;Squamata) are Calotes-like lizards which inhabit mountain regions of Indo-China and the Sunda region,and are found mostly on trees or bushes in tropical mountain forests (Hallermann and Böhme, 2000; Ziegler et al., 2006). To date, the complete mitochondrial genomes (mitogenomes) of 5.8% of Agamidae species(25/480) were available in GenBank, including 14 species in Agaminae, 4 species in Leiolepidinae, 3 species in Draconinae, 2 species in Amphibolurinae, 1 species in Hydrosaurinae and 1 species in Uromastycinae. However,the phylogenetic position and inter-relationships of the subfamilies have yet to be determined. Some researchers proposed that the group (Agaminae + Draconinae) +Hydrosaurinae was the sister group of Amphibolurinae,and Uromastycinae was the outermost subfamily of agamids (Macey et al., 2000; Okajima and Kumazawa,2010). However, Pyron et al. (2013) proposed that the group of (Agaminae + Draconinae) was the sister group of(Amphibolurinae + Hydrosaurinae) with the study using 5 nuclear loci (BDNF, c-mos, NT3, R35 and RAG-1) and 5 mitochondrial loci (12S, 16S, Cytb, ND2 and ND4),and Uromastycinae was also the outermost subfamily of agamids, but the relationship Amphibolurinae +Hydrosaurinae was weakly supported.

In this study, we sequenced the complete mitogenome of a small-scaled forest agamid (Pseudocalotes microlepis). This lizard occurs in the mountain forests of Hainan and Guizhou in China, Thailand, Laos, Myanmar and Vietnam (Ananjeva et al., 2011; Uetz, 2016; Zhao and Adler, 1993). We analyzed the gene content, base composition, codon usage, tRNAs (transfer RNAs)structure and control region of this species. We then conducted a partitioned Bayesian phylogenetic analysis of related species based upon concatenated 2rRNAs(ribosomal RNAs) and 13 PCGs (protein-coding genes)in sequence (12S rRNA, 16S rRNA, ND1, ND2, COI,COII, ATP8, ATP6, COIII, ND3, ND4L, ND4, ND5, ND6 and Cytb). We analysed the hitherto longest molecular data (14 024 bp) in Agamidae, and compared to the 25 agamids with mitogenomes sequenced, in order to explore the phylogenetic relationships among the subfamilies.

一方面,是智慧养老服务替代品的出现。智慧养老服务替代品的出现存在积极的方面,同时也是对智慧养老服务模式提出的挑战。随着智能技术的不断发展,人工智能养老服务产品的不断迭代更新,使得智慧养老的服务产品功能被替代,这有可能使花费众多时间和精力建设而成的智慧养老服务模式将面临被淘汰的尴尬境地,以至于其无法再投入养老服务生态链中,造成建设资源的浪费。另一方面,是养老服务数据安全性存在潜在风险。智慧养老服务模式虽然是以区块链等技术为支撑,其信息安全技术也在不断发展,但仍然无法绝对保证数据安全。所以,在智慧养老服务模式运行的过程中,依然存在着养老服务数据泄露造成恶劣影响出现的可能性。

2. Materials and Methods

2.1. Sample collection and DNA extraction The sample(voucher number XLHZ601) was collected from Hainan,China, and stored at –80°C in laboratory at Hangzhou Normal University. Total genomic DNA was extracted using the Genomic DNA kit (TransGen, China), according to the manufacturer-supplied protocols.

2.2. Primer design, amplification and sequencing The species-specific primers were designed based on highly conserved sequences (Kumazawa and Endo, 2004), which were designed with software Primer Premier 5 and were identified using multiple alignments of the agamids (Table 1). PCR was performed using a final reaction volume of 25 μL, of 2.5 μL 10 × TransTaq HIFI Buffer, 2 μL dNTPs,1 μL forward and reverse primers for each, 0.5–2 μL DNA Template, 0.25–5 μL HIFI DNA Polymerase, and addition of double distilled water to a final volume of 25 uL. The PCR procedure was conducted on a Mastercycler(Eppendorf, Germany) using the following program: predenaturation at 94°C for 5 min; 35 cycles of denaturation at 94°C for 30 s, annealing at 42°C–56°C for 30 s and extension at 72°C for 30 s; followed by a final elongation step of 72°C for 10 min. The PCR reaction products were electrophoresed in a 1.2% agarose gel and purified with PCR purification Kit (OMEGA, China). Then, each fragment of PCR was cloned into the pEASY-T5 Zero Cloning vector (TransGen, China) and sequenced with M13 primers from both directions by a primer-walking strategy. Each sequence overlapped the next contig between 150–300 bp.

