首页 > 论文期刊知识库 > 什么是研究机器的核心内容和方法

什么是研究机器的核心内容和方法

发布时间:

什么是研究机器的核心内容和方法

大体上说 来 有 两个方面 ,一个是软件方面,一个是硬件 方面。软件方面研究更加智能化的算法,可以使机器人用又更加高的处理事件的能力,硬件方面就是研究生产能精密度更高、更贴近生物肢体的机械部件,

下面将会介绍这种计算机学科的一些核心概念问题。念与附加特性相联系,从而使一个抽象概念具体化的过程。例如,把一个进程与一个处理机、一种类型与一个变量名、一个库目标程序与子程序中的一个符号引用等分别关联起来。在逻辑程序设计中,用面向对象语言将一个方法与一个消息相关联,从抽象的描述建立具体的实例。绑定有时又译为联编、结合等。然而译为绑定既可表音,又能达义,在计算机专业英语的汉译中能达到这一境界的诚然不多。绑定在许多计算机领域中都存在太多的实例。面向对象程序设计中的多态性特征将这一概念发挥得淋漓尽致。程序在运行期间的多态性取决于函数名与函数体相关联的动态性,只有支持动态绑定的程序设计语言才能表达运行期间的多态性,而传统语言通常只支持函数名与函数体的静态绑定[5]。还可为绑定找到一个更通俗的实例。将配偶这一抽象概念与某位异性相关联,这一过程称作绑定。指腹为婚是为静态绑定,自由恋爱是为动态绑定。现有的面向对象程序设计语言都不允许离婚或重婚,但在一定程度上允许再婚。 ?--------------------------------------------------------------------------------Complexity of Large Problems大问题的复杂性--------------------------------------------------------------------------------随着问题规模的增长,复杂性呈非线性增加的效应。这是区分和选择各种方法的重要因素。以此来度量不同的数据规模、问题空间和程序规模。假如我们编写的程序只是处理全班近百人的成绩排序,选择一个最简单的排序算法就可以了。但如果我们编写的程序负责处理全省几十万考生的高考成绩排序,就必须认真选择一个排序算法,因为随着数据量的增大,一个不好的算法的执行时间可能是按指数级增长的,从而使你最终无法忍受等待该算法的输出结果。1/8页软件设计中的许多机制正是面向复杂问题的。例如在一个小小程序中标识符的命名原则是无关重要的,但在一个多人合作开发的软件系统中这种重要性会体现出来;goto语句自由灵活、随意操控,但实践证明了在复杂程序中控制流的无序弊远大于利;结构化程序设计已取得不错成绩,但在更大规模问题求解时保持解空间与问题空间结构的一致性显得更重要。从某种意义上说,程序设计技术发展至今的两个里程碑(结构化程序设计的诞生和面向对象程序设计的诞生)都是因为应用领域的问题规模与复杂性不断增长而驱动的。?--------------------------------------------------------------------------------Conceptual and Formal Models概念和形式模型--------------------------------------------------------------------------------对一个想法或问题进行形式化、特征化、可视化和思维的各种方法。 例如,在逻辑、开关理论和计算理论中的形式模型,基于形式模型的程序设计语言的风范,关于概念模型,诸如抽象数据类型、语义数据类型以及用于指定系统设计的图形语言,如数据流和实体关系图。概念和形式模型主要采用数学方法进行研究。例如用于研究计算能力的常用计算模型有图灵机、递归函数、λ演算等;用于研究并行与分布式特性的常用并发模型有Petri网、CCS、π演算等。只有跨越了形式化与非形式化的鸿沟,才能到达软件自动化的彼岸。在程序设计语言的语法方面,由于建立了完善的概念和形式模型,包括线性文法与上下文无关文法、有限自动机与下推自动机、正则表达式与巴克斯范式等,所以对任何新设计语言的词法分析与语法分析可实现自动化,典型的软件工具有lex和yacc。在形式语义方面,虽然操作语义学、指称语义学、公理语义学和代数语义学四大流派均取得不少成果,但语义分析工具目前还仅限于实验室应用。至于程序设计语言的语用方面,由于严重缺乏概念和形式模型,人们对语言的语用知之甚少,更谈不上什么自动化工具。?

