首页 > 论文期刊知识库 > 航天系统核心是什么

航天系统核心是什么

发布时间:

航天系统核心是什么

我认为是发动机和体系

21世纪高新技术的核心是什么?国家科委负责组织实施民口五个高技术领域。它们是生物技术、信息技术、自动化技术、能源技术和新材料领域。1996年7月又增加海洋高技术领域。共包括15个主题,以及高技术新概念新构思探索、水稻基因图谱、航空遥感实时传输系统、HJD-04型大型数字程控交换机关键技术、超导技术五个专项。此外,还有航空航天技术。

航天系统的核心是什么?

21世纪高新技术的核心是什么?国家科委负责组织实施民口五个高技术领域。它们是生物技术、信息技术、自动化技术、能源技术和新材料领域。1996年7月又增加海洋高技术领域。共包括15个主题,以及高技术新概念新构思探索、水稻基因图谱、航空遥感实时传输系统、HJD-04型大型数字程控交换机关键技术、超导技术五个专项。此外,还有航空航天技术。

我认为是发动机和体系

航天系统的核心是什么

致敬航天英雄,我国航天事业发展的核心是通过人们上月球去了解到地球以外的一些生物,从而给人类的发展带来一定的好处等等。

21世纪高新技术的核心是什么?国家科委负责组织实施民口五个高技术领域。它们是生物技术、信息技术、自动化技术、能源技术和新材料领域。1996年7月又增加海洋高技术领域。共包括15个主题,以及高技术新概念新构思探索、水稻基因图谱、航空遥感实时传输系统、HJD-04型大型数字程控交换机关键技术、超导技术五个专项。此外,还有航空航天技术。

工程由卫星系统、运载火箭系统、测控系统、发射场系统地面应用系统五大系统

目前,我国的航空航天业处于最高水平。冷战期间,苏联和美国这两个世界上最强大的大国,凭借强大的工业制造能力和科学创新能力,在航空航天领域一直遥遥领先于其他国家。垄断的。冷战结束后,世界航空业呈现出“美国继续领先,其他新兴国家正在奋起直追”的局面。