Whereas two tRNAs (tRNACys and tRNASer(AGY)) appear to lack the dihydorouridine (DHU) arm. The loss of the DHU arm in tRNASer(AGY) has been considered a common condition of metazoan mitogenomes (Wolstenholme,1992). However, the loss of the DHU arm in tRNACys is an unusual phenomenon, which has also been observed in Gekko gecko (Han and Zhou, 2005). Further research is needed to determine the molecular mechanisms responsible for keeping such defective tRNAs functional.3.5. Non-coding regions The small non-coding region includes several intergenic spacers, ranging from 1 to 29 bp (Table 3), most of which are shorter than ten nucleotides. The longest intergenic spacer sequence we found is located between COI and tRNASer(UCN). The large non-coding region (control region) is 2 687 bp in size and located between tRNAPro and tRNAPhe. The size is remarkably longer than other species in Draconinae because of the VNTRs. The nucleotide composition is 42.3% A, 28.3% T, 18.2% C and 11.2% G, with a strong bias use of G. The structure is typical including Termination-Associated Sequence (TAS) and Conserved Sequence Blocks (CSB) (Jin et al., 2015; Shi et al., 2013;Xiong et al., 2010). VNTRs contain four distinct tandem repeat units (15 950–16 014, 16 018–16 086, 16 138–16 671 and 16 707–17 857). They are 65 bp, 43 bp, 534 bp,and 1151 bp in length, respectively. The small tandem repeats units as 5'-AACA-3' and 5'-A/G (G) CAA-3'have 16.3 copies and 10.8 copies, respectively. One large tandem repeats (74 bp) have 7.2 copies, another one (75 bp) have 15.4 copies. VNTRs have also been regarded as a common feature for the mitogenomes of reptiles (Xu and Fang, 2006), and could provide reliable phylogenetic and genetic information for closely related species(Zardoya and Meyer, 1998).

3.1. Genome organization and structure The mitogenome of P. microlepis is a typical circular DNA molecule of 17 873 bp in length, similar in size to the other available mitogenomes of species in the Agamidae.In comparison with the other agamids, the mitogenome of P. microlepis is longer than all species (Appendix 1)except Phrynocealus axillaris (17 937 bp). The difference in size is mainly due to the variable number of tandem repeats (VNTRs) in the control region. It contains a typical set of gene content: 13 PCGs, 2 rRNAs, 22 tRNAs and non-coding regions. Among these, 29 genes (12 PCGs, 15 tRNAs and two rRNAs) are located on heavy(H) strand, and other genes (ND6 and seven tRNAs) are located on light (L) strand (Table 3). Gene overlaps of 42 bp have been found at 10 gene junctions, the longest overlap (10 bp) exists between ATP8 and ATP6. The gene order of the P. microlepis mitogenome is identical to that of most squamates (Macey et al., 2006; Ujvari et al.,2007).

老梅的鞋柜不重,他抱起来下楼的时候,老梅说,我还有点其他活儿,暂时想不起来,你吃过饭,要没事儿,再来趟吧。

Table 1 Primers designed to amplify and sequence in this study. L and H refer to forward primer and reverse primer, respectively; Tm refers to annealing temperature.

Primer name Primer sequence (5'-3') Tm (°C) Reference r12S-1L AGGATTAGATACCCTACTA 48 Kumazawa and Endo, 2004 r16S-3H CAKKTTTCCCTTGCGGTACT u12S-1L GCGYACAYAYCGCCCGTC 48 Kumazawa and Endo, 2004 16sbr-H CCGGTCTGAACTCAGATCACGT 16SL CCAACAAGCCAACCGACA 52 This study 16SH CGCCCATGAGTGCGTATT 16S-ND1L TACGACCTCGATGTTGGATCAGG 46 This study 16S-ND1H ATTTTTCGTAGTTGGGTTTGRTT ND1L CTAACAATAAAAGCGGGCAC 52 This study ND1H GGCTAGATGTAGGGCAAAGAT ND1-COIL GCCTGATACACTGGGACCT 54 This study ND1-COIH TGTTCATCCTGTGCCGAC rCO1-lL ATCGGCGGRTTYGGAAACTG 50 Kumazawa and Endo, 2004 rCO2-1H TGGAAGTGWARTAGYTCTTCTAT COIIL CCMCGACTACTAGARGTAGA 53 This study COIIH GYGAATACGTAGGCTTGRAT uLys-1L AGCACTAGCCTTTTAAGC 46 This study uCO3-1H AAYGTCTCGTCATCATTG CO3-ND3L ATAGTWGACCCMAGCCCATGACC 56 Kumazawa and Endo, 2004 CO3-ND3H GGGTCRAAKCCRCATTCRTA rND4-3L CCAAAAGCCCAYGTAGARGC 54 Kumazawa and Endo, 2004 rCUN-1H CTTTTACTTGGADTTGCACC ND3-ND5L CGCACTCCAGGCAATAGAA 53 This study ND3-ND5H ACGGCAAGTTTGGGGTTA ND5L CCTGACACCCGAAAACGA 56 This study ND5H TGTGATGGAGGCTAAATGAAGT 2ND5L TGGGGTCACTTCCACTCTTT 56 This study 2ND5H GCGTTTGATGTGAGGGGTAT rHis-2L AACAAAAACAYTAGRCTGTG 42 Kumazawa and Endo, 2004 rND5-2H ATWGYGTCTTTTGAGTARAAKCC rND6-3L GCAACWGAATAHGCAAATAC 44 Kumazawa and Endo, 2004 rcytb-1H GCGTAGGCRAATAGGAAGTATCA ND6-CBL GARCARGACATYCGAAAAATRGG 50 This study ND6-CBH CAGCCGTGTTGTACATCTCG CBL TTGCCCTTTCAACCTCT 50 This study CBH GCGGCTCTTATTTGTATTC CB2L AGCCAACTGGGMCTMATAAT 42 This study CB2H GGTTTACAAGACCAGTTGCTTT CR2L CAAACCAGAGTGATACTTTC 50 This study CR2H CCCTCTAGGTTGATGTAGA CR3L CTTACATGAATCGGAAGC 48 This study CR3H GGCATATAGCCTCTTGAT

Table 2 The best partition schemes and nucleotide substitution models for mitochondrial data based on BEAST carried out using partitionFinder.

