首页 > 论文期刊知识库 > 量子光学论文题目大全

量子光学论文题目大全

发布时间:

量子光学论文题目大全

首先,题目不能太大。其实,题目太大以后,往往会因力不从心,容易失败。这里的"太大"是指:研究的问题"外延"太大,几乎是无所不在其中--不是概论、就是原理、不是数学、就是物理!这种文章表面上看起来很大气,可往往给人言之无物、华而不实之感。  同样地,如果选择的题目太小了,则显得轻而易举,不费力气,也不利提高。  当然 ,题目的大小,当然也不是绝对的,大题可以小作,小题可以大作。关键还在于如何确定具体的论证角度。  一般来说,大题目写起来容易空泛,这往往是由于学力不足,无法深入,写少了象蜻蜒点水,如浮光掠影;写多了则显得又臭又长。  相反,如果抓住一个重要的小题,能够深入本质,切中要害,从各个方面把它说深说透,有独到的新见解,那论文就一定有份量。  在选题时一般要注意:它的实用性、互异性、准确性、突破性等等  三、 材料要充分  选材是否合理是文章成败的关键。  写论文从整体构思,到题目确定,到论证过程等等,都不能离开选材--客观的资料。选材的目的,是采众家之长,成一已之见。因而,必须注意以下几个方面问题:  如何确立论点 即通过资料的收集、汇总、整理,把与自己的想法吻合的论点、论据、论证方法等挑选出来,并且从新的视角,予以新的观察。  如何独树一帜同类资料中,不同作者自有其不同的阐述与见解,我们可以把其中富有个性的典型论据、体现各自特点的合理论证,摘录出来,从而为自己独树一帜提供保证。  如何表现自我不少文章大同小异,因而,有关资料内容的交叉争议之点,往往也是文章的价值所在,关键之处。如果我们注意把这方面的资料整理出来,对于形成自己的主见,确定文章的论证角度和发展方向,则大有裨益。  如何精耕细作不少文章由于种种原因,原作者只是提出了问题。并未作详细而中肯回答。如将文中略写部分归拢在一起,加以扩充分析,我们会从中受到启发,从而修正原有的选题方向,对问题作出定向、定度的思考和研究。  总而言之,选材时,一定要注意不去作大而无当的联系和比较。必须有选择、有重点地找一些与我们的论点有关的东西来作对比研究,以便从中提炼出自己的见解。  四、 思路要清晰  在写论文之前,我们不妨先拟好一个写作提纲,如有可能最好是来一个初稿,然后再动手。  提纲可以帮助我们树立全局观,从整体出发,去检验每一个细节所占的地位,所起的作用,展现相互间的逻辑联系是否得当,各个部分之间的比例是否和谐,每一个部分、每一环节是否都是为全局所需要,是否丝丝入扣,配合默契,是否都能为主题服务……  初稿提纲只是论文的大致轮廓,不可能对每一细节都考虑周密完善,因而可以先写一个初稿。有了它,很可能发现原来提纲中某些设想有不恰当之处,这时就应加以调整或修改;对于有错误的论点、论据,或发现新的论点、论据,还应及时抽掉与增补,使之逐步完善。  初稿的写作通常有两种写法:  (一)、按提纲的顺序分段进行,它可以便文章的格调、风格前后保持一致,前后衔接紧凑、自然,避免旁逸斜出,防止语言、文字上的重复;  (二)、按内容的熟悉程度分段进行,这种写法有利于作者积极思考,便于捕捉创作的灵感。  五、 表达要准确  修改--论文的后期制作。反复推敲出佳句,精心修改得华章。  只有反复推敲和字斟句酌,文章才会显得具体、准确、生动,才能恰如其分地表述自己的教育、教研成果。  修改的范围可大可小,既可以来一个"亡羊补牢"--是发现什么问题,修改什么问题,通过材料的增删,使文章血肉丰满,使观点立之牢固,并与材料达到和统一;又可以"彻头彻尾"--发现问题,该舍就舍、该去则去,决不估息。在内容上包括修改观点,修改材料,在形式上包括修改结构,修改语言等。  修改观点在初稿形成后,要再看一看全文的基本观点是否正确,说明它的若干个从属论点,是否有失偏颇、带有片面性或表述得欠准确;同时还要关注一下自己的观点是否与别人类似或雷同,有无创意与新意等等。  修改结构从结构上来看,不仅要求论点、论据、论证三者关系处置得当、层次分明、脉络清楚,能使主题内容得到顺畅合理的表达,还要求文章的开头、结尾、段落、层次、过渡、照应、主次、详细等各个环节合理紧凑。  修改语言 要在语言的准确性、学术性、可读性等方面下功夫,文字力求准确、精炼、简洁、专业,努力做到字字珠玑、句句充实。  文章的最后衷心祝愿:每一位读者都成为锦绣文章的主人! ——发表吧

直接去参考下这类的期刊文献,像应用物理,现代物理、生物物理学等这些吧

同志们,回答问题要简明扼要!!我来回答:所谓光的波粒二象性,是指当光与物质相互作用时(譬如光与电子的相互作用)光往往表现出粒子性,如光电效应,康普顿效应。但是这种粒子性不是经典的粒子(如小球),因为经典的粒子的能量是连续 的,而光子的能量是不连续的,量子化的。光传播时往往表现出波动性,如干涉,衍射等现象。但是这种波动性不是经典的机械波,其实是一种几率波(表示光子出现在某点的几率)其实不光是光具有波粒二象性,微观粒子都是具有波粒二象性。例如电子就具有。

技巧—:依据学术方向进行选题。论文写作的价值,关键在于能够解决特定行业的特定问题,特别是在学术方面的论文更是如此。因此,论文选择和提炼标题的技巧之一,就是依据学术价值进行选择提炼。技巧二:依据兴趣爱好进行选题。论文选择和提炼标题的技巧之二,就是从作者的爱好和兴趣出发,只有选题符合作者兴趣和爱好,作者平日所积累的资料才能得以发挥效用,语言应用等方面也才能熟能生巧。技巧三:依据掌握的文献资料进行选题。文献资料是支撑、充实论文的基础,同时更能体现论文所研究的方向和观点,因而,作者从现有文献资料出发,进行选题和提炼标题,即成为第三大技巧。技巧四:从小从专进行选题。所谓从小从专,即是指软文撰稿者在进行选则和提炼标题时,要从专业出发,从小处入手进行突破,切记全而不专,大而空洞。