航天系统核心是什么技术

2020年,中国航天全年共执行39次发射任务,发射载荷质量06吨,发射次数和发射载荷质量均位居世界第二。其中,长征系列运载火箭完成34次发射。长征五号B运载火箭首飞成功,拉开载人航天工程空间站阶段任务序幕。长征五号运载火箭全面投入应用发射,成功发射火星探测器和嫦娥五号探测器,实现了我国地球同步转移轨道运载能力由5吨级到14吨级的跨越。长征八号运载火箭首飞成功,有效增强我国高密度发射任务执行能力。太阳同步轨道运载能力达到5吨,突破了快速集成设计生产、电气一体化、节流减载等关键技术,实现了发动机推力调节技术的首次工程应用,为可重复使用打下坚实基础,能满足卫星组网工程和商业发射服务需求。大推力补燃循环氢氧发动机关键技术攻关取得重要进展。我国最大推力分段式固体火箭发动机试车成功,为后续运载能力发展奠定了基础。在航天器科技活动方面,全年共研制发射航天器77个,航天器总质量61吨,数量和质量均位居世界第二。中国航天重大工程和专项任务稳步推进,大幅提升航天技术与应用能力。商业卫星研制机构数量持续增长,研制能力稳步提升,研制卫星类型从技术试验逐步向应用卫星转变。新一代载人飞船试验船高速再入飞行试验圆满成功。此次试验完成了高速再入返回控制、热防护、群伞+气囊着陆方式、重复使用等技术飞行验证,飞船具备高安全、高可靠、模块化、适应多任务、可重复使用等特点,为中国载人登月飞船“启航”奠定了坚实基础。嫦娥五号完成世界首次月球轨道无人交会对接。连续实现中国首次地外天体采样、地外天体起飞、地外天体轨道交会对接、第二宇宙速度高速再入返回等多项重大技术突破,完成了探月工程“绕、落、回”三步走发展规划,成为中国航天强国建设的重要里程碑。“天问一号”火星探测任务迈出中国行星探测第一步。计划在国际上首次通过一次发射实现“环绕、着陆、巡视探测”三大任务,设定了五大科学目标,涉及空间环境、形貌特征、表层结构等研究,将推动中国在行星探测和基础科学研究方面的全面发展。目前,已成功实施环绕火星探测,并计划在2021年5月至6月择机着陆火星,开展巡视探测。北斗三号全球卫星导航系统提前半年建成并开通。该系统是中国迄今为止规模最大、覆盖范围最广、性能要求最高的巨型复杂航天系统,采用了中国首创的混合星座构型,卫星核心器部件100%国产化。它可提供定位导航授时、全球短报文通信、区域短报文通信、国际搜救、星基增强、地基增强、精密单点定位共7类服务,性能指标达到国际一流水平。“北斗”,已迈进全球服务新时代。通量宽带卫星系统启动建设。亚太6D通信卫星成功发射,是中国当前通信容量最大、波束最多、输出功率最高、设计程度最复杂的民商用通信卫星。卫星主要为亚太区域用户提供全地域、全天候的卫星宽带通信服务,满足海事通信、机载通信、车载通信以及固定卫星宽带互联网接入等多种应用需求。高分辨率对地观测系统重大专项收官。这为中国长期稳定获得高分辨全球遥感信息提供了重要保障。中国高分系列卫星已基本形成涵盖不同空间分辨率、不同覆盖宽度、不同谱段、不同重访周期的高分辨率对地观测体系,天基对地观测水平大幅提升,中国卫星数据自主化率进一步加大。高分辨率多模综合成像卫星、资源三号03卫星成功发射,增强了中国综合对地观测能力,其中高分辨率多模综合成像卫星支持多种敏捷成像模式,首次实现“动中成像、多角度成像”,图像获取效率大幅提升。中国首个海洋水色卫星星座建成。海洋动力环境观测网建设有序推进,海洋一号D卫星成功发射,与在轨的海洋一号C卫星组成中国首个海洋水色卫星星座。海洋二号C星成功发射,与在轨工作的海洋二号B星组网,计划于2021年发射海洋二号D星。届时,海洋二号B/C/D星组网,将组成全球首个海洋动力环境监测网。“张衡一号”卫星数据参与构建新一代全球地磁场参考模型。该卫星获取了中国首批拥有完全自主知识产权的全球地磁场观测数据,构建了15阶全球地磁场参考模型。“天琴一号”卫星实现国内最高水平的无拖曳控制技术在轨验证,为后续研制空间引力波探测航天器、构建高精度空间惯性基准,奠定了坚实技术基础。实践二十卫星在轨验证通信、导航、遥感等多领域16项关键技术。卫星搭载的Q/V频段高通量通信载荷总体技术水平达到国际先进水平,为后续1太比特/秒高通量通信卫星和全球低轨互联网卫星研制奠定了基础,激光通信载荷实现10吉比特/秒地球同步轨道星地通信能力,创全球最高速率;量子通信载荷完成全球首次地球同步轨道星地偏振编码稳定传输,为牵引和推动相关领域的发展奠定了良好基础。世界首次连续纤维增强复合材料太空3D打印完成在轨演示。新一代载人飞船试验船返回舱搭载的“复合材料空间3D打印系统”,在轨期间自主完成了连续纤维增强复合材料样件打印。此次实验,是中国首次太空3D打印,也是世界首次连续纤维增强复合材料太空3D打印实验,对于未来空间站长期在轨运行、超大型结构在轨制造具有重要意义。

航天系统  航天系统(space system):又称航天工程系统。由航天器、航天运输系统、航天器发射场、航天测控网、应用系统组成、完成特定航天任务的工程系统,是现代典型的复杂大系统。  航天系统执行的特定任务和获取信息的方式,决定它的工作原理、组成和结构。获取来自太空信息的方式有两种,一是通过无线电信道传输到地面接收站点,二是通过专用的返回舱采集信息。  航天器载人的航天系统,称为载人航天系统;航天器不载人的航天系统,称为无人航天系统。执行军用航天任务的航天系统,称为军用航天系统;执行民用航天任务的航天系统,称为民用航天系统。民用航天系统包括用于科学研究的航天系统和直接为国民经济服务的航天系统。军用航天系统和直接为国民经济服务的航天系统属于应用航天系统。应用航天系统种类繁多,如:卫星通信系统、卫星导航定位系统、卫星气象观测系统、卫星侦察系统等。

航天系统核心是什么能源

哪三大类?