Subset Best Model Subset Partitions P1 GTR+I+G 12S, 16S, ATP6_pos1 P2 GTR+I+G COII_pos1, ND1_pos1, ND3_pos1, Cytb_pos1 P3 GTR+I+G COIII_pos2, COII_pos2, COI_pos2, ND1_pos2 P4 GTR+G ATP6_pos3, ATP8_pos3, ND1_pos3, ND2_pos3, ND3_pos3, ND4L_pos3, ND4_pos3, ND5_pos3, Cytb_pos3 P5 GTR+I+G ATP8_pos1, ND2_pos1, ND4L_pos1, ND4_pos1, ND5_pos1 P6 GTR+G ATP6_pos2, ATP8_pos2, ND2_pos2, ND3_pos2, ND4L_pos2, ND4_pos2, ND5_pos2, Cytb_pos2 P7 SYM+I+G COIII_pos1, COI_pos1 P8 HKY+G COIII_pos3, COII_pos3, COI_pos3 P9 TrN+I+G ND6_pos1, ND6_pos2 P10 HKY+G ND6_pos3

3.4. Ribosomal and transfer RNA genes The 2 rRNAs(12S and 16S) of P. microlepis are located between tRNAPhe and tRNALeu(UUR), and separated by tRNAVal(Table 3). The lengths of 12S rRNA and 16S rRNA are determined to be 846 bp and 1 519 bp, and it varies from 830 bp in A. lepidogaster to 930 bp in A. armata. 16S rRNA varies from 1 479 bp in genus Phrynocealus to 1 567 bp in Leiolepis boehmei, respectively. The size is similar to that of other metazoan mtDNA (Zhang et al., 2009). The typical set of 22 tRNA of P. microlepis is ranging in size from 53 bp for tRNACys to 73 bp for tRNATrp, as similar to other metazoan mitogenomes(Yoon et al., 2015). The 22 tRNAs possess a canonical cloverleaf secondary structure composed of four arms(dihydorouridine arm, anticodon arm, TΨC arm and aminoacyl acceptor arm) with conserved size (Figure 1).

3. Results and Discussion

2.3. Sequence analysis We analyzed DNA sequences and performed contig assembly with the software Seqman(DNASTAR). We identified 13 PCGs using ORF Finder implemented at the NCBI website (https://www.ncbi.nlm.nih.gov/orffinder/). We used tRNAscan-SE search server(Lowe and Eddy, 1997) and MITOS web servers (Bernt et al., 2013) to predict the secondary structure and anticodon sequences of tRNAs. We determined the boundaries of 2 rRNAs based on alignments of rRNA sequences of other species, as with Calotes versicolor (Amer and Kumazawa, 2007). We then compared our sequences with the available agamid mitogenomes using Clustal X 2.0 (Larkin et al., 2007; Thompson et al., 1997), and searched the tandem repeat sequences of control region using Tandem Repeats Finder 4.0 (Benson, 1999). Then we calculated the GC and AT skew respectively following Perna and Kocher (1995) formula: AT skew = (A-T) /(A+T) and GC skew = (G-C) / (G+C) (Perna and Kocher,1995). We analyzed the nucleotide composition and relative synonymous codon usage (RSCU) values with Mega 6.0 (Tamura et al., 2013). The complete mtDNA sequence of P. microlepis was deposited to GenBank under accession number (KX898132).

2.4. Phylogenetic analyses To construct a phylogenetic tree, we used all 25 available mitogenomes in Agamidae,and used Chamaeleo calyptratus (Chamaeleonidae) as the outgroup. Accession number and the whole size for all mitogenomes were presented in Appendix 1. We used the nucleotide sequences consisted of 15 mitochondrial genes, and deleted the start and end codons of PCGs from analyses. Phylogenetic analyses were conducted using Bayesian uncorrelated lognormal approach in BEAST 2.0 (Bouckaert et al., 2014). Prior to estimating BEAST, we carried out the best partition schemes and corresponding nucleotide substitution models for each partition, using PartitionFinder 1.1.1 (Lanfear et al.,2012). The best-fitting model was determined using the Bayesian Information Criterion (BIC). The partitions and models were listed in Table 2. We used one fossil calibration point, the estimated age of the split between oviparous and viviparous species of Phrynocephalus:9.73 (95% interval: 7.21–13.04) Ma (million years ago)(Jin and Brown, 2013). We used the relaxed lognormal clock model, and specified the standard Yule speciation process for the tree. Two independent runs of four heated MCMC chains (three hot chains and one cold chain)were simultaneously run for 200 million generations,with sampling conducted every 10,000 generations(Fitze et al., 2011; Jin et al., 2015; Kyriazi et al., 2008).We compared the results of two independent runs with Tracer 2.2.1 (Rambaut and Drummond, 2007). Then we discarded the first one million trees as “burn-in”. All four chains achieved the recommended adequate effective sample size of 200 for likelihood (Drummond et al.,2006; Lin and Wiens, 2017).