量子光学论文题目

德国和美国的科学家。 3月14日,1879年,出生于德国乌耳场镇,一个小业主家庭,1955年4月18日在普林斯顿逝世。自幼喜爱音乐,是一个熟练的小提琴家。在1900年从苏黎世联邦工业大学毕业,并获得了瑞士。后在伯尔尼瑞士专利局找到一个永久的工作。一系列历史性成就他早年在这里。 1909年第一次在学术界,他曾担任苏黎世大学理论物理学副教授。 1914年,M普朗克和W斯特邀请到德国柏林大学教授威廉皇家物理研究所的任何董事。在1933年,希特勒上台后,爱因斯坦是犹太人,坚决捍卫民主,迫害,被迫移民到美国的普林斯顿。在1940年成为美国公民的。 1945年离休。爱因斯坦相对论的物理量子理论,动力学理论,在三个不同的领域,取得了历史性成就,特别是相对论和量子理论的提出狭义相对论的建立,促进革命的物理理论,社会进步事业也有重要的贡献。爱因斯坦的量子理论的量子理论的发展,是一项开创性的贡献的进一步发展。量子理论是一个假说普朗克在1900年提出了解决的黑体辐射谱。他认为对象时,发出的辐射释放的能量是不连续的,但量化。然而,大多数人,包括普朗克我也不敢能量是不连续的概念,然后推进一步,甚至反复尝试,包括经典物理系统的概念。爱因斯坦有一个预感的量子理论是一个不小的修正,但在物理学中一个根本性的变化。 1905光生成和普朗克量子概念扩展到的传播的光在空间的转换,提出量子假说:有关的时间平均值(即在统计平均现象)光性能的波动;瞬时值(即波动现象),的光学性能粒子(量子光学)。这是第一次在历史上的波动性和粒子统一的微观粒子的发现,这是波粒二象性。物理:波粒二象性的后续发展的微观世界是最基本的功能。基于光量子的概念,他满意地解释经典物理学的定律无法解释光电效应,让她获得了1921年诺贝尔物理学奖。 1916年,他再次量子概念扩展到内部振动的对象,可以在很大程度上解释低温固体的热容量与温度之间的关系。 1916年,他继续发展量子理论,从N玻尔的量子跃迁出口黑体辐射光谱的概念。在这项研究中的概念,统计物理和量子理论相结合,提出了自发辐射和受激辐射的概念。直到从量子理论的基础上,天体物理学伟大的受激发射的概念。包括观念的受激发射,激光技术在20世纪60年代蓬勃发展提供了理论依据。动力学理论爱因斯坦布朗运动的研究还根据动力学理论“来解释的原子论液体中悬浮颗粒的运动。这个运动是一些细小的颗粒悬浮在液体中的不规则运动,R·布朗第一次被发现。三年后,在法国物理学家JB睿精密的实验证实了爱因斯坦的理论预测,从而以解决的问题是否存在一半以上世纪的科学的社会和哲学争论不休的原子领域,在原子假说变成一个物种巩固的基础上的科学理论。相对论作为爱因斯坦的职业生涯的标志是他的相对论在1905年,他发表了题为“论动体的电动力学”,完整的提出了狭义相对论的纸张。 ,主要是解决危机出现在19世纪后期的经典物理学,推动了整个物理学理论的革命。结束的19世纪是一个物理变革的时期,新的实验结果与伽利略的影响,因为I牛顿的经典物理系统。HA洛伦兹的理论物理学家试图解决旧理论之间的矛盾,新的事物,在原有的理论框架为代表的老一辈爱因斯坦认为,出路在于进行根本性的变革,整个理论基础。在两大具有普遍意义的光的相对速度不变的惯性参考系统,改造的基本概念,经典物理学中的时间,空间和运动,否认存在绝对静止的空间,同时否认绝对的概念。系统,统治者的运动,以缩短运动的时钟要慢。在狭义相对论的最突出的成就之一,揭示了能量和质量之间的关系,在相当大的阻力质量(m)和能量(E) :E = MC2,作为相对论的一个必然结果,它可以解释放射性元素(如镭),质量相当的原子物理学和粒子物理学的理论基础,一个满意的,他们之所以能释放出大量的能量。解释的恒星能源的长期存在的问题。狭义相对论已成为一个基本的解释后,高能天体物理现象的理论工具。狭义相对论建立的原则,相对论的爱因斯坦的尝试的适用范围扩大到非惯性系的实验事实,所有的对象都有相同的加速度(即等于惯性质量和引力质量)在重力场中从伽利略于1907年发现的,等价的原则:“一个大大加速相同的参考帧的完全物理相当于产生的引力场。 “,并推断是:在重力场中,在时钟到去更快,和波长光线的变化,折射光线。经过多年的努力,终于成立于1915年,是本质上完全不同,牛顿的万有引力理论的重力理论 - 广义相对论。根据广义相对论,爱因斯坦推导出了近日点的汞异常的岁差的结果是完全一致的观测,解决60岁以上的天文学是一大难题。同时,他推断发光源来自遥远的恒星,在1919年通过的日食观测太阳附近的弯曲(见光的引力偏折)。证实了这一预测。S爱丁堡。在1916年,他预言引力波的存在,后代无线电二进制的周期性变化,脉冲星PSR1913 +16 1974年发现了4年的连续观测,间接证实了引力波的存在,广义相对论是一个有力的证明。建立广义相对论,爱因斯坦试图广义相对论耦合推广,因此,在1979年宣布他的工作包括不仅是引力场,也包括电磁场,即寻求统一场论派上用场概念来解释物质的结构和量子现象。这并没有解决问题的条件, 25年来,还没有完成之前,他的死亡。了一系列的实验,在20世纪70年代和80年代,弱电统一场论的统一理论的有力支撑开始活跃。爱因斯坦科学思想的贡献的一种新形式的思考历史,社会进步的原因只有N哥白尼I牛顿和CR达尔文相媲美。但是,爱因斯坦并没有限制他的注意力自然的科学,以极大的热情关心社区,关心政治。第一次世界大战期间,我,他投入的露天和地下的反战活动。后纳粹夺取德国政权于1933年,爱因斯坦科学界首迫害的对象,但幸运的是,他在美国讲学,1939年还没有杀气。获悉,发现了铀核裂变链式反应,推动匈牙利物理学家L西拉德,罗斯福总统的信,它建议的发展原子弹,以防止德国成为第一个。罗斯福决心要造原子弹,成功地测试新墨西哥在1945年二战结束前夕,美国对日本城市广岛和长崎投掷原子弹,爱因斯坦对此表示强烈不满。战争结束后,针对美国开展反对核战争的和平运动国法西斯的危险,不懈奋斗。爱因斯坦放在深切的同情的痛苦的工作人在中国当时。九一八事变后,他一再国家呼吁日本的军事侵略与联合经济抵制的方式停止。1936年的沉钧儒“七先生们“,主张抗日被捕,他的热情参与救援的正义和团结。