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。[编辑本段]【人工和智能】人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。[编辑本段]【人工智能的定义】著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。[编辑本段]【实际应用】机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。[编辑本段]【学科范畴】人工智能是一门边沿学科,属于自然科学和社会科学的交叉。[编辑本段]【涉及学科】哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,[编辑本段]【研究范畴】自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法[编辑本段]【应用领域】智能控制,机器人学,语言和图像理解,遗传编程[编辑本段]【意识和人工智能的区别】人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。人工智能不是人的智能,更不会超过人的智能。“机器思维”同人类思维的本质区别:人工智能纯系无意识的机械的物理的过程,人类智能主要是生理和心理的过程。人工智能没有社会性。人工智能没有人类的意识所特有的能动的创造能力。两者总是人脑的思维在前,电脑的功能在后。[编辑本段]【强人工智能和弱人工智能】人工智能的一个比较流行的定义,也是该领域较早的定义,是由约翰·麦卡锡(John McCarthy|)在1956年的达特矛斯会议(Dartmouth Conference)上提出的:人工智能就是要让机器的行为看起来就象是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性(见下)。另一个定义指人工智能是人造机器所表现出来的智能性。总体来讲,目前对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。强人工智能强人工智能观点认为有可能制造出真正能推理(Reasoning)和解决问题(Problem_solving)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:类人的人工智能,即机器的思考和推理就像人的思维一样。非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。弱人工智能弱人工智能观点认为不可能制造出能真正地推理(Reasoning)和解决问题(Problem_solving)的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。主流科研集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。强人工智能的研究则出于停滞不前的状态下。对强人工智能的哲学争论“强人工智能”一词最初是约翰·罗杰斯·希尔勒针对计算机和其它信息处理机器创造的,其定义为:“强人工智能观点认为计算机不仅是用来研究人的思维的一种工具;相反,只要运行适当的程序,计算机本身就是有思维的。”(J Searle in Minds Brains and P The Behavioral and Brain Sciences, 3, 1980)这是指使计算机从事智能的活动。在这里智能的涵义是多义的、不确定的,象下面所提到的就是其中的例子。利用计算机解决问题时,必须知道明确的程序。可是,人即使在不清楚程序时,根据发现(heu- ristic)法而设法巧妙地解决了问题的情况是不少的。如识别书写的文字、图形、声音等,所谓认识模型就是一例。再有,能力因学习而得到的提高和归纳推理、依据类推而进行的推理等,也是其例。此外,解决的程序虽然是清楚的,但是实行起来需要很长时间,对于这样的问题,人能在很短的时间内找出相当好的解决方法,如竞技的比赛等就是其例。还有,计算机在没有给予充分的合乎逻辑的正确信息时,就不能理解它的意义,而人在仅是被给予不充分、不正确的信息的情况下,根据适当的补充信息,也能抓住它的意义。自然语言就是例子。用计算机处理自然语言,称为自然语言处理。关于强人工智能的争论不同于更广义的一元论和二元论(dualism)的争论。其争论要点是:如果一台机器的唯一工作原理就是对编码数据进行转换,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是对数据进行转换,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。也有哲学家持不同的观点。Daniel C Dennett 在其著作 Consciousness Explained 里认为,人也不过是一台有灵魂的机器而已,为什么我们认为人可以有智能而普通机器就不能呢?他认为像上述的数据转换机器是有可能有思维和意识的。有的哲学家认为如果弱人工智能是可实现的,那么强人工智能也是可实现的。比如Simon Blackburn在其哲学入门教材 Think 里说道,一个人的看起来是“智能”的行动并不能真正说明这个人就真的是智能的。我永远不可能知道另一个人是否真的像我一样是智能的,还是说她/他仅仅是看起来是智能的。基于这个论点,既然弱人工智能认为可以令机器看起来像是智能的,那就不能完全否定这机器是真的有智能的。Blackburn 认为这是一个主观认定的问题。需要要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在百多年前是被认为很需要智能的。[编辑本段]【人工智能简史】人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现到现在,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展。计算机时代1941年的一项发明使信息存储和处理的各个方面都发生了革命这项同时在美国和德国出现的 发明就是电子计算机第一台计算机要占用几间装空调的大房间,对程序员来说是场恶梦:仅仅为运行一 个程序就要设置成千的线路1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现计算机这个用电子方式处理数据的发明, 为人工智能的可能实现提供了一种媒介AI的开端虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系 Norbert Wiener是最早研究反馈理论的美国人之一最熟悉的反馈控制的例子是自动调温器它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度这项对反馈 回路的研究重要性在于: Wiener从理论上指出,所有的智能活动都是反馈机制的结果而反馈机制是有可 能用机器模拟的这项发现对早期AI的发展影响很大1955年末,Newell和Simon做了一个名为"逻辑专家"(Logic Theorist)的程序这个程序被许多人 认为是第一个AI程序它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题"逻辑专家"对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑1956年,被认为是 人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会"从那时起,这个领域被命名为 "人工智能"虽然 Dartmouth学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础Dartmouth会议后的7年中,AI研究开始快速发展虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了 Carnegie Mellon大学和MIT开始组建AI研究中心研究面临新的挑战: 下一步需 要建立能够更有效解决问题的系统,例如在"逻辑专家"中减少搜索;还有就是建立可以自我学习的系统1957年一个新程序,"通用解题机"(GPS)的第一个版本进行了测试这个程序是由制作"逻辑专家" 的同一个组开发的GPS扩展了Wiener的反馈原理,可以解决很多常识问题两年以后,IBM成立了一个AI研 究组Herbert Gelerneter花3年时间制作了一个解几何定理的程序当越来越多的程序涌现时,McCarthy正忙于一个AI史上的突破1958年McCarthy宣布了他的新成 果: LISP语言 LISP到今天还在用"LISP"的意思是"表处理"(LISt Processing),它很快就为大多数AI开发者~~1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联这个计划吸引了来自全世界的计算机科学家, 加快了AI研究的发展步伐大量的程序以后几年出现了大量程序其中一个著名的叫"SHRDLU""SHRDLU"是"微型世界"项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程在MIT由Marvin Minsky领导的研究人员发现, 面对小规模的对象,计算机程序可以解决空间和逻辑问题其它如在60年代末出现的"STUDENT"可以解决代数 问题,"SIR"可以理解简单的英语句子这些程序的结果对处理语言理解和逻辑有所帮助70年代另一个进展是专家系统专家系统可以预测在一定条件下某种解的概率由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律专家系统的市场应用很广十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等这一切都因为专家系统存储规律和信息的能力而成为可能70年代许多新方法被用于AI开发,著名的如Minsky的构造理论另外David Marr提出了机器视觉方 面的新理论,例如,如何通过一副图像的阴影,形状,颜色,边界和纹理等基本信息辨别图像通过分析这些信 息,可以推断出图像可能是什么同时期另一项成果是PROLOGE语言,于1972年提出 80年代期间,AI前进更为迅速,并更多地进入商业领域1986年,美国AI相关软硬件销售高达25亿 美元专家系统因其效用尤受需求象数字电气公司这样的公司用XCON专家系统为VAX大型机编程杜邦,通用 汽车公司和波音公司也大量依赖专家系统为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如Teknowledge和Intellicorp成立了。为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来从实验室到日常生活人们开始感受到计算机和人工智能技术的影响计算机技术不再只属于实验室中的一小群研究人员 个人电脑和众多技术杂志使计算机技术展现在人们面前有了象美国人工智能协会这样的会因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮。150多所像DEC(它雇了700多员工从事AI研究)这样的公司共花了10亿美元在内部的AI开发组上其它一些AI领域也在80年代进入市场其中一项就是机器视觉 Minsky和Marr的成果现在用到了生产线上的相机和计算机中,进行质量控制尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元但80年代对AI工业来说也不全是好年景86-87年对AI系统的需求下降,业界损失了近5亿美元象 Teknowledge和Intellicorp两家共损失超过6百万美元,大约占利润的三分之一巨大的损失迫使许多研究领 导者削减经费另一个另人失望的是国防部高级研究计划署支持的所谓"智能卡车"这个项目目的是研制一种能完成许多战地任务的机器人。由于项目缺陷和成功无望,Pentagon停止了项目的经费尽管经历了这些受挫的事件,AI仍在慢慢恢复发展新的技术在日本被开发出来,如在美国首创的模糊逻辑,它可以从不确定的条件作出决策;还有神经网络,被视为实现人工智能的可能途径总之,80年代AI被引入了市场,并显示出实用价值可以确信,它将是通向21世纪之匙 人工智能技术接受检验 在"沙漠风暴"行动中军方的智能设备经受了战争的检验人工智能技术被用于导弹系统和预警显示以 及其它先进武器AI技术也进入了家庭智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备对人工智能相关技术更大的需求促 使新的进步不断出现人工智能已经并且将继续不可避免地改变我们的生活