Table 3 Mitochondrial genome organization of Pseudocalotes microlepis. L and H refer to forward primer and reverse primer, respectively.

Gene Strand Position Size(bp) Start codon Stop codon Intergenic spacer tRNAPhe H 1–67 67 0 12S rRNA H 68–913 846 0 tRNAVal H 914–979 66 -1 16S rRNA H 979–2 497 1519 1 tRNALeu(UUR) H 2 499–2 570 72 2 ND1 H 2 573–3 541 969 ATG TAG -4 tRNAGln L 3 538–3 609 72 5 tRNAIle H 3 615–3 681 67 -1 tRNAMet H 3 681–3 747 67 0 ND2 H 3 748–4 776 1029 ATG TAA 5 tRNATrp H 4 782–4 854 73 2 tRNAAla L 4 857–4 924 68 4 tRNAAsn L 4 929–5 000 72 23 tRNACys L 5 024–5 076 53 -1 tRNATyr L 5 076–5 139 64 0 COI H 5 140–6 687 1548 ATG TAG 29 tRNASer(UCN) L 6 717–6 786 70 4 tRNAAsp H 6 791–6 858 68 3 COII H 6 862–7 548 687 ATG AGG -7 tRNALys H 7 542–7 609 68 1 ATP8 H 7 611–7 772 162 ATG TAA -10 ATP6 H 7 763–8 444 682 ATG T 0 COIII H 8 445–9 228 784 ATG T 0 tRNAGly H 9 229–9 294 66 2 ND3 H 9 297–9 641 345 ATG TAA -2 tRNAArg H 9 640–9 706 67 1 ND4L H 9 708–9 998 291 ATG TAA -7 ND4 H 9 992–11 359 1368 ATG AGA 7 tRNAHis H 11 367–11 431 65 0 tRNASer(AGY) H 11 432–11 489 58 8 tRNALeu(CUN) H 11 498–11 569 72 0 ND5 H 11 570–13 348 1779 ATA TAG -8 ND6 L 13 341–13 853 513 ATG AGG 0 tRNAGlu L 13 854–13 920 67 2 Cytb H 13 923–15 048 1126 ATG T 9 tRNAThr H 15 058–15 122 65 -1 tRNAPro H 15 122–15 186 65 0 control region H 15 187–17 873 2687

The relative synonymous codon usage (RSCU) for the mitochondrial PCGs in P. microlepis exhibited 62 amino-acid encoding codons as well as an over-usage of A and T at the third codon positions (Table 4). Among them, CUA-Leu1 (7.12), ACA-Thr (6.02) and AUA-Met(5.19) are the most frequently used codons. The leastfrequent codons are CGG-Arg (0.03), CGU-Arg (0.05)and UCG-Ser2 (0.13). These codons are composed of A and U nucleotides, indicating a high usage of A and T in P. microlepis PCGs.

3.3. Protein-coding genes and relative synonymous codon usage The total length of the 13 PCGs in P. microlepis mitogenome is 11 283 bp, accounting for 63.13% of the entire mitogenome sequence. All the PCGs initiated with a typical start codon (ATG), except ND5 which starts with ATA. Among stop codons, TAA is the most common. ND2, ATP8, ND3 and ND4L end with TAA; ND1, COI and ND5 end with TAG; COII and ND6 end with AGG; ND4 ends with AGA; ATP6, COIII and Cytb end with an incomplete end codon (T-). The posttranscriptional polyadenylation can produce a standard TAA stop codon (Han and Zhou, 2005).

3.2. Nucleotide composition Similar to most other mitogenomes in Agamidae, the nucleotide composition of P. microlepis mtDNA is biased toward A and T. The overall A + T content of mitogenome is 59.2% (35.3%A, 23.9% T, 27.6% C and 13.2% G). The AT skew and GC skew is 0.1943 and –0.3541, respectively. The P.microlepis mitogenome has a distinct bias against G at first codon position (A: 37.0%, T: 22.5%, C: 27.2% and G: 13.3%). The percentage of purines (48.8%) is slightly lower than pyrimidines (51.2%) at the second position and the third position.

In order to estimate the substitution rate of each gene,along with their confidence intervals, we performed an additional BEAST analysis with clock models linked by ‘gene’ and nucleotide substitution models unlinked.Models of nucleotide evolution of each gene partition were calculated in jModelTest 2.1.7 (Darriba et al.,2012), under the Akaike Information Criterion (AICc).Phylograms were drawn with Figtree 1.4.

Table 4 Codon usage in Pseudocalotes microlepis mitochondrial protein-coding genes. A total of 3 737 codons for analyzed,excluding the start and stop codons. AA, amino acid; RSCU,relative synonymous codon usage; n = frequency of each codon;% = n/3737.