光的反射现象,,会看不到前面的路,

前几天我自己写的我是高一的酷爱物理这是一篇合写的论文,你自己拆开吧我写了整整4个小时还不算构思 给我最佳吧论文:论声波与电磁波的异同2011年02月15日 分类:个人日记 说起波大家一定会想起两种最普通的波:声波和光波(电磁波),很多人将这两者混为一谈,这是错误的。 通俗的说,声波是用来听的,而电磁波是用来看的,当然这样说未免有些不科学。较严格的说,声波是通过介质传播的,而电磁波是通过“场”传播的,这里的场可以是电场、磁场。 声波是由物体的振动引起的,如果物体周围有介质的话,振动就会传给介质,再由介质传给其他物体,换句话说,能量是随着振动在传递。声波是机械波的一种,具有机械波的特性。声波分为横波和纵波。电磁波的性质要比声波复杂得多,电场或磁场的变化都会引起电磁波,我们知道电路状态发生改变时会引发磁场的变化,变化磁场中的导体会带电,这时的电场也是变化的,会再次产生变化的磁场,换句话说,电磁波的能量是以电与磁的形式交替传播的,变化的电场产生磁场,变化的磁场产生电场。由麦克斯韦电磁理论可知,变化的电场和变化的磁场是相互联系着的一个不可分割的统一体,即电磁场,而变化的电场和变化的磁场总是交替产生的,并且由产生的区域向周围空间传播,这就是电磁波。电磁波在空间中传播不需要介质,它是一种横波,传递着电磁场的能量。最普通的电磁波是可见光。关于光最早出现两种学说:由惠更斯提出的波动说和曾为牛顿所提倡的微粒说,惠更斯认为光是一种波动,由发光体引起,和声波一样依靠介质来传播,这种学说直到19世纪初当光的干涉和衍射现象被发现后才得到广泛承认,而牛顿认为光是由光源发出的微粒,它从光源沿直线行进至被照物,因此可以想象为一束由发光体射向被照物的高速微粒。此学说直观地解释了光的直线传播及反射、折射等现象,曾被普遍接受直到19世纪初光的干涉等现象发现后,才被波动说所推翻,但在19世纪和20世纪初,许多有光和物质相互作用的现象,如光电效应,不能用波动说来解释,这促使爱因斯坦于1905年提出光是一种具有粒子性的实物:光子,但这种观念并不摒弃光具有波动的性质,这种关于光的波粒二象性的认识被人们所认可,也是量子理论的基础。声波和电磁波 1、都能反射与折射;2、都有衍射现象(波绕过障碍物继续传播的现象);3、都能叠加(几列波相遇时,每列波都能保持各自原来的传播方向继续传播而不互相干扰,只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的矢量和);4、都有干涉现象(频率相同的两列波叠加使某些区域的振动加强,使某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象叫做波的干涉);5、都有多普勒效应(由于波源和观察者之间的相对运动,使观察者感到波的频率发生变化的现象叫做多普勒效应,举个例子便是救护车鸣着笛自你面前飞驰而过,你会发现当车距你近时和当车距你远时音调的高低不同)声波和电磁波还有一个很大的差别便是电磁波的速度要比声波快得多。腹化风雪:本人初次发表论文,请多提意见,谢谢。

晕! 光在运动的时候可以看成是由光子(粒子)组成的,有粒子性,同时它的运动是按波的方式传播的,有波动性。

量子光学论文图片大全

技巧—:依据学术方向进行选题。论文写作的价值,关键在于能够解决特定行业的特定问题,特别是在学术方面的论文更是如此。因此,论文选择和提炼标题的技巧之一,就是依据学术价值进行选择提炼。技巧二:依据兴趣爱好进行选题。论文选择和提炼标题的技巧之二,就是从作者的爱好和兴趣出发,只有选题符合作者兴趣和爱好,作者平日所积累的资料才能得以发挥效用,语言应用等方面也才能熟能生巧。技巧三:依据掌握的文献资料进行选题。文献资料是支撑、充实论文的基础,同时更能体现论文所研究的方向和观点,因而,作者从现有文献资料出发,进行选题和提炼标题,即成为第三大技巧。技巧四:从小从专进行选题。所谓从小从专,即是指软文撰稿者在进行选则和提炼标题时,要从专业出发,从小处入手进行突破,切记全而不专,大而空洞。

量子光学以辐射的量子理论研究光的产生、传输、检测及光与物质相互作用的学科。到了19世纪,特别在光的电磁理论建立后,在解释光的反射、折射、干涉、衍射和偏振等与光的传播有关的现象时,光的波动理论取得了完全的成功(见波动光学)。19世纪末和20世纪初发现了黑体辐射规律和光电效应等另一类光学现象,在解释这些涉及光的产生及光与物质相互作用的现象时,旧的波动理论遇到了无法克服的困难。1900年,M普朗克为解决黑体辐射规律问题提出了能量子假设,并得到了黑体辐射的普朗克公式,很好地解释了黑体辐射规律(见普朗克假设)。1905年,A阿尔伯特·爱因斯坦提出了光子假设,成功地解释了光电效应。阿尔伯特·爱因斯坦认为光子不仅具有能量,而且与普通实物粒子一样具有质量和动量(见光的二象性)。1923年,AH康普顿利用光子与自由电子的弹性碰撞过程解释了X射线的散射实验(见康普顿散射)。与此同时,各种光谱仪的普遍使用促进了光谱学的发展,通过原子光谱来探索原子内部的结构及其发光机制导致了量子力学的建立。所有这一切为量子光学奠定了基础。20世纪60年代激光的问世大大地推动了量子光学的发展,在激光理论中建立了半经典理论和全量子理论。半经典理论把物质看成是遵守量子力学规律的粒子集合体,而激光光场则遵守经典的麦克斯韦电磁方程组。此理论能较好地解决有关激光与物质相互作用的许多问题,但不能解释与辐射场量子化有关的现象,例如激光的相干统计性和物质的自发辐射行为等。在全量子理论中,把激光场看成是量子化了的光子群,这种理论体系能对辐射场的量子涨落现象以及涉及激光与物质相互作用的各种现象给予严格而全面的描述。对激光的产生机理,包括对自发辐射和受激辐射更详细的研究,以及对激光的传输、检测和统计性等的研究是目前量子光学的主要研究课题。 量子纠缠(quantum entanglement),又译量子缠结,是一种量子力学现象,其定义上描述复合系统(具有两个以上的成员系统)之一类特殊的量子态,此量子态无法分解为成员系统各自量子态之张量积(tensor product)。 具有量子纠缠现象的成员系统们,在此拿两颗以相反方向、同样速率等速运动之电子为例,即使一颗行至太阳边,一颗行至冥王星,如此遥远的距离下,它们仍保有特别的关联性(correlation);亦即当其中一颗被操作(例如量子测量)而状态发生变化,另一颗也会即刻发生相应的状态变化。如此现象导致了“鬼魅似的远距作用”(spooky action-at-a-distance)之猜疑,彷佛两颗电子拥有超光速的秘密通信一般,似与狭义相对论中所谓的局域性(locality)相违背。这也是当初阿尔伯特·爱因斯坦与同僚玻理斯·波多斯基、纳森·罗森于1935年提出以其姓氏字首为名的爱波罗悖论(EPR paradox)来质疑量子力学完备性之缘由。 量子力学是非定域的理论,这一点已被违背贝尔不等式的实验结果所证实,因此,量子力学展现出许多反直观的效应。量子力学中不能表示成直积形式的态称为纠缠态。纠缠态之间的关联不能被经典地解释。所谓量子纠缠指的是两个或多个量子系统之间存在非定域、非经典的强关联。量子纠缠涉及实在性、定域性、隐变量以及测量理论等量子力学的基本问题,并在量子计算和量子通信的研究中起着重要的作用。多体系的量子态的最普遍形式是纠缠态,而能表示成直积形式的非纠缠态只是一种很特殊的量子态。历史上,纠缠态的概念最早出现在1935年薛定谔关于“猫态”的论文中。纠缠态对于了解量子力学的基本概念具有重要意义,近年来已在一些前沿领域中得到应用,特别是在量子信息方面。例如,量子远程通信。