1、定义计算机学科即计算机科学与技术,是研究计算机的设计与制造和利用计算机进行信息获取、表示、存储、处理、控制等的理论、原则、方法和技术的学科。方法论是对计算机领域认识和实践过程中的一般方法及其性质特点、内在联系和变化规律进行系统研究的理论总结。2、分类计算机学科主要分为三个大的研究方向:计算机系统结构、计算机应用、计算机软件与理论。3、核心概念1 )冯·诺依曼结构计算机的原理2 )进程和线程

什么是研究机器的核心内容和特点

大体上说 来 有 两个方面 ,一个是软件方面,一个是硬件 方面。软件方面研究更加智能化的算法,可以使机器人用又更加高的处理事件的能力,硬件方面就是研究生产能精密度更高、更贴近生物肢体的机械部件,

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。[编辑本段]【人工和智能】人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。[编辑本段]【人工智能的定义】著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。[编辑本段]【实际应用】机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。[编辑本段]【学科范畴】人工智能是一门边沿学科,属于自然科学和社会科学的交叉。[编辑本段]【涉及学科】哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,[编辑本段]【研究范畴】自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法[编辑本段]【应用领域】智能控制,机器人学,语言和图像理解,遗传编程[编辑本段]【意识和人工智能的区别】人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。人工智能不是人的智能,更不会超过人的智能。“机器思维”同人类思维的本质区别:人工智能纯系无意识的机械的物理的过程,人类智能主要是生理和心理的过程。人工智能没有社会性。人工智能没有人类的意识所特有的能动的创造能力。两者总是人脑的思维在前,电脑的功能在后。[编辑本段]【强人工智能和弱人工智能】人工智能的一个比较流行的定义,也是该领域较早的定义,是由约翰·麦卡锡(John McCarthy|)在1956年的达特矛斯会议(Dartmouth Conference)上提出的:人工智能就是要让机器的行为看起来就象是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性(见下)。另一个定义指人工智能是人造机器所表现出来的智能性。总体来讲,目前对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。强人工智能强人工智能观点认为有可能制造出真正能推理(Reasoning)和解决问题(Problem_solving)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:类人的人工智能,即机器的思考和推理就像人的思维一样。非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。弱人工智能弱人工智能观点认为不可能制造出能真正地推理(Reasoning)和解决问题(Problem_solving)的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。主流科研集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。强人工智能的研究则出于停滞不前的状态下。对强人工智能的哲学争论“强人工智能”一词最初是约翰·罗杰斯·希尔勒针对计算机和其它信息处理机器创造的,其定义为:“强人工智能观点认为计算机不仅是用来研究人的思维的一种工具;相反,只要运行适当的程序,计算机本身就是有思维的。”(J Searle in Minds Brains and P The Behavioral and Brain Sciences, 3, 1980)这是指使计算机从事智能的活动。在这里智能的涵义是多义的、不确定的,象下面所提到的就是其中的例子。利用计算机解决问题时,必须知道明确的程序。可是,人即使在不清楚程序时,根据发现(heu- ristic)法而设法巧妙地解决了问题的情况是不少的。如识别书写的文字、图形、声音等,所谓认识模型就是一例。再有,能力因学习而得到的提高和归纳推理、依据类推而进行的推理等,也是其例。此外,解决的程序虽然是清楚的,但是实行起来需要很长时间,对于这样的问题,人能在很短的时间内找出相当好的解决方法,如竞技的比赛等就是其例。还有,计算机在没有给予充分的合乎逻辑的正确信息时,就不能理解它的意义,而人在仅是被给予不充分、不正确的信息的情况下,根据适当的补充信息,也能抓住它的意义。自然语言就是例子。用计算机处理自然语言,称为自然语言处理。关于强人工智能的争论不同于更广义的一元论和二元论(dualism)的争论。其争论要点是:如果一台机器的唯一工作原理就是对编码数据进行转换,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是对数据进行转换,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。也有哲学家持不同的观点。Daniel C Dennett 在其著作 Consciousness Explained 里认为,人也不过是一台有灵魂的机器而已,为什么我们认为人可以有智能而普通机器就不能呢?他认为像上述的数据转换机器是有可能有思维和意识的。有的哲学家认为如果弱人工智能是可实现的,那么强人工智能也是可实现的。比如Simon Blackburn在其哲学入门教材 Think 里说道,一个人的看起来是“智能”的行动并不能真正说明这个人就真的是智能的。我永远不可能知道另一个人是否真的像我一样是智能的,还是说她/他仅仅是看起来是智能的。基于这个论点,既然弱人工智能认为可以令机器看起来像是智能的,那就不能完全否定这机器是真的有智能的。Blackburn 认为这是一个主观认定的问题。需要要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在百多年前是被认为很需要智能的。[编辑本段]【人工智能简史】人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现到现在,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展。