AA Codon n % RSCU Phe (F) UUU 78 2.09 0.83 UUC 109 2.92 1.17 Leu2 (L2) UUA 87 2.33 0.88 UUG 24 0.64 0.24 Leu1 (L1) CUU 97 2.6 0.98 CUC 80 2.14 0.81 CUA 266 7.12 2.7 CUG 37 0.99 0.38 Ile (I) AUU 125 3.34 0.9 AUC 154 4.12 1.1 Met (M) AUA 194 5.19 1.62 AUG 46 1.23 0.38 Val (V) GUU 37 0.99 0.93 GUC 24 0.64 0.6 GUA 73 1.95 1.84 GUG 25 0.67 0.63 Ser2 (S2) UCU 43 1.15 0.89 UCC 73 1.95 1.51 UCA 120 3.21 2.47 UCG 5 0.13 0.1 Pro (P) CCU 15 0.4 0.3 CCC 38 1.02 0.76 CCA 131 3.51 2.61 CCG 17 0.45 0.34 Thr (T) ACU 40 1.07 0.36 ACC 161 4.31 1.46 ACA 225 6.02 2.05 ACG 14 0.37 0.13 Ala (A) GCU 36 0.96 0.55 GCC 129 3.45 1.95 GCA 86 2.3 1.3 GCG 13 0.35 0.2 Tyr (Y) UAU 26 0.7 0.5 UAC 79 2.11 1.5 Stop UAA 0 0 0 UAG 0 0 0 His (H) CAU 14 0.37 0.3 CAC 80 2.14 1.7 Gln (Q) CAA 84 2.25 1.7 CAG 15 0.4 0.3 Asn (N) AAU 30 0.8 0.39 AAC 122 3.26 1.61 Lys (K) AAA 111 2.97 1.87 AAG 8 0.21 0.13 Asp (D) GAU 15 0.4 0.55 GAC 40 1.07 1.45 Glu (E) GAA 58 1.55 1.47 GAG 21 0.56 0.53 Cys (C) UGU 9 0.24 0.72 UGC 16 0.43 1.28 Trp (W) UGA 83 2.21 1.75 UGG 12 0.32 0.25 Arg (R) CGU 2 0.05 0.13 CGC 9 0.24 0.59 CGA 49 1.31 3.21 CGG 1 0.03 0.07 Ser (S1) AGU 16 0.43 0.33 AGC 34 0.91 0.7 Stop AGA 0 0 0 AGG 0 0 0 Gly (G) GGU 20 0.54 0.4 GGC 54 1.45 1.07 GGA 82 2.19 1.63 GGG 45 1.2 0.9

Figure 1 Putative 22 tRNAs secondary structures of Pseudocalotes microlepis. The minus (-) indicates Watson-Crick base pairing, and dots indicate G-U base pairing. It is composed of Aminoacyl acceptor (AA) arm, Dihydorouridine (DHU) arm, Anticodon (AC) arm, TΨC (T)arm and Variable loop.

超大城市其城市规模基本已达上限,城市问题较多,城市规模不能再继续蔓延,城市建设发展要以注重精明增长模式为主。特大城市主要为各省份发达地区,该类城市建设用地未达到饱和状态,但城市问题相对较多,建议要注重城市精明增长的运用。大城市、中等城市,城市用地尚有余地,但城市问题也已凸显,需要融入精明增长思想,根据城市建设需要有序向外扩展。小城市为三线城市,其经济、社会还有待发展,需要城市向外蔓延来推动。在这类城市中,当前还是以城市蔓延为主,但需要明确的是,在向外扩张的过程中,必须尊重自然生态条件,做到“有序”蔓延,同时还要辅以精明增长思想,以更好地避免无序蔓延带来的严重的城市问题。

原本枯燥无味的写字教学过程,引进了微课指导写字,不但培养了学生良好的书写习惯,增强了学生学习信心,也使学生的身心得到健康发展。

3.6. Phylogenetic analysis The phylogenetic relationships were constructed using BEAST based on 15 mitochondrial genes. The final alignment resulted in 14 024 nucleotide sites for 26 ingroup and one outgroup taxa. The number of sequences and substitution rates,multiple sequence alignments length, and models of genes were reported for each gene in Table 5. The topology of phylogenetic tree was shown in Figure 2. Most nodes were well supported by high posterior probabilities. The divergence between Chamaeleonidae and Agamidae was estimated at 64.87 Ma; within Agamidae, the basal branching split was estimated at 60.02 Ma. The divergence between oviparous and viviparous species of Phrynocephalus was 9.20 Ma.

Figure 2 Time calibrated Bayesian Phylogenetic tree of amagids and one outgroup estimated using BEAST based on mitochondrial genes(concatenated 2 rRNAs and 13 PCGs) for Markov chains. Numbers on nodes are posterior probability values. Hatched rectangles indicate 95% credibility range for divergence times.

Table 5 Number of sequences and substitution rates, length of the gene fragments, models of genes for each gene as selected by jModelTest according to the AICc.