量子光学论文题目推荐

【摘要】体育科学横跨自然科学与社会科学两大门类,具有极强的综合性特征,有其独特的研究对象和科学方法,体育科研论文的写作亦有自己的特点与要求。本文仅就体育科研论文的文章结构、基本格式以及内容与要求作一探讨。【关键词】科研论文;文章结构;基本格式;内容与要求OntheBasicStructureandFormofSportsScienceThesis【Keywords】Thesis;StructureandForm;ContentandRequirement***1前言从事体育科学研究活动,必须具备多学科的知识、多方面的能力和科学的方法。体育科技写作,不仅是体育工作者应具备的知识和能力,而且是必须把握的一种具体的科研方法。因为,一切体育科学研究之成果最后大都以科研论文这种书面表达形式,经科技信息载体传播于世的。体育科研成果如不能最后写成科技作品(论文),公布于众,那么一切个人的科学见解和观点,一切创造和发明,都不可能得到传播和利用,产生应有的社会效益,而只能是研究者头脑里的一些思维活动罢了,世人是无法知晓的,如然,也就失去了科学研究的意义了。诚然,人们衡量体育科研论文质量的标准主要取决于其理论和实践价值的大小,然而,论文所反映的研究成果能否迅速的向社会传播并准确的被人们所理解则取决于论文写作水平的高低。这表明,一篇高质量的体育科研论文要求其内容和形式的统一。随着体育科学的迅速发展,科技信息量与日俱增,据报道,目前全世界体育期刊已达5000余种,每年问世的体育科技文献约25000—30000篇,平均天天有80余篇。体育科研成果的传播、贮存与利用,引起了人们的高度重视,借助于现代科技工具——计算机对体育科技成果、信息进行贮存、检索,使之迅速地传播与利用,已成为一种先进的传播交流手段。微机贮存与检索,要求体育科技学术期刊编排实现规范化,而期刊编排规范化首先要求论文写作的规范化。要实现体育科研论文写作的规范化,就必须了解体育科技写作知识,把握其写作方法和技巧。笔者因职业之原故,拜读体育科研论文原稿颇多,从研读原稿论文感到许多科研论文的选题和所研究的内容颇有价值,但论文写作不符合期刊编排规范化和科研论文撰写的要求。其中最为普遍的突出的问题是文章结构层次混乱、写作格式极不统一(尤其是理论型和实验型的“定量化”研究论文)。这不仅给编者和读者熟悉和理解论文之精髓增加了难度,也直接影响了体育科研成果的传播、贮存和利用。体育科技写作,作为一种科研方法,涉及的知识结构内容颇多,不同文体的体育科技作品有不同的写作要求。本文仅对体育科研论文的文章结构和基本撰写格式的内容与要求作一探讨。2体育科研论文的文章结构根据写作目的的不同、研究对象和方法的差别,体育科研论文大致分为两类,一类是学位论文,一类是学术论文。学位论文,是体育院校的学生或体育科研院(所)研究人员旨在取得学位而写作的论文。如学士论文、硕士论文、博士论文。学术论文,是广大体育工作者在体育实践中为研究和解决某一问题而写作的论文。目前,体育科学技术、理论研究的新成果大部分都是以学术论文的形式发表在体育科技学术刊物上。由于研究对象和方法的差别,学术论文又分为两种类型,即理论型论文和实验型论文。虽然体育科研论文的种类很多,构成的形式多样,但就其文章的主体结构有它的基本型,即序论、本论、结论的三段式。2。1序论部分的写作内容与要求序论,是论文的开头、引子,好比一出长剧的序幕,要有吸引力。通常以引言、导言、绪言、前言等小标题冠之,也可以不冠以任何小标题。该部分的写作内容主要有三个方面:①介绍课题研究的背景材料,前人的工作和现在的知识空白;②研究的理由、目的,理论依据和实验基础,预期结果及其在相关领域里的地位、作用和意义;③交待课题研究的范围、任务。这一部分要写得简明扼要,在整篇文章中它所占的比例要小。具体要求是背景材料的介绍要准确、具体,紧扣课题;研究的说明要实事求是,对作用意义不可夸大和自我评价;任务的交待应具体、明确。2。2本论部分的写作内容与要求本论也称正论,它是体育科研论文的主体,课题的“创造性”主要在这一部分表达出来,它反映了论文所建立的学术理论、采用的技术路线和研究方法达到的水平,简言之,本论水平决定了整个论文的水平。