计算机时代1941年的一项发明使信息存储和处理的各个方面都发生了革命这项同时在美国和德国出现的 发明就是电子计算机第一台计算机要占用几间装空调的大房间,对程序员来说是场恶梦:仅仅为运行一 个程序就要设置成千的线路1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现计算机这个用电子方式处理数据的发明, 为人工智能的可能实现提供了一种媒介AI的开端虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系 Norbert Wiener是最早研究反馈理论的美国人之一最熟悉的反馈控制的例子是自动调温器它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度这项对反馈 回路的研究重要性在于: Wiener从理论上指出,所有的智能活动都是反馈机制的结果而反馈机制是有可 能用机器模拟的这项发现对早期AI的发展影响很大1955年末,Newell和Simon做了一个名为"逻辑专家"(Logic Theorist)的程序这个程序被许多人 认为是第一个AI程序它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题"逻辑专家"对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑1956年,被认为是 人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会"从那时起,这个领域被命名为 "人工智能"虽然 Dartmouth学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础Dartmouth会议后的7年中,AI研究开始快速发展虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了 Carnegie Mellon大学和MIT开始组建AI研究中心研究面临新的挑战: 下一步需 要建立能够更有效解决问题的系统,例如在"逻辑专家"中减少搜索;还有就是建立可以自我学习的系统1957年一个新程序,"通用解题机"(GPS)的第一个版本进行了测试这个程序是由制作"逻辑专家" 的同一个组开发的GPS扩展了Wiener的反馈原理,可以解决很多常识问题两年以后,IBM成立了一个AI研 究组Herbert Gelerneter花3年时间制作了一个解几何定理的程序当越来越多的程序涌现时,McCarthy正忙于一个AI史上的突破1958年McCarthy宣布了他的新成 果: LISP语言 LISP到今天还在用"LISP"的意思是"表处理"(LISt Processing),它很快就为大多数AI开发者~~1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联这个计划吸引了来自全世界的计算机科学家, 加快了AI研究的发展步伐大量的程序以后几年出现了大量程序其中一个著名的叫"SHRDLU""SHRDLU"是"微型世界"项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程在MIT由Marvin Minsky领导的研究人员发现, 面对小规模的对象,计算机程序可以解决空间和逻辑问题其它如在60年代末出现的"STUDENT"可以解决代数 问题,"SIR"可以理解简单的英语句子这些程序的结果对处理语言理解和逻辑有所帮助70年代另一个进展是专家系统专家系统可以预测在一定条件下某种解的概率由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律专家系统的市场应用很广十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等这一切都因为专家系统存储规律和信息的能力而成为可能70年代许多新方法被用于AI开发,著名的如Minsky的构造理论另外David Marr提出了机器视觉方 面的新理论,例如,如何通过一副图像的阴影,形状,颜色,边界和纹理等基本信息辨别图像通过分析这些信 息,可以推断出图像可能是什么同时期另一项成果是PROLOGE语言,于1972年提出 80年代期间,AI前进更为迅速,并更多地进入商业领域1986年,美国AI相关软硬件销售高达25亿 美元专家系统因其效用尤受需求象数字电气公司这样的公司用XCON专家系统为VAX大型机编程杜邦,通用 汽车公司和波音公司也大量依赖专家系统为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如Teknowledge和Intellicorp成立了。为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来从实验室到日常生活人们开始感受到计算机和人工智能技术的影响计算机技术不再只属于实验室中的一小群研究人员 个人电脑和众多技术杂志使计算机技术展现在人们面前有了象美国人工智能协会这样的会因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮。150多所像DEC(它雇了700多员工从事AI研究)这样的公司共花了10亿美元在内部的AI开发组上其它一些AI领域也在80年代进入市场其中一项就是机器视觉 Minsky和Marr的成果现在用到了生产线上的相机和计算机中,进行质量控制尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元但80年代对AI工业来说也不全是好年景86-87年对AI系统的需求下降,业界损失了近5亿美元象 Teknowledge和Intellicorp两家共损失超过6百万美元,大约占利润的三分之一巨大的损失迫使许多研究领 导者削减经费另一个另人失望的是国防部高级研究计划署支持的所谓"智能卡车"这个项目目的是研制一种能完成许多战地任务的机器人。由于项目缺陷和成功无望,Pentagon停止了项目的经费尽管经历了这些受挫的事件,AI仍在慢慢恢复发展新的技术在日本被开发出来,如在美国首创的模糊逻辑,它可以从不确定的条件作出决策;还有神经网络,被视为实现人工智能的可能途径总之,80年代AI被引入了市场,并显示出实用价值可以确信,它将是通向21世纪之匙 人工智能技术接受检验 在"沙漠风暴"行动中军方的智能设备经受了战争的检验人工智能技术被用于导弹系统和预警显示以 及其它先进武器AI技术也进入了家庭智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备对人工智能相关技术更大的需求促 使新的进步不断出现人工智能已经并且将继续不可避免地改变我们的生活