Gene Length (bp) Best model -lnL Substitution rates(% of substitutions per site per million years per lineage)Mean Stderr of mean 95% HPD Interval 12S 1048 GTR+G 11069.069 0.7536 4.50E-4 (0.6791, 0.8315)16S 1612 GTR+I+G 15784.0224 0.5624 3.15E-4 (0.5132, 0.6085)ND1 948 GTR+I+G 11729.8923 1.0424 6.77E-4 (0.9283, 1.1605)ND2 1032 GTR+I+G 14358.5244 1.1804 6.60E-4 (1.0703, 1,2942)COI 1539 GTR+I+G 16784.6191 0.9977 6.67E-4 (0.8984, 1.0992)COII 672 GTR+I+G 7982.3681 0.9795 8.78E-4 (0.8484, 1.1165)ATP8 156 HKY+G 2460.6986 1.0932 1.25E-3 (0.8958, 1.3291)ATP6 687 GTR+I+G 9884.5279 1.2363 8.39E-4 (1.0947, 1.3743)COIII 780 GTR+I+G 8866.9065 1.0308 8.27E-4 (0.8964, 1.1679)ND3 339 GTR+I+G 4535.8185 1.0638 1.27E-3 (0.8916, 1.2598)ND4L 291 HKY+I+G 4155.6149 1.006 8.95E-4 (0.8603, 1.1685)ND4 1365 GTR+I+G 18320.3413 1.0761 5.67E-4 (0.9871, 1.1636)ND5 1845 GTR+I+G 26176.2835 1.134 4.61E-4 (1.0596, 1.2062)ND6 567 GTR+I+G 7683.8142 1.1316 7.22E-4 (1.0112, 1.2584)Cytb 1143 GTR+I+G 15413.9802 1.0915 6.30E-4 (0.9867, 1.1908)

Our results revealed that the newly sequenced P.microlepis and the genus Acanthosaura were aggregated, and together with C. versicolor they constitute the subfamily Draconinae. However, the usage of mitogeneome did not allow us to resolve with support the position of Hydrosaurinae which was instable across previous studies. For example, some previous studies (Blankers et al., 2013; Townsend et al., 2011;Wiens et al., 2012) placed Hydrosaurinae as sister to Amphibolurinae + (Agaminae + Draconinae), other studies (Macey et al., 2000; Okajima and Kumazawa,2010) placed Hydrosaurinae as sister to (Agaminae +Draconinae), whereas we and Pyron et al. (2013) placed Hydrosaurinae as the sister-group to Amphibolurinae with weak support. Further studies were required to resolve the position of Hydrosaurinae.

城市空间布局与综合交通体系,通常呈现多元网络化形态,在优化废弃铁路及沿线地区交通系统时,应首先考虑与周边大系统的衔接。“面”即是指以统筹视角分析铁路走廊在城市中的区位特征,综合考虑城市与各类交通发展需求,对城市干道网络、公交走廊、枢纽体系、绿道系统等进行布局优化,以达到多种交通方式在城市层面的网络化融合。

4. Conclusions

In this study, we sequenced and annotated the complete mitogenome of P. microlepis. Our results present the gene content, base composition, codon usage, tRNAs structure,VNTRs in the control region and phylogenetic analysis of related species. This is the first complete mitogonome of the genus Pseudocalotes. The research is intended to be helpful for the exploration on the phylogenetic position and interrelationships of the subfamilies in Agamidae.

References

Amer S. A. M., Kumazawa Y. 2005. Mitochondrial genome of Pogona vitticepes, (Reptilia; Agamidae): control region duplication and the origin of Australasian agamids. Gene, 346:249–256

Amer S. A. M., Kumazawa Y. 2007. The mitochondrial genome of the lizard Calotes versicolor and a novel gene inversion in South Asian Draconine agamids. Mol Biol Evol, 24: 1330–1339

Ananjeva N. B., Guo X. G., Wang Y. Z. 2011. Taxonomic diversity of agamid lizards (Reptilia, Sauria, Acrodonta, Agamidae) from China: a comparative analysis. Asian Herpetol Res, 2: 117–128

Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 27: 573–580

Bernt M., Donath A., Jühling F., Externbrink F., Florentz C.,Fritzsch G., Pütz J., Middendorf M., Stadler P. F. 2013.MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Biol Evol, 69: 313–319

Blankers T., Townsend T. M., Pepe K., Reeder T. W., Wiens J. J. 2013. Contrasting global-scale evolutionary radiations:phylogeny, diversification, and morphological evolution in the major clades of guanian lizards. Biol J Linn Soc, 108: 127–143

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C. H.,Xie D., Suchard M. A., Rambaut A., Drummond A. J. 2014.BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol, 10: e1003537

Chen D. L., Guo X. G., Li J. 2014. The complete mitochondrial genome of secret toad-headed agama, Phrynocephalus mystaceus(Reptilia, Squamata, Agamidae). Mitochondr DNA, 25: 19–20

Darriba D., Taboada G. L., Doallo R., Posada D. 2012.jModelTest 2: more models, new heuristics and parallel computing. Nat Methods, 9: 772

Drummond A. J., Ho S. Y. W., Phillips M. J., Rambaut A. 2006.Relaxed phylogenetics and dating with confidence. PLoS Biol,4: e88