光的反射现象,,会看不到前面的路,

不知道怎么写的话也可以参考下别人是怎么写的呀~看下(材料科学)或者(材料化学前沿)这样类似的期刊多学习学习下呗~

德国和美国的科学家。 3月14日,1879年,出生于德国乌耳场镇,一个小业主家庭,1955年4月18日在普林斯顿逝世。自幼喜爱音乐,是一个熟练的小提琴家。在1900年从苏黎世联邦工业大学毕业,并获得了瑞士。后在伯尔尼瑞士专利局找到一个永久的工作。一系列历史性成就他早年在这里。 1909年第一次在学术界,他曾担任苏黎世大学理论物理学副教授。 1914年,M普朗克和W斯特邀请到德国柏林大学教授威廉皇家物理研究所的任何董事。在1933年,希特勒上台后,爱因斯坦是犹太人,坚决捍卫民主,迫害,被迫移民到美国的普林斯顿。在1940年成为美国公民的。 1945年离休。爱因斯坦相对论的物理量子理论,动力学理论,在三个不同的领域,取得了历史性成就,特别是相对论和量子理论的提出狭义相对论的建立,促进革命的物理理论,社会进步事业也有重要的贡献。爱因斯坦的量子理论的量子理论的发展,是一项开创性的贡献的进一步发展。量子理论是一个假说普朗克在1900年提出了解决的黑体辐射谱。他认为对象时,发出的辐射释放的能量是不连续的,但量化。然而,大多数人,包括普朗克我也不敢能量是不连续的概念,然后推进一步,甚至反复尝试,包括经典物理系统的概念。爱因斯坦有一个预感的量子理论是一个不小的修正,但在物理学中一个根本性的变化。 1905光生成和普朗克量子概念扩展到的传播的光在空间的转换,提出量子假说:有关的时间平均值(即在统计平均现象)光性能的波动;瞬时值(即波动现象),的光学性能粒子(量子光学)。这是第一次在历史上的波动性和粒子统一的微观粒子的发现,这是波粒二象性。物理:波粒二象性的后续发展的微观世界是最基本的功能。基于光量子的概念,他满意地解释经典物理学的定律无法解释光电效应,让她获得了1921年诺贝尔物理学奖。 1916年,他再次量子概念扩展到内部振动的对象,可以在很大程度上解释低温固体的热容量与温度之间的关系。 1916年,他继续发展量子理论,从N玻尔的量子跃迁出口黑体辐射光谱的概念。在这项研究中的概念,统计物理和量子理论相结合,提出了自发辐射和受激辐射的概念。直到从量子理论的基础上,天体物理学伟大的受激发射的概念。包括观念的受激发射,激光技术在20世纪60年代蓬勃发展提供了理论依据。动力学理论爱因斯坦布朗运动的研究还根据动力学理论“来解释的原子论液体中悬浮颗粒的运动。这个运动是一些细小的颗粒悬浮在液体中的不规则运动,R·布朗第一次被发现。三年后,在法国物理学家JB睿精密的实验证实了爱因斯坦的理论预测,从而以解决的问题是否存在一半以上世纪的科学的社会和哲学争论不休的原子领域,在原子假说变成一个物种巩固的基础上的科学理论。相对论作为爱因斯坦的职业生涯的标志是他的相对论在1905年,他发表了题为“论动体的电动力学”,完整的提出了狭义相对论的纸张。 ,主要是解决危机出现在19世纪后期的经典物理学,推动了整个物理学理论的革命。结束的19世纪是一个物理变革的时期,新的实验结果与伽利略的影响,因为I牛顿的经典物理系统。HA洛伦兹的理论物理学家试图解决旧理论之间的矛盾,新的事物,在原有的理论框架为代表的老一辈爱因斯坦认为,出路在于进行根本性的变革,整个理论基础。在两大具有普遍意义的光的相对速度不变的惯性参考系统,改造的基本概念,经典物理学中的时间,空间和运动,否认存在绝对静止的空间,同时否认绝对的概念。系统,统治者的运动,以缩短运动的时钟要慢。在狭义相对论的最突出的成就之一,揭示了能量和质量之间的关系,在相当大的阻力质量(m)和能量(E) :E = MC2,作为相对论的一个必然结果,它可以解释放射性元素(如镭),质量相当的原子物理学和粒子物理学的理论基础,一个满意的,他们之所以能释放出大量的能量。解释的恒星能源的长期存在的问题。狭义相对论已成为一个基本的解释后,高能天体物理现象的理论工具。狭义相对论建立的原则,相对论的爱因斯坦的尝试的适用范围扩大到非惯性系的实验事实,所有的对象都有相同的加速度(即等于惯性质量和引力质量)在重力场中从伽利略于1907年发现的,等价的原则:“一个大大加速相同的参考帧的完全物理相当于产生的引力场。 “,并推断是:在重力场中,在时钟到去更快,和波长光线的变化,折射光线。经过多年的努力,终于成立于1915年,是本质上完全不同,牛顿的万有引力理论的重力理论 - 广义相对论。根据广义相对论,爱因斯坦推导出了近日点的汞异常的岁差的结果是完全一致的观测,解决60岁以上的天文学是一大难题。同时,他推断发光源来自遥远的恒星,在1919年通过的日食观测太阳附近的弯曲(见光的引力偏折)。证实了这一预测。S爱丁堡。在1916年,他预言引力波的存在,后代无线电二进制的周期性变化,脉冲星PSR1913 +16 1974年发现了4年的连续观测,间接证实了引力波的存在,广义相对论是一个有力的证明。建立广义相对论,爱因斯坦试图广义相对论耦合推广,因此,在1979年宣布他的工作包括不仅是引力场,也包括电磁场,即寻求统一场论派上用场概念来解释物质的结构和量子现象。这并没有解决问题的条件, 25年来,还没有完成之前,他的死亡。了一系列的实验,在20世纪70年代和80年代,弱电统一场论的统一理论的有力支撑开始活跃。爱因斯坦科学思想的贡献的一种新形式的思考历史,社会进步的原因只有N哥白尼I牛顿和CR达尔文相媲美。但是,爱因斯坦并没有限制他的注意力自然的科学,以极大的热情关心社区,关心政治。第一次世界大战期间,我,他投入的露天和地下的反战活动。后纳粹夺取德国政权于1933年,爱因斯坦科学界首迫害的对象,但幸运的是,他在美国讲学,1939年还没有杀气。获悉,发现了铀核裂变链式反应,推动匈牙利物理学家L西拉德,罗斯福总统的信,它建议的发展原子弹,以防止德国成为第一个。罗斯福决心要造原子弹,成功地测试新墨西哥在1945年二战结束前夕,美国对日本城市广岛和长崎投掷原子弹,爱因斯坦对此表示强烈不满。战争结束后,针对美国开展反对核战争的和平运动国法西斯的危险,不懈奋斗。爱因斯坦放在深切的同情的痛苦的工作人在中国当时。九一八事变后,他一再国家呼吁日本的军事侵略与联合经济抵制的方式停止。1936年的沉钧儒“七先生们“,主张抗日被捕,他的热情参与救援的正义和团结。