在几百千米的轨道上,空气稀薄,太阳无漫射,空间背景黑暗,对比度比地面大得多。会造成宇航员视力下降,看不清仪表读数。其次飞船处在黑暗中时,舱内需用高效白炽灯或其他措施来保证舱内的亮度。为了录下宇航员的工作、生活情况及舱内景物,舱内还必须安置摄影灯。无论是日光还是灯光,舱内都要采取有效措施,使之光线柔和、照度明亮。此外,除了照明外,飞船内许多设备和仪器都是需要电来启动并保持运转的。电源是飞船的心脏,其电源主要靠以下几种办法来解决。其一是太阳能电池,这是一种可以把光能直接转换成电能的半导体器件,寿命长,可连续工作。只要向着太阳,太阳能电池就能工作,向仪器设备提供电能,同时给蓄电池充电。背着太阳时,蓄电池就接替太阳能电池供电。目前太阳能电池方阵有二类:一类是立体装式,即太阳能电池直接安装在飞船的壳体上;一类是展开式,将方阵独立于壳体之外,形成单独部件,发射时以一定方式固定在卫星本体上,并收藏在罩内,进入轨道后才完全展开。太阳能电池有硅太阳能电池、砷化镓太阳能电池、硫化镉太阳能电池。它们都是按一定要求串联和并联而成的。美国在“发现”号航天飞机上曾试验了一种柔性太阳能电池,它在天上展开的面积为31米×4米,有10层楼高。这种电池采用印刷电路的方法在卡普隆薄膜上制成,可像手风琴一样展开和收缩,折叠时可收放在一个18厘米的小匣子里。能产生5千瓦以上的电能,比普通太阳能电池在性能、寿命、用途上略高一筹。其二是燃,料电池,它是一种将燃料的化学能转变为电能的电化装置,工作原理与一般蓄电池相似,也是由一种电解液隔开的两个电极所组成,既能产生电又能产生水(在宇航员喝的水一节中有叙述)。其种类有离子交换膜氢氧型,改进的培根型,石棉膜型。额定功率为200瓦、2000瓦、5000瓦,航天飞机在7天的飞行任务中,一共需耗电1627千瓦小时,主要靠三个燃料电池供给,每个电池最小功率34瓦,平均功率7千瓦,最大功率12千瓦,整个燃料电池最大功率24千瓦,平均功率14千瓦。在一般情况下,只使用两个燃料电池。根据设计要求,燃料电池的寿命是5000小时,工作寿命为2000小时,每组燃料电池可以完成29次7天的飞行任务。三是核电池,具有功率大、寿命长的特点,核电池大致分为二大类:放射性同位素电源和核反应堆电源,功率约为2-5千瓦,据报道,前芦苏联已在发射的33颗海洋监视侦察卫星上安装了核电源。核电源能给卫星和飞船带来稳定的电源,亦给人类带来了忧虑,30多年来,前苏联已有多颗卫星发生故障,其核动力装置给地球带来难以排解的心理压力,时常担心核祸从天而降。目前美国正在研制20千瓦的空间核电源,工作寿命为3~5年,以接替寿命短的电池。不论哪种电池,其电流均要通过功率分配和控制系统分配到飞船各处需要电源的部位去,通过计划分配来满足飞船及其乘员对电力的需求,保证宇航员正常的工作和生活。目前,空间站的核发电技术正处在研究阶段。美国宇航局、能源部和国防部的战略防御创新办公室制定了一个“自供电100号计划”,预计发展中的空间站耗电量将超过300千瓦。这样大的电力供应量,只有依靠核发电来解决,其核发电装置有三种构想,一个是把反应器牢固地安装在空间站上,星上系统需要有5至5吨的保护层来防止核辐射的破坏,这意味着要增加空间站的起飞重量。一个是用一根很长的软链把核电站吊在空间站上,这样虽可减少防护层的重量,但30千米长的吊链系统会使空间站加速并影响有关科学实验的失重环境。一个是安装在200千米高的自由飞行平台,其弊端是这种平台需要姿态控制、能源和通信系统,且难以修理。哪种方法可行,现在未成定论。如果空间核电成功的话,将标志着空间站上了一个新的台阶。

航天系统  航天系统(space system):又称航天工程系统。由航天器、航天运输系统、航天器发射场、航天测控网、应用系统组成、完成特定航天任务的工程系统,是现代典型的复杂大系统。  航天系统执行的特定任务和获取信息的方式,决定它的工作原理、组成和结构。获取来自太空信息的方式有两种,一是通过无线电信道传输到地面接收站点,二是通过专用的返回舱采集信息。  航天器载人的航天系统,称为载人航天系统;航天器不载人的航天系统,称为无人航天系统。执行军用航天任务的航天系统,称为军用航天系统;执行民用航天任务的航天系统,称为民用航天系统。民用航天系统包括用于科学研究的航天系统和直接为国民经济服务的航天系统。军用航天系统和直接为国民经济服务的航天系统属于应用航天系统。应用航天系统种类繁多,如:卫星通信系统、卫星导航定位系统、卫星气象观测系统、卫星侦察系统等。

  • 索引序列
  • 航天系统核心是什么
  • 航天系统的核心是什么?
  • 航天系统的核心是什么
  • 航天系统核心是什么技术
  • 航天系统核心是什么能源
  • 返回顶部