Fitze P. S., Gonzalez-Jimena V., San-Jose L. M., Mauro D. S.,Aragón P., Suarez T., Zardoya R. 2011. Integrative analyses of speciation and divergence in Psammodromus hispanicus(Squamata: Lacertidae). BMC Evol Biol, 11: 1–21

Fu C. Y., Chen W., Jin Y. T. 2016. The complete mitochondrial genome of Phrynocephalus guinanensis (Reptilia, Squamata,Agamidae). Mitochondr DNA, 27: 1103–1104

Hallermann J., Böhme W. 2000. A review of the genus Pseudocalotes (Squamata: Agamidae), with description of a new species from West Malaysia. Amphibia-Reptilia, 21: 193–210

Han D. M., Zhou K. Y. 2005. Complete sequence and gene organization of the mitochondrial genome of tokay (Gekko gecko). Zool Res, 26:123–128

Jin X. X., Wang R. X., Wei T., Xu T. J. 2015. Complete mitochondrial genome sequence of Tridentiger bifasciatus and Tridentiger barbatus (Perciformes, Gobiidae): a mitogenomic perspective on the phylogenetic relationships of Gobiidae. Mol Biol Rep, 42: 253–265

Jin Y. T., Brown R. P. 2013. Species history and divergence times of viviparous and oviparous Chinese toad-headed sand lizards (Phrynocephalus) on the Qinghai-Tibetan Plateau. Mol Phylogenet Evol, 68: 259–268

Kumazawa Y., Endo H. 2004. Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptileoriented primers and novel gene rearrangements. DNA Res, 11:115–125

Kyriazi P., Poulakakis N., Parmakelis A., Crochet P. A.,Moravec J., Rastegar-Pouyani N., Tsigenopoulos C. S.,Magoulas A., Mylonas M., Lymberakis P. 2008. Mitochondrial DNA reveals the genealogical history of the snake-eyed lizards(Ophisops elegans and O. occidentalis) (Sauria: Lacertidae).Mol Phylogenet Evol, 49: 795–805

Lanfear R., Calcott B., Ho S. Y. W., Guindon S. 2012.PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol,29: 1695–1701

Larkin M. A., Blackshields G., Brown N. P., Chenna R.,McGettigan P. A., McWilliam H., Valentin F., Wallace I. M.,Wilm A., Lopez R., Thompson J. D., Gibson T. J., Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics,23: 2947–2948

Li D. H., Guo J., Zhou X. M., Chang C., Zhang S. X. 2016. The complete mitochondrial genome of Phrynocephalus helioscopus(Reptilia, Squamata, Agamidae). Mitochondr DNA, 27: 1846–1847

Li D. H., Song S., Chen T., Chang C. 2015. Complete mitochondrial genome of the desert toad-headed agama,Phrynocephalus przewalskii (Reptilia, Squamata, Agamidae),a novel gene organization in vertebrate mtDNA. Mitochondr DNA, 26: 4675–467

Li J., Guo X. G., Chen D. L., Wang Y. Z. 2013. The complete mitochondrial genome of the Yarkand toad-headed agama,Phrynocephalus axillaris (Reptilia, Squamata, Agamidae).Mitochondr DNA, 24: 234–236

Liao P. H., Jin Y. T. 2016. The complete mitochondrial genome of the toad-headed lizard subspecies, Phrynocephalus theobaldi orientalis (Reptilia, Squamata, Agamidae). Mitochondr DNA,27: 559–560

Lin L. H., Wiens J. J. 2017. Comparing macroecological patterns across continents: evolution of climatic niche breadth in varanid lizards. Ecography, 40: 960–970

Lowe T. M., Eddy S. R. 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence.Nucleic Acids Res, 25: 955–964

Macey J. R., Kuehl J. V., Larson A., Robinson M. D., Ugurtas I.H., Ananjeva N. B., Rahman H., Javed H. I., Osman R. M.,Doumma A., Papenfuss T. J. 2008. Socotra Island the forgotten fragment of Gondwana: unmasking chameleon lizard history with complete mitochondrial genomic data. Mol Phylogenet Evol, 49: 1015–1018

Macey J. R., Schulte J. A., Fong J. J., Das I., Papenfuss T. J.2006.The complete mitochondrial genome of an agamid lizard from the Afro-Asian subfamily Agaminae and the phylogenetic position of Bufoniceps, and Xenagama. Mol Phylogenet Evol,39: 881–886

Macey J. R., Schulte J. A., Larson A., Ananjeva N. B., Wang Y. Z., Pethiyagoda R., Rastegar-Pouyani N., Papenfuss T.J. 2000. Evaluating trans-tethys migration: an example using acrodont lizard phylogenetics. Syst Biol, 49: 233–256

Okajima Y., Kumazawa Y. 2010. Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol,10: 1–15

Perna N. T., Kocher T. D. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol, 41: 353–358

Pyron R. A., Burbrink F. T., Wiens J. J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol, 13: 635–653

Rambaut A. J., Drummond A. J. 2007. Tracer v1.4. Institute of Evolutionary Biology, Univ. of Edinburgh, Edinburgh (United Kingdom). http://beast.bio.ed.ac.uk/software/tracer