什么是研究机器的核心内容和意义

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。[编辑本段]【人工和智能】人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。[编辑本段]【人工智能的定义】著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。[编辑本段]【实际应用】机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。[编辑本段]【学科范畴】人工智能是一门边沿学科,属于自然科学和社会科学的交叉。[编辑本段]【涉及学科】哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,[编辑本段]【研究范畴】自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法[编辑本段]【应用领域】智能控制,机器人学,语言和图像理解,遗传编程[编辑本段]【意识和人工智能的区别】人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。人工智能不是人的智能,更不会超过人的智能。“机器思维”同人类思维的本质区别:人工智能纯系无意识的机械的物理的过程,人类智能主要是生理和心理的过程。人工智能没有社会性。人工智能没有人类的意识所特有的能动的创造能力。两者总是人脑的思维在前,电脑的功能在后。[编辑本段]【强人工智能和弱人工智能】人工智能的一个比较流行的定义,也是该领域较早的定义,是由约翰·麦卡锡(John McCarthy|)在1956年的达特矛斯会议(Dartmouth Conference)上提出的:人工智能就是要让机器的行为看起来就象是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性(见下)。另一个定义指人工智能是人造机器所表现出来的智能性。总体来讲,目前对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。强人工智能强人工智能观点认为有可能制造出真正能推理(Reasoning)和解决问题(Problem_solving)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:类人的人工智能,即机器的思考和推理就像人的思维一样。非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。弱人工智能弱人工智能观点认为不可能制造出能真正地推理(Reasoning)和解决问题(Problem_solving)的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。主流科研集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。强人工智能的研究则出于停滞不前的状态下。对强人工智能的哲学争论“强人工智能”一词最初是约翰·罗杰斯·希尔勒针对计算机和其它信息处理机器创造的,其定义为:“强人工智能观点认为计算机不仅是用来研究人的思维的一种工具;相反,只要运行适当的程序,计算机本身就是有思维的。”(J Searle in Minds Brains and P The Behavioral and Brain Sciences, 3, 1980)这是指使计算机从事智能的活动。在这里智能的涵义是多义的、不确定的,象下面所提到的就是其中的例子。利用计算机解决问题时,必须知道明确的程序。可是,人即使在不清楚程序时,根据发现(heu- ristic)法而设法巧妙地解决了问题的情况是不少的。如识别书写的文字、图形、声音等,所谓认识模型就是一例。再有,能力因学习而得到的提高和归纳推理、依据类推而进行的推理等,也是其例。此外,解决的程序虽然是清楚的,但是实行起来需要很长时间,对于这样的问题,人能在很短的时间内找出相当好的解决方法,如竞技的比赛等就是其例。还有,计算机在没有给予充分的合乎逻辑的正确信息时,就不能理解它的意义,而人在仅是被给予不充分、不正确的信息的情况下,根据适当的补充信息,也能抓住它的意义。自然语言就是例子。用计算机处理自然语言,称为自然语言处理。关于强人工智能的争论不同于更广义的一元论和二元论(dualism)的争论。其争论要点是:如果一台机器的唯一工作原理就是对编码数据进行转换,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是对数据进行转换,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。也有哲学家持不同的观点。Daniel C Dennett 在其著作 Consciousness Explained 里认为,人也不过是一台有灵魂的机器而已,为什么我们认为人可以有智能而普通机器就不能呢?他认为像上述的数据转换机器是有可能有思维和意识的。有的哲学家认为如果弱人工智能是可实现的,那么强人工智能也是可实现的。比如Simon Blackburn在其哲学入门教材 Think 里说道,一个人的看起来是“智能”的行动并不能真正说明这个人就真的是智能的。我永远不可能知道另一个人是否真的像我一样是智能的,还是说她/他仅仅是看起来是智能的。基于这个论点,既然弱人工智能认为可以令机器看起来像是智能的,那就不能完全否定这机器是真的有智能的。Blackburn 认为这是一个主观认定的问题。需要要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在百多年前是被认为很需要智能的。[编辑本段]【人工智能简史】人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现到现在,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展。计算机时代1941年的一项发明使信息存储和处理的各个方面都发生了革命这项同时在美国和德国出现的 发明就是电子计算机第一台计算机要占用几间装空调的大房间,对程序员来说是场恶梦:仅仅为运行一 个程序就要设置成千的线路1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现计算机这个用电子方式处理数据的发明, 为人工智能的可能实现提供了一种媒介AI的开端虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系 Norbert Wiener是最早研究反馈理论的美国人之一最熟悉的反馈控制的例子是自动调温器它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度这项对反馈 回路的研究重要性在于: Wiener从理论上指出,所有的智能活动都是反馈机制的结果而反馈机制是有可 能用机器模拟的这项发现对早期AI的发展影响很大1955年末,Newell和Simon做了一个名为"逻辑专家"(Logic Theorist)的程序这个程序被许多人 认为是第一个AI程序它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题"逻辑专家"对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑1956年,被认为是 人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会"从那时起,这个领域被命名为 "人工智能"虽然 Dartmouth学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础Dartmouth会议后的7年中,AI研究开始快速发展虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了 Carnegie Mellon大学和MIT开始组建AI研究中心研究面临新的挑战: 下一步需 要建立能够更有效解决问题的系统,例如在"逻辑专家"中减少搜索;还有就是建立可以自我学习的系统1957年一个新程序,"通用解题机"(GPS)的第一个版本进行了测试这个程序是由制作"逻辑专家" 的同一个组开发的GPS扩展了Wiener的反馈原理,可以解决很多常识问题两年以后,IBM成立了一个AI研 究组Herbert Gelerneter花3年时间制作了一个解几何定理的程序当越来越多的程序涌现时,McCarthy正忙于一个AI史上的突破1958年McCarthy宣布了他的新成 果: LISP语言 LISP到今天还在用"LISP"的意思是"表处理"(LISt Processing),它很快就为大多数AI开发者~~1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联这个计划吸引了来自全世界的计算机科学家, 加快了AI研究的发展步伐大量的程序以后几年出现了大量程序其中一个著名的叫"SHRDLU""SHRDLU"是"微型世界"项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程在MIT由Marvin Minsky领导的研究人员发现, 面对小规模的对象,计算机程序可以解决空间和逻辑问题其它如在60年代末出现的"STUDENT"可以解决代数 问题,"SIR"可以理解简单的英语句子这些程序的结果对处理语言理解和逻辑有所帮助70年代另一个进展是专家系统专家系统可以预测在一定条件下某种解的概率由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律专家系统的市场应用很广十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等这一切都因为专家系统存储规律和信息的能力而成为可能70年代许多新方法被用于AI开发,著名的如Minsky的构造理论另外David Marr提出了机器视觉方 面的新理论,例如,如何通过一副图像的阴影,形状,颜色,边界和纹理等基本信息辨别图像通过分析这些信 息,可以推断出图像可能是什么同时期另一项成果是PROLOGE语言,于1972年提出 80年代期间,AI前进更为迅速,并更多地进入商业领域1986年,美国AI相关软硬件销售高达25亿 美元专家系统因其效用尤受需求象数字电气公司这样的公司用XCON专家系统为VAX大型机编程杜邦,通用 汽车公司和波音公司也大量依赖专家系统为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如Teknowledge和Intellicorp成立了。为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来从实验室到日常生活人们开始感受到计算机和人工智能技术的影响计算机技术不再只属于实验室中的一小群研究人员 个人电脑和众多技术杂志使计算机技术展现在人们面前有了象美国人工智能协会这样的会因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮。150多所像DEC(它雇了700多员工从事AI研究)这样的公司共花了10亿美元在内部的AI开发组上其它一些AI领域也在80年代进入市场其中一项就是机器视觉 Minsky和Marr的成果现在用到了生产线上的相机和计算机中,进行质量控制尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元但80年代对AI工业来说也不全是好年景86-87年对AI系统的需求下降,业界损失了近5亿美元象 Teknowledge和Intellicorp两家共损失超过6百万美元,大约占利润的三分之一巨大的损失迫使许多研究领 导者削减经费另一个另人失望的是国防部高级研究计划署支持的所谓"智能卡车"这个项目目的是研制一种能完成许多战地任务的机器人。由于项目缺陷和成功无望,Pentagon停止了项目的经费尽管经历了这些受挫的事件,AI仍在慢慢恢复发展新的技术在日本被开发出来,如在美国首创的模糊逻辑,它可以从不确定的条件作出决策;还有神经网络,被视为实现人工智能的可能途径总之,80年代AI被引入了市场,并显示出实用价值可以确信,它将是通向21世纪之匙 人工智能技术接受检验 在"沙漠风暴"行动中军方的智能设备经受了战争的检验人工智能技术被用于导弹系统和预警显示以 及其它先进武器AI技术也进入了家庭智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备对人工智能相关技术更大的需求促 使新的进步不断出现人工智能已经并且将继续不可避免地改变我们的生活