光学论文题目大全

分光计的调节及其棱镜折射率的测定研究与分析杨贵宏(08物理2班 200802050253)引言:我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要: 分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。关键词:分光计、棱镜、折射率Abstract: The spectrometer can accurately measure the angle of refraction is a typical optical instruments, often used to measure the material's refractive index, dispersion rate, wavelength, and spectral As the more sophisticated devices, control components and operation are more complex, and therefore must be used strictly in accordance with certain rules and procedures to adjust to get the high precision measurement Keywords: spectrometer, prism, the refractive index二、实验目的: 1、了解分光计结构,学会正解调节和使用分光计的方法; 2、用分光计测量三棱镜的顶角; 3、学会用最小偏向角法测量三棱镜的折射率。三、实验仪器:分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。 图 1分光计基本结构示意图表1 分光计各调节装置的名称和作用代号 名称 作用1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度2 狭缝装置 3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。4 平行光管 产生平行光5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。6 夹持待测物簧片 夹持载物台上的光学元件7 载物台调节螺丝(3只) 调节载物台台面水平8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动9 望远镜 观测经光学元件作用后的光线10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动15 望远镜支架 16 游标盘 盘上对称设置两游标17 游标 分成30小格,每一小格对应角度 1’18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动23 分光计电源插座 24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上25 平行光管支架 26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角四、实验原理:三棱镜如图1 所示,AB和AC是透光的光学表面,又称折射面,其夹角 称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。图2三棱镜示意图 1.反射法测三棱镜顶角 如图2 所示,一束平行光入射于三棱镜,经过AB面和AC面反射的光线分别沿 和 方位射出, 和 方向的夹角记为 ,由几何学关系可知: 图3反射法测顶角2.最小偏向角法测三棱镜玻璃的折射率假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角 称为偏向角,如图3所示。 图4最小偏向角的测定转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率 与顶角 及最小偏向角的关系式为 实验中,利用分光镜测出三棱镜的顶角 及最小偏向角 ,即可由上式算出棱镜材料的折射率 。实验内容与步骤:1.分光计的调整(分光计结构如右图所示) 在进行调整前,应先熟悉所使用的分光计中下列螺丝的位置: ①目镜调焦(看清分划板准线)手轮; ②望远镜调焦(看清物体)调节手轮(或螺丝);③调节望远镜高低倾斜度的螺丝;④控制望远镜(连同刻度盘)转动的制动螺丝;⑤调整载物台水平状态的螺丝;⑥控制载物台转动的制动螺丝;⑦调整平行光管上狭缝宽度的螺丝;⑧调整平行光管高低倾斜度的螺丝; 图5 ⑨平行光管调焦的狭缝套筒制动螺丝。(1)目测粗调。将望远镜、载物台、平行光管用目测粗调成水平,并与中心轴垂直(粗调是后面进行细调的前提和细调成功的保证)。(2)用自准法调整望远镜,使其聚焦于无穷远。①调节目镜调焦手轮,直到能够清楚地看到分划板"准线"为止。 ②接上照明小灯电源,打开开关,可在目镜视场中看到如图4所示的“准线”和带有绿色小十字的窗口。 图6目镜视场 ③将双面镜按图5所示方位放置在载物台上。这样放置是出于这样的考虑:若要调节平面镜的俯仰,只需要调节载物台下的螺丝a1或a2即可,而螺丝a3的调节与平面镜的俯仰无关。图7平面镜的放置  ④沿望远镜外侧观察可看到平面镜内有一亮十字,轻缓地转动载物台,亮十字也随之转动。但若用望远镜对着平面镜看,往往看不到此亮十字,这说明从望远镜射出的光没有被平面镜反射到望远镜中。我们仍将望远镜对准载物台上的平面镜,调节镜面的俯仰,并转动载物台让反射光返回望远镜中,使由透明十字发出的光经过物镜后(此时从物镜出来的光还不一定是平行光),再经平面镜反射,由物镜再次聚焦,于是在分划板上形成模糊的像斑(注意:调节是否顺利,以上步骤是关键)。然后先调物镜与分划板间的距离,再调分划板与目镜的距离使从目镜中既能看清准线,又能看清亮十字的反射像。注意使准线与亮十字的反射像之间无视差,如有视差,则需反复调节,予以消除。如果没有视差,说明望远镜已聚焦于无穷远。 (3)调整望远镜光轴,使之与分光计的中心轴垂直。 平行光管与望远镜的光轴各代表入射光和出射光的方向。为了测准角度,必须分别使它们的光轴与刻度盘平行。刻度盘在制造时已垂直于分光计的中心轴。因此,当望远镜与分光计的中心轴垂直时,就达到了与刻度盘平行的要求。具体调整方法为:平面镜仍竖直置于载物台上,使望远镜分别对准平面镜前后两镜面,利用自准法可以分别观察到两个亮十字的反射像。如果望远镜的光轴与分光计的中心轴相垂直,而且平面镜反射面又与中心轴平行,则转动载物台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字像与分划板准线的上部十字线完全重合,如图6(c)所示。若望远镜光轴与分光计中心轴不垂直,平面镜反射面也不与中心轴相平行,则转动载物台时,从望远镜中观察到的两个亮十字反射像必然不会同时与分划板准线的上部十字线重合,而是一个偏低,一个偏高,甚至只能看到一个。这时需要认真分析,确定调节措施,切不可盲目乱调。重要的是必须先粗调:即先从望远镜外面目测,调节到从望远镜外侧能观察到两个亮十字像;然后再细调:从望远镜视场中观察,当无论以平面镜的哪一个反射面对准望远镜,均能观察到亮十字时,如从望远镜中看到准线与亮十字像不重合,它们的交点在高低方面相差一段距离如图6(a)所示。此时调整望远镜高低倾斜螺丝使差距减小为h/2,如图6(b)所示。再调节载物台下的水平调节螺丝,消除另一半距离,使准线的上部十字线与亮十字线重合,如图6(c)所示。之后,再将载物台旋转180o ,使望远镜对着平面镜的另一面,采用同样的方法调节。如此反复调整,直至转动载物台时,从平面镜前后两表面反射回来的亮十字像都能与分划板准线的上部十字线重合为止。这时望远镜光轴和分光计的中心轴相垂直,常称这种方法为逐次逼近各半调整法。图8亮十字像与分划板准线的位置关系 (4)调整平行光管 用前面已经调整好的望远镜调节平行光管。当平行光管射出平行光时,则狭缝成像于望远镜物镜的焦平面上,在望远镜中就能清楚地看到狭缝像,并与准线无视差。 ①调整平行光管产生平行光。取下载物台上的平面镜,关掉望远镜中的照明小灯,用钠灯照亮狭缝,从望远镜中观察来自平行光管的狭缝像,同时调节平行光管狭缝与透镜间的距离,直至能在望远镜中看到清晰的狭缝像为止,然后调节缝宽使望远镜视场中的缝宽约为1mm。 ②调节平行光管的光轴与分光计中心轴相垂直。望远镜中看到清晰的狭缝像后,转动狭缝(但不能前后移动)至水平状态,调节平行光管倾斜螺丝,使狭缝水平像被分划板的中央十字线上、下平分,如图7(a)所示。这时平行光管的光轴已与分光计中心轴相垂直。再把狭缝转至铅直位置,并需保持狭缝像最清晰而且无视差,位置如图7(b)所示。图9狭缝像与分划板位置 至此分光计已全部调整好,使用时必须注意分光计上除刻度圆盘制动螺丝及其微调螺丝外,其它螺丝不能任意转动,否则将破坏分光计的工作条件,需要重新调节。 测量 在正式测量之前,请先弄清你所使用的分光计中下列各螺丝的位置:①控制望远镜(连同刻度盘)转动的制动螺丝;②控制望远镜微动的螺丝。(1)用反射法测三棱镜的顶角  如图2 所示,使三棱镜的顶角对准平行光管,开启钠光灯,使平行光照射在三棱镜的AC、AB面上,旋紧游标盘制动螺丝,固定游标盘位置,放松望远镜制动螺丝,转动望远镜(连同刻度盘)寻找AB面反射的狭缝像,使分划板上竖直线与狭缝像基本对准后,旋紧望远镜螺丝,用望远镜微调螺丝使竖直线与狭缝完全重合,记下此时两对称游标上指示的读数 、 。转动望远镜至AC面进行同样的测量得 、 。可得 三棱镜的顶角 为 重复测量三次取平均。(2) 棱镜玻璃折射率的测定 分别放松游标盘和望远镜的制动螺丝,转动游标盘(连同三棱镜)使平行光射入三棱镜的AC面,如图3 所示。转动望远镜在AB面处寻找平行光管中狭缝的像。然后向一个方向缓慢地转动游标盘(连同三棱镜)在望远镜中观察狭缝像的移动情况,当随着游标盘转动而向某个方向移动的狭缝像,正要开始向相反方向移动时,固定游标盘。轻轻地转动望远镜,使分划板上竖直线与狭缝像对准,记下两游标指示的读数,记为 、 ;然后取下三棱镜,转动望远镜使它直接对准平行光管,并使分划板上竖直线与狭缝像对准,记下对称的两游标指示的读数,记为 、 ,可得 重复测量三次求平均。用上式求出棱镜的折射。五、实验注意事项:1.望远镜、平行光管上的镜头,三棱镜、平面镜的镜面不能用手摸、揩。如发现有尘埃时,应该用镜头纸轻轻揩擦。三棱镜、平面镜不准磕碰或跌落,以免损坏。 2.分光计是较精密的光学仪器,要加倍爱护,不应在制动螺丝锁紧时强行转动望远镜,也不要随意拧动狭缝。 3.在测量数据前务须检查分光计的几个制动螺丝是否锁紧,若未锁紧,取得的数据会不可靠。 4.测量中应正确使用望远镜转动的微调螺丝,以便提高工作效率和测量准确度。 5.在游标读数过程中,由于望远镜可能位于任何方位,故应注意望远镜转动过程中是否过了刻度的零点。 6.调整时应调整好一个方向,这时已调好部分的螺丝不能再随便拧动,否则会造成前功尽弃。 7.望远镜的调整是一个重点。首先转动目镜手轮看清分划板上的十字线,而后伸缩目镜筒看清亮十字。 六、思考题:1. 分光计的调整有哪些要求?其检察的标准?答:①几何要求:“三垂直”。即载物小平台的平面,望远镜的主光轴、平行光管的主光轴均必须与分光计的中心轴垂直。②物理要求:“三聚焦”。即叉丝对目镜聚焦,望远镜对无穷远聚焦,狭缝对平行光管物镜聚焦。③检验三垂直的标准:“四平行”。即载物小平台平面、望远镜的主光轴、平行光管的主光轴和读数刻度盘四者相互平行。④检验三聚焦的标准:“三清晰”。即目镜中观察叉丝清晰,亮十字反回的像(绿十字)清晰,在望远镜中看到狭缝清晰。2. 即是重点又是难点内容的望远镜系统如何调整? 答:①目测粗调②打开小灯调节目镜,看清叉丝。③在载物台上放双平面镜(位置如胶片图所示,为什么?),调节物镜(仰俯角和伸缩)和载物台(螺钉),使双平面镜两面有绿十字像并清晰、无视差,此时望远镜已聚焦无穷远。④调整望远镜的光轴与分光计转轴垂直。使双平面镜两面有绿十字像。再用“减半逐步逼近法”使望远镜的光轴与分光计的中心轴垂直(对照胶片讲解,必要时示范讲解),即叉丝的像与调整叉丝完全重合。3. 平行光管如何调整?答:①用已调节好的望远镜作基准,调节平行光管下部仰俯螺钉,使其出射平行光。②调节平行光管的狭缝宽度(强调:不要损坏刀口!)③使平行光管光轴与分光计转轴垂直。使目镜中看到的水平和竖直的狭缝像均居中。 七、误差分析:在测量三棱镜折射率实验中,当调节分光计的平行光管光轴与望远镜光轴垂直于中心转轴后,由实验可知载物台平面的倾斜程度对最小偏向角的测量没影响,但顶角的测量随着载物台平面的倾斜程度不同,有着不同程度的影响。八、实验心得:1、提高了我们综合分析的能力,当面对一个问题时,首先要考虑怎样解决,既而开始考虑解决的具体方法,在实验前必须提前预习,把整个实验的原理,流程和注意的事项掌握清楚,这才能保证你实验既快又好的完成在预习时要有目的,心中明白哪里里是实验的重点,哪里是必须注意的问题设计实验步骤,并预测实验中可能出现的问题。对实验的每一个细节进行分析,尽可能的减小实验误差。这些都使我们初步培养了实验的素质和能力。 2、培养了实验中科学严谨的态度,尊重客观事实,对待任何实验都客观认真仔细。实验正式开始前,应该先清点下实验仪器和材料,并对其进行检查,以确保实验顺利进行在动手前先将心中的实验知识对照一起过一遍再开始动手。实验过程更始需要很精细的态度和求实的态度。对每个步骤,每个细节都要留心。 3、养成了我们做事认真细致有耐心的习惯。在实验中,你必须有耐心,因为实验中每个变化都可能是细微的,必须集中精神才能去发现它,不可以急于求成。如果实验数据与正确数据相差过大时,应该把整个实验过程回想一下,对照每一步骤寻求问题所在,重新做一次。 4、悉了很多仪器的使用方法,在光学实验室良好的环境和设备的情况下,我们得到了很好的锻炼,对很多仪器的调试、测量,以及如何减小实验误差等,都有了很明确的认识。我想,这在我们以后的实验过程中会非常有用。 5、实验老师们的耐心讲解和对工作的认真态度给我留下了很深刻的印象。辅导我们实验的每一位老师,对工作都极其认真,在实验前,老师通常会给大家讲解下实验的注意事项,对于我们实验中出现的问题都给予耐心的讲解,而且,在我们实验进行中和实验结束后,老师们都启发我们思考实验的一些外延内容,这对我们将实验所进行的内容跟课本密切联系起来,将知识更充分地掌握。九、试验总结:首先:光学试验的仪器测量都十分精密,实验中一个很小的环节都有可能导致试验的失败,以“应用全反射临界角法测定三棱镜的折射率”为例,在实验过程中要注意分光仪在进行本次实验时已做过校正,因此时在测量时就应该注意,只能调节载物台倾斜度调节螺丝,而对于像平行光管倾斜度调节螺丝、望远镜倾斜度调节螺丝等就不应该再进行调节,否则将会导致实验失败。 第二:对于数据的处理,光学实验也有较高的要求,数据不但要求准确度高,精确度也要高,而且通常要记录多组数据,最后取平均。 第三:光学实验的测量仪器在进行测量时,通常要求一个稳定的实验环境,当有光源时,通常要在实验开始前先打开光源,这样在进行实验时,光源已经达到稳定。对于“全息照相”,对环境的稳定性要求更高,实验仪器都放在防震台上,在仪器排好光路后,要用手轻敲台面,看光路是否改变,在进行曝光前,更是要求室内实验人员不得大声说话,因为声波震动而引起的空气密度变化都有可能导致实验失败,在装片后还必须有一个使台面上各元件自然稳定的时间,即使干涉条纹稳定下来了,时间也不得少于3分钟。可以说这是我做过的六次实验中对稳定性要求最高的实验 第四:我始终认为做好实验预习是最重要的,在作实验前,通过预习,我们可以了解要做实验的原理及要使用的仪器的使用方法,这样在实验之前就已对试验有了大概的了解,然后在课堂上通过老师的讲解,可以迅速掌握仪器的使用方法,这样做起实验来才会得心应手,同时也可以减少因不了解实验仪器的使用方法而导致的实验失败,甚至是对仪器造成损坏,可以说做好实验预习是一举多得的事情。九、参考文献:[1]、普通物理实验3光学部分 高等教育出版社 杨述武、赵立竹等编 2008年版;[2]、大学物理实验 章世恒 主编 西南交通大学出版社 2009 年1月 ;[3]、大学物理实验教程(第2版) 何春娟 主编 西北工业大学出版社 2009年4月。