Shao M., Ma L., Wang Z. 2016. The complete mitochondrial genome of the toad-headed lizard, Phrynocephalus forsythii(Reptilia, Squamata, Agamidae). Mitochondr DNA, 27: 3147–3148

Shao M., Ma L., Zhang G. Z. Wang Z. 2015. The complete mitochondrial genome of the toad-headed lizard, Phrynocephalus albolineatus (Reptilia, Squamata, Agamidae). Mitochondr DNA,doi: 10.3109/19401736.2015.1111359

Shi W., Dong X. L., Wang Z. M., Miao X. G., Wang S. Y., Kong X. Y. 2013. Complete mitogenome sequences of four flatfishes(Pleuronectiformes) reveal a novel gene arrangement of L-strand coding genes. BMC Evol Biol, 13: 1–9

Shuang L., Liu L. J., Song S. 2016. The complete mitochondrial genome of Grumgzimailo’s toad-headed agama, Phrynocephalus grumgrizimailoi (Reptilia, Squamata, Agamidae). Mitochondr DNA, 27: 1581–1582

Song S., Li D. H., Zhang C. H., Jiang K. J., Zhang D. D., Chang C. 2016. The complete mitochondrial genome of the color changeable toad-headed agama, Phrynocephalus versicolor(Reptilia, Squamata, Agamidae). Mitochondr DNA, 27: 1121–1122

Srikulnath K., Nishida C., Matsubara K., Uno Y., Thongpan A.,Suputtitada S., Matsuda Y., Apisitwanich S. 2009. Complete mitochondrial genome analysis and comparative fish mapping of three butterfly lizards. < www.ncbi.nlm.nih.gov/nuccore/AB537555>, submitted 10 December, 2009

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013.MEGA6: molecular evolutionary genetics analysis version 6.0.Mol Biol Evol, 30: 2725–2729

Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F.,Higgins D. G. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25: 4876–4882

Tong H. J., Jin Y. T. 2016. The complete mitochondrial genome of an agama, Phrynocephalus putjatia (Reptilia, Squamata,Agamidae). Mitochondr DNA, 27: 1028–1029

Tong Q. L., Du Y., Lin L. H., Ji X. 2016. The complete mitochondrial genome of Leiolepis reevesii (Sauria, Agamidae).Mitochondr DNA, 27: 541–542

Townsend T. M., Mulcahy D. G., Noonan B. P., Sites J. W.,Kuczynski C. A., Wiens J. J., Reeder T. W. 2011. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol Phylogenet Evol, 61: 363–380

Uetz P. 2016. The Reptile Database, http://www.reptile-database.org, accessed October 10, 2016

Ujvari B., Dowton M., Madsen T. 2007. Mitochondrial DNA recombination in a free-ranging Australian lizard. Biol Letters,3: 189–192

Wiens J. J., Hutter C. R., Mulcahy D. G., Noonan B. P.,Townsend T. M., Sites J. W., Reeder T. W. 2012. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol Lett, 8: 1043–1046

Wolstenholme D. R. 1992. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol, 141: 173–216

Xiong L., Nie L. W., Li X. S., Liu X. 2010. Comparison research and phylogenetic implications of mitochondrial control regions in four soft-shelled turtles of Trionychia (Reptilia, Testudinata).Genes Genom, 32: 291–298

Xu Q. H., Fang S. G. 2006. Variable number tandem repeats in the mitochondrial DNA Control region of the Chinese alligator,Alligator sinensis. Amphibia-Reptilia, 27: 93–101

Yoon K. B., Cho C. U., Park Y. C. 2015. The mitochondrial genome of the Saunders’s gull Chroicocephalus saundersi,(Charadriiformes: Laridae) and a higher phylogeny of shorebirds(Charadriiformes). Gene, 572: 227–236

Yu X. L., Du Y., Yao Y. T., Lin C. X., Lin L. H. 2015.The complete mitochondrial genome of Acanthosaura lepidogaster(Squamata: Agamidae). Mitochondr DNA, 2: 182–184

Zardoya R., Meyer A. 1998. Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtles, Pelomedusa subrufa. Gene, 216: 149–153

Zhang J. F., Nie L. W., Wang Y., Hu L. L. 2009. The complete mitochondrial genome of the large-headed frog, Limnonectes bannaensis (Amphibia: Anura), and a novel gene organization in the vertebrate mtDNA. Gene, 442: 119–127

Zhao E. M., Adler K. 1993. Herpetology of China. Ithaca, NY:Society for the study of Amphibians and Reptiles

Zhu L. F., Liao P. H., Tong H. J., Jin Y. T. 2016. The complete mitochondrial genome of the subspecies, Phrynocephalus erythrurus parva (Reptilia, Squamata, Agamidae), a toad-headed lizard dwell at highest elevations of any reptile in the world.Mitochondr DNA, 27: 703–704

Ziegler T., Thanh V. N., Quyet L. K., Truong N. Q., Hallermann J., Khoi L. V., Hoang T. M. 2006. Neue Verbreitungsnachweise einiger wenig bekannter vietnamesischer Amphibien und Reptilien. Sauria, 28: 29–40

Xiuli YU,Yu DU,Mengchao FANG,Hong LI,Longhui LIN
《Asian Herpetological Research》2018年第1期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息