它就是一普通刊物,连知网都还没有收录。

通过该课程学习,学生能够建立计算机系统的概念,深入理解计算机的工作原理,掌握计算机组织与实现的技术和方法,以及计算机系统分析和系统设计的方法,从而为计算机专业其他专业课的学习打下坚实的基础。

核心就是硬件的组成

什么是研究机器的核心内容

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。[编辑本段]【人工和智能】人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。[编辑本段]【人工智能的定义】著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。[编辑本段]【实际应用】机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。[编辑本段]【学科范畴】人工智能是一门边沿学科,属于自然科学和社会科学的交叉。[编辑本段]【涉及学科】哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,[编辑本段]【研究范畴】自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法[编辑本段]【应用领域】智能控制,机器人学,语言和图像理解,遗传编程[编辑本段]【意识和人工智能的区别】人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。人工智能不是人的智能,更不会超过人的智能。“机器思维”同人类思维的本质区别:人工智能纯系无意识的机械的物理的过程,人类智能主要是生理和心理的过程。人工智能没有社会性。人工智能没有人类的意识所特有的能动的创造能力。两者总是人脑的思维在前,电脑的功能在后。[编辑本段]【强人工智能和弱人工智能】人工智能的一个比较流行的定义,也是该领域较早的定义,是由约翰·麦卡锡(John McCarthy|)在1956年的达特矛斯会议(Dartmouth Conference)上提出的:人工智能就是要让机器的行为看起来就象是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性(见下)。另一个定义指人工智能是人造机器所表现出来的智能性。总体来讲,目前对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。强人工智能强人工智能观点认为有可能制造出真正能推理(Reasoning)和解决问题(Problem_solving)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:类人的人工智能,即机器的思考和推理就像人的思维一样。非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。弱人工智能弱人工智能观点认为不可能制造出能真正地推理(Reasoning)和解决问题(Problem_solving)的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。主流科研集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。强人工智能的研究则出于停滞不前的状态下。对强人工智能的哲学争论“强人工智能”一词最初是约翰·罗杰斯·希尔勒针对计算机和其它信息处理机器创造的,其定义为:“强人工智能观点认为计算机不仅是用来研究人的思维的一种工具;相反,只要运行适当的程序,计算机本身就是有思维的。”(J Searle in Minds Brains and P The Behavioral and Brain Sciences, 3, 1980)这是指使计算机从事智能的活动。在这里智能的涵义是多义的、不确定的,象下面所提到的就是其中的例子。利用计算机解决问题时,必须知道明确的程序。可是,人即使在不清楚程序时,根据发现(heu- ristic)法而设法巧妙地解决了问题的情况是不少的。如识别书写的文字、图形、声音等,所谓认识模型就是一例。再有,能力因学习而得到的提高和归纳推理、依据类推而进行的推理等,也是其例。此外,解决的程序虽然是清楚的,但是实行起来需要很长时间,对于这样的问题,人能在很短的时间内找出相当好的解决方法,如竞技的比赛等就是其例。还有,计算机在没有给予充分的合乎逻辑的正确信息时,就不能理解它的意义,而人在仅是被给予不充分、不正确的信息的情况下,根据适当的补充信息,也能抓住它的意义。自然语言就是例子。用计算机处理自然语言,称为自然语言处理。关于强人工智能的争论不同于更广义的一元论和二元论(dualism)的争论。其争论要点是:如果一台机器的唯一工作原理就是对编码数据进行转换,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是对数据进行转换,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。也有哲学家持不同的观点。Daniel C Dennett 在其著作 Consciousness Explained 里认为,人也不过是一台有灵魂的机器而已,为什么我们认为人可以有智能而普通机器就不能呢?他认为像上述的数据转换机器是有可能有思维和意识的。有的哲学家认为如果弱人工智能是可实现的,那么强人工智能也是可实现的。比如Simon Blackburn在其哲学入门教材 Think 里说道,一个人的看起来是“智能”的行动并不能真正说明这个人就真的是智能的。我永远不可能知道另一个人是否真的像我一样是智能的,还是说她/他仅仅是看起来是智能的。基于这个论点,既然弱人工智能认为可以令机器看起来像是智能的,那就不能完全否定这机器是真的有智能的。Blackburn 认为这是一个主观认定的问题。需要要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在百多年前是被认为很需要智能的。[编辑本段]【人工智能简史】人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现到现在,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展。