引言   光全息学是在现代激光的发现之后才迅速发展起来的,本文将就光全息学的一些主要的研究课题进行探讨,并针对一些应用课题进行研究。现代光全息学的起源,发展和人物,新型应用,本文将告诉你     利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,这样记录下来的干涉条纹图样称为“全息图”,而当用光波照射全息图时,由于衍射原理能重现出原始物光波,从而形成与原物体逼真的三维象,这个波前记录和重现过程称为“全息术”或“全息照相” 光束  全息照相由盖伯于1948年提出的,而当时没有足够强的相干辐射源全息研究处于萌芽时期。当时的全息照相采用汞灯为光源,且是同轴全息图,它的+/-1级衍射波是分不开的,即存在所谓的“孪生像”问题,不能获得很好的全息像。这是第一代全息图。  1960年激光的出现,1962年美国科学家利思和乌帕特尼克斯将通信理论中的射频概念推广到空域中,提出离轴全息术,他用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光,第一代全息图的两大难题因此得以解决,产生了激光记录,激光再现的第二代全息图。  当代光全息学发展主要课题有:   球面透镜光学系统   光源和光学技术   平面全息图分析   体积全息图衍射   脉冲激光全息学   非线性记录,散斑和底片颗粒噪声   信息储存   彩色全息学   合成全息图   计算机产生全息图   复制,电视传输和非相干光全息图  而伴随光全息学的发展也产生一些光全息技术应用,比如高分辨率成像,漫射介质成像,空间滤波,特征识别,信息储存与编码,精密干涉测量,振动分析,等高线测量,三维图象显示等方面的用途。  本论文将就当代光全息学的研究与应用两大课题进行学术研究    一. 当代光全息学研究   球面透镜不仅能形成光振幅分布的影象,而且易形成该分布的傅立叶变换图形。因此,用一个简单透镜可使物光在全息平面上成为某原始图形的傅立叶变换。存储在全息图中的变换所具有的特性,在光学图形识别中有重要的应用。透镜,作为形成影象的器件,可以在全息术中用来构成像面全息图。一个透镜可以形成:傅立叶变换和输入复振幅分布的影象   由于利用激光光源来制作全息图片,使得全息学开始成为一门实用的学科。对形成全息图所用光源提出的要求取决于由于物体和必要的光学部件的安排所决定的参数。  从单一光源取得物波和参考波有如下图所示两种普通方法:  A 分波前法  B 分振幅法   在光源与全息图之间(通过物表面或参考镜的反射)传播的光线的最大光程差必须小于相干长度。激光的相干性与激光器的振荡模式有关,就全息术而论,它要求在任一个横模振荡的激光器的空间相干的辐射,由于高介模的振荡较不稳定,并有以两个或者多个模式同时振荡的倾向,因此最好的振荡模式是最底阶的模式。  激光束的输出功率必须分成物体照明波和参考波。若物体要求从不止一个角度(以消除阴影),就需要将激光束分成好几束,一般采用分振幅法,因分振幅法能产生较均匀的照明,而且对光束的展宽要求小,既可以在分配前也可以在分配后展宽。  平面全息图分析  用非散射光记录的共线全息图上的条纹间隔与感光乳剂的厚度相比为较宽的。照明这张全息图的波前中的一条光线在通过全息图前只和一条记录条纹相互作用。因此全息图的响应近似于一个有聚焦特性的平面衍射光栅。加伯在分析这些特性时是把这样的全息图严格地当作二维的。用对二维模型分析的结果也很符合实验观察。  在应用利思与乌帕尼克首先采用的离轴技术所得到的全息图上,其条纹频率则超过共线全息图,超过了量正比于物光束与参考光束之间的夹角。条纹间隔的典型值可以考虑由两平面波的干涉得到。  正弦强度分布的周期d可以由下式决定:  2dsinθ=λ, θ为波法线与干涉条纹间的夹角,波长λ,条纹间隔d  式中当θ=15°,λ=5微米(绿光)时,则d=1微米。记录离轴全息图的感光乳剂的厚度通常为15微米,实际上,在这样的乳剂中记录的全息图已不能当作是二维的了。因此重要的是要记录住平面全息图的分析结果只能准确地应用于使用相当薄的介质所形成的全息图。  体积全息图衍射  基本的体积全息图对相干照明的响应可以用偶合波理论来描述。  假设有两个在yz平面传播的并具有单位振幅的平面波,其进入记录介质并进行干涉的情况,按折射定律,有  sin /sin =sin /sin =n  n为记录介质的折射率; 及 分别表示两个波在空气中与z轴的夹角; 及 则为两个波在介质中与z轴的夹角。  布拉格定律可以用空气中的波长 ,全息片介质折射率 写成如下形式:   2dsinθ= /   体积全息图的特性由布拉格定律确定,因此对照明显示出选择响应。        二光全息学典型应用  高分辨率成像  当一张全息图用与制作全息图参考光束共轭的光束照明时,在理论上能再现没有像差没有畸变的物波,其投影实象的分辨率仅受全息图边界衍射的限制。由于分辨率将随全息图尺寸的增加而增加。由于全息图可以做的很大,因此可以指望在现场大到5×5厘米时空间频率高到1000线/毫米。显然此种情况下放大率为1,但1:1的高分辨率投影成像,在集成电路的光刻工艺中有重要的潜在应用。将光刻掩模精密成象在半导体薄片上的工作,目前是用接触印象法来完成的。但这方法很快就会使模板损坏。用投影方法将影象转移到薄片上是一理想的可供选择的方法,但要非常优良和非常昂贵的镜头才能使投影的掩模象达到要求的分辨率和视场。  当用相干光源照明制作全息图时,摄影乳剂的收缩,表面变形,非线性及洽谈噪声源的影响就更大了。它们可使图象产生斑纹,衬度降低和边缘模糊,这些缺陷又是用光刻法制作集成电路所不允许的。新的,更稳定的材料可能是这些问题的解答。  特征识别  由空间调制参考波形成的傅立叶变换全息图的许多特性,曾被范德鲁等人用于特征识别。他们采用全息法作成的空间滤波器完成了“匹配滤波”在特征识别中的应用。  匹配滤波与概念,形成与应用可由下图说明             当要把形成的空间滤波器作为特征识别时,在输入平面内z轴上方部分是一个由平面波透明的,在不透明背景上包含M个透明字符的透明片。我们将这一组字符阵列的透过率表示为     这里所有字符均围绕 点对称分布, 是阵列中的一个典型字符,其中心在 点。另外,在输入平面内 处,有一光强度为 δ 的明亮的点光源,并在空间频率面εη面上形成一张傅立叶变换全息图。这一全息图可以看作是t 与δ函数形成的平面波干涉的记录。但是当全息图完成识别功能时,仅由透过t的一小部分,即通过入射平面内的一个或几个字符的光所照明,我们将会看到,在输出平面上我们所关心的再现,是表示识别结果的一个明亮的象点。    信息储存与编码  全息图既可以存储二维信息也可以存储三维信息。信息可以是彩色的或者编码的,图象的或者字母数字的;可以存储在全息图的表面,或存储在整个体积中;可以为空间上分离的,或者重叠的;可以是永久记录或者是可以消象的。记录的内容可以是彼此无关的或者相互成对的;可以是可辨认的影象或似乎是无意义的图形。    现代光全息学的发展前景十分广阔,而其实用技术必然会实现普及,有识之士当携手共同研究以促进社会进步

  • 索引序列
  • 量子光学论文题目大全
  • 量子光学论文题目
  • 量子光学论文图片大全
  • 量子光学论文题目推荐
  • 光学论文题目大全
  • 返回顶部