计算机时代1941年的一项发明使信息存储和处理的各个方面都发生了革命这项同时在美国和德国出现的 发明就是电子计算机第一台计算机要占用几间装空调的大房间,对程序员来说是场恶梦:仅仅为运行一 个程序就要设置成千的线路1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现计算机这个用电子方式处理数据的发明, 为人工智能的可能实现提供了一种媒介AI的开端虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系 Norbert Wiener是最早研究反馈理论的美国人之一最熟悉的反馈控制的例子是自动调温器它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度这项对反馈 回路的研究重要性在于: Wiener从理论上指出,所有的智能活动都是反馈机制的结果而反馈机制是有可 能用机器模拟的这项发现对早期AI的发展影响很大1955年末,Newell和Simon做了一个名为"逻辑专家"(Logic Theorist)的程序这个程序被许多人 认为是第一个AI程序它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题"逻辑专家"对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑1956年,被认为是 人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会"从那时起,这个领域被命名为 "人工智能"虽然 Dartmouth学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础Dartmouth会议后的7年中,AI研究开始快速发展虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了 Carnegie Mellon大学和MIT开始组建AI研究中心研究面临新的挑战: 下一步需 要建立能够更有效解决问题的系统,例如在"逻辑专家"中减少搜索;还有就是建立可以自我学习的系统1957年一个新程序,"通用解题机"(GPS)的第一个版本进行了测试这个程序是由制作"逻辑专家" 的同一个组开发的GPS扩展了Wiener的反馈原理,可以解决很多常识问题两年以后,IBM成立了一个AI研 究组Herbert Gelerneter花3年时间制作了一个解几何定理的程序当越来越多的程序涌现时,McCarthy正忙于一个AI史上的突破1958年McCarthy宣布了他的新成 果: LISP语言 LISP到今天还在用"LISP"的意思是"表处理"(LISt Processing),它很快就为大多数AI开发者~~1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联这个计划吸引了来自全世界的计算机科学家, 加快了AI研究的发展步伐大量的程序以后几年出现了大量程序其中一个著名的叫"SHRDLU""SHRDLU"是"微型世界"项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程在MIT由Marvin Minsky领导的研究人员发现, 面对小规模的对象,计算机程序可以解决空间和逻辑问题其它如在60年代末出现的"STUDENT"可以解决代数 问题,"SIR"可以理解简单的英语句子这些程序的结果对处理语言理解和逻辑有所帮助70年代另一个进展是专家系统专家系统可以预测在一定条件下某种解的概率由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律专家系统的市场应用很广十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等这一切都因为专家系统存储规律和信息的能力而成为可能70年代许多新方法被用于AI开发,著名的如Minsky的构造理论另外David Marr提出了机器视觉方 面的新理论,例如,如何通过一副图像的阴影,形状,颜色,边界和纹理等基本信息辨别图像通过分析这些信 息,可以推断出图像可能是什么同时期另一项成果是PROLOGE语言,于1972年提出 80年代期间,AI前进更为迅速,并更多地进入商业领域1986年,美国AI相关软硬件销售高达25亿 美元专家系统因其效用尤受需求象数字电气公司这样的公司用XCON专家系统为VAX大型机编程杜邦,通用 汽车公司和波音公司也大量依赖专家系统为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如Teknowledge和Intellicorp成立了。为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来从实验室到日常生活人们开始感受到计算机和人工智能技术的影响计算机技术不再只属于实验室中的一小群研究人员 个人电脑和众多技术杂志使计算机技术展现在人们面前有了象美国人工智能协会这样的会因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮。150多所像DEC(它雇了700多员工从事AI研究)这样的公司共花了10亿美元在内部的AI开发组上其它一些AI领域也在80年代进入市场其中一项就是机器视觉 Minsky和Marr的成果现在用到了生产线上的相机和计算机中,进行质量控制尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元但80年代对AI工业来说也不全是好年景86-87年对AI系统的需求下降,业界损失了近5亿美元象 Teknowledge和Intellicorp两家共损失超过6百万美元,大约占利润的三分之一巨大的损失迫使许多研究领 导者削减经费另一个另人失望的是国防部高级研究计划署支持的所谓"智能卡车"这个项目目的是研制一种能完成许多战地任务的机器人。由于项目缺陷和成功无望,Pentagon停止了项目的经费尽管经历了这些受挫的事件,AI仍在慢慢恢复发展新的技术在日本被开发出来,如在美国首创的模糊逻辑,它可以从不确定的条件作出决策;还有神经网络,被视为实现人工智能的可能途径总之,80年代AI被引入了市场,并显示出实用价值可以确信,它将是通向21世纪之匙 人工智能技术接受检验 在"沙漠风暴"行动中军方的智能设备经受了战争的检验人工智能技术被用于导弹系统和预警显示以 及其它先进武器AI技术也进入了家庭智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备对人工智能相关技术更大的需求促 使新的进步不断出现人工智能已经并且将继续不可避免地改变我们的生活

你们真厉害,我对机器人一窍不通,我觉得机器人怎么都有漏洞,再说没有磁场网络,机器也没用啊,机器只能在到处都是磁石材料做的东西周围工作吧

智能机器人技术包括:1、自动控制技术 2、传感器检测技术 3、程控技术 4、遥控技术核心就是控制,现代高新科学技术都离不开控制,我们通过控制机器人来达到所需的目的,机器人执行的是取代或是协助人类工作的工作,例如制造业、建筑业,或是危险的工作。机器人可以是高级整合控制论、机械电子、计算机、材料和仿生学的产物。

大体上说 来 有 两个方面 ,一个是软件方面,一个是硬件 方面。软件方面研究更加智能化的算法,可以使机器人用又更加高的处理事件的能力,硬件方面就是研究生产能精密度更高、更贴近生物肢体的机械部件,

市场研究的核心是什么内容和方法

市场调研方案的基本结构和主要内容如下:1、确定调查的目的和任务。调查目的是指特定的调查课题所要解决的问题,即为何要调查、要了解和解决什幺问题,调查结果有什幺用处。调查任务是指调查目的既定的条件下,市场调查应获取什幺样的信息才能满足调查的要求。明确调查的目的和任务是调查方案设计的首要问题,因为只有调查目的和任务明确,才能确定调查的对象、内容和方法,才能保证市场调查具有针对性。2、确定调查对象和调查单位。确定调查对象和调查单位是为了明确向谁调查和由谁来提供资料的问题。调查对象是根据调查目的和任务确定的一定时空范围内的所要调查的总体,它是由客观存在的具有某一共同性质的许多个体单位所组成的整体。调查单位就是调查总体中的各个个体单位,它是调查项目的承担者或信息源。3、确定调查项目。调查项目是将要向调查单位调查的内容。调查项目的确定取决于调查的目的和任务,以及调查对象的特点与数据资料搜集的可能性。4、设计调查表或问卷。调查项目确定之后,就可设计调查表或者问卷,作为市场调查搜集市场调查资料的工具。调查表或问卷既可作为书面调查的记载工具,亦可作为口头询问的提纲。调查表是用纵横交叉的表格按一定顺序排列调查项目的形式。问卷是根据调查项目设计的对被调查者进行调查、询问、填答的测试试卷,是市场调查搜集资料的常用工具。本章第四节将专门介绍调查表或问卷的设计。5、确定调查时间和调查期限。调查时间是指调查资料的所属时间,即应搜集调查对象何时的数据。确定调查时间是为了保证数据的统一性,否则,数据无法分类和汇总,导致市场调查失效。调查时期现象时,应确定数据或指标项目的起止时间;调查时点现象时,应明确规定统一的标准时点。调查期限是指整个调查工作所占用的时间,即一项调查工作从调查策划到调查结束的时间长度。一般来说,应根据调查课题的难易程度、工作量的大小、时效性要求合理确定调查期限,并制定调查进度安排表。6、确定调查方式和方法。市场调查方式是指市场调查的组织形式,通常有市场普查、重点市场调查、典型市场调查、抽样市场调查、非概率抽样调查等等。调查方式的选择应根据调查的目的和任务、调查对象的特点、调查费用的多少、调查的精度要求作出选择。市场调查方法的确定应考虑调查资料搜集的难易程度、调查对象的特点、数据取得的源头、数据的质量要求等作出选择。若调查课题涉及面大、内容较多,则应选择多种调查方法获取数据和资料。既要获取现成的资料,又要获取原始资料。7、确定资料整理的方案。资料整理是对调查资料进行加工整理,系统开发的过程,其目的在于为市场分析研究提供系统化、条理化的综合资料。为此,应确定资料整理的方案,对资料的审核、订正、编码、分类、汇总、陈示等作出具体的安排。大型的市场调查还应对计算机自动汇总软件开发或购买作出安排。8、确定分析研究的方案。市场调查资料的分析研究是对调查数据进行深度加工的过程,其目的在于从数据导向结论,从结论导向对策研究。为此,应制订分析研究的初步方案,对分析的原则、内容、方法、要求、调查报告的编写、成果的发布等作出安排。9、确定市场调查的进度安排。10、市场调查经费预算。在进行预算时,要将可能需要的费用尽可能考虑全面,以免将来出现一些不必要的麻烦而影响调查的进度。例如,预算中没有鉴定费,但是调查结束后需要对成果作出科学鉴定,否则无法发布或报奖。在这种情况下,课题组将面临十分被动的局面。当然,没有必要的费用就不要列上,必要的费用也应该认真核算出一个合理的估计,切不可随意多报乱报。不合实际的预算将不利于调研方案的审批或竞标。因此既要全面细致,又要实事求是。11、制定调查的组织计划。调查的组织计划,是指为了确保调查工作的实施而制订的具体的人力资源配置的计划,主要包括调查的组织领导、调查机构的设置、调查员的选择与培训,课题负责人及成员,各项调研工作的分工,等等。企业委托外部市场调查机构进行市场调查时,还应对双方的责任人、联系人、联系方式作出规定。12、编写市场调查计划书。以上市场调查方案设计的内容确定之后,市场调查策划人员则可撰写市场调查计划书,以供企业领导审批,或作为调研项目委托人与承担者之间的合同或协议的主体。市场调查计划书的构成要素包括标题、导语、主体和附录等。其中,主体部分主要包括以上十一个方面的内容亦可列入附录中。附录主要包括调研项目负责人及主要参加者,抽样方案及技术说明,问卷及有关技术说明,数据处理所用软件等等

查问卷的设计是市场调查方案设计的核心内容

牢记1个中心:以顾客为中心掌握2个基本点:以市场调研为出发点,以竞争对手为参照点学会3种工具(STP):市场细分、目标市场营销和市场定位打好4张营销牌(4Ps):产品、价格、渠道、促销

根据行业的厂商数量和产品性质,大致可以分为完全竞争、垄断竞争、寡头垄断和完全垄断四种市场类型。除去完全竞争和完全垄断,进一步列出垄断竞争和寡头垄断市场环境的五种竞争力量,分别是潜在进入者、替代品、供给方、需求方及行业内现有竞争者,行业现有竞争者处于力量矩阵的中心,这就是著名的波特五力模型。SWOT分析法:SWOT分析法主要从四个维度客观分析企业自身的优势(strengths)、劣势(weakness)、机会(opportunities)和威胁(threats),它常常用于大集团公司制定发展战略和研究竞争对手,用在创业公司上有点大材小用了,整体的思路是分析环境因素-构造SWOT矩阵-制定行动计划。波士顿矩阵分析:根据市场引力和企业实力来分析自身的产品结构,市场引力主要包括企业销售增长率,目标市场容量还有竞争对手实力等外在要素;企业实力包括产品的市场占有率,技术,资金以及人力资源利用率等内在要素,市场引力大且市场占有率高说明产品未来发展的前景良好,如果有一个要素不达预期,那么市场发展预期的前景不佳。拓展资料市场规模决定了创业空间的天花板,市场规模大意味着竞争也比较激烈,留给后来创业者的生存空间反而小了,市场规模小但是你有信心做到该细分领域的龙头,创业成功的机会或许更大,但归根结底还是看开发的产品能不能切实解决消费者的痛点,小众需求如果能做到高粘性那你就已经成功了一半。市场规模的调研可以从目标市场和现有市场着手,通过研究分析这两者市场的不同,对开发出吸引用户的产品大有裨益。判断早期目标市场的竞争对手状况如何,然后根据现有产品和服务的整体市场来预估行业实际的市场份额,用整体行业消费总额减去现有市场巨头份额,得到行业整体剩余的市场规模。然后根据你所处大行业的细分市场领域开始思考,我开发的产品面向的区域是哪里,这些地方该细分领域市场是否成熟,市场上在售的竞品有哪些,竞争程度怎么样,依照现有的资金状况是先扎根某个地区把品牌先做起来,还是说挑选竞争最小的几个地区同时进行?对这些数据进行客观的分析判断,如何在几年内尽可能占据多的市场份额。如何去发现新的细分领域机会呢,除了在平日培养侦测环境变化的敏锐观察力,还要能够先知先觉形成创意构想。有的时候市场发生的特殊事件以及矛盾现象能够给创业者带来一些灵感。分析产业与市场结构变迁的趋势,消费者价值观和新知识带来的认知变化也有助与创业者寻找新的机会,新零售带来的崭新认知,无人超市,无人餐饮等等,机会无处不在,选择细分领域最关键还是来自创业者的长期观察与生活体验。by群狼调研

  • 索引序列
  • 什么是研究机器的核心内容和方法
  • 什么是研究机器的核心内容和特点
  • 什么是研究机器的核心内容和意义
  • 什么是研究机器的核心内容
  • 市场研究的核心是什么内容和方法
  • 返回顶部