首页 > 论文期刊知识库 > 冶金工程论文3000字

冶金工程论文3000字

发布时间:

冶金工程论文3000字

培养目标  冶金工程专业是培养具备冶金物理化学、钢铁冶金和有色金属冶金等方面的知识。能在冶金领域从事生产、设计、科研和管理工作的高级工程技术人才。编辑本段培养要求专业特色  冶金工程专业学生主要学习黑色和有色金属(包括重、轻、稀有和贵金属)冶金的基本理论、生产工艺和设备、实验研究、设计方法、环境保护及资源综合利用的基本理论和基本知识受到冶炼工艺制定、工程设计、测试技能和科学研究的基本训练。具有开发新技术,新工艺和新材料及工业设计和生产组织、管理的能力。知识领域  1.掌握本专业所需的制图、机械、电工与电子技术和计算机应用的基本知识和技能;   2.掌握黑色和有色金属冶金过程的基础理论和生产工艺知识;   3.具有黑色和有色金属冶金生产组织、技术经济、科学管理、环境安全的基础知识和工业设计的初步能力;   4.具有分析解决本专业生产中的实际问题以及进行科学研究,开发新技术、新工艺、新材料的初步能力;   5.了解本专业和相关学科的科技发展动态。编辑本段主要课程:主干学科  冶金工程主要课程  物理化学、金属学、冶金传输原理、冶金原理、钢铁冶金学、有色金属冶金学。编辑本段实践教学  包括金工实习、认识实习、生产实习、专业实验、计算机操作实验、课程设计、毕业实习、毕业设计(论文)。编辑本段开设院校  北京科技大学、安徽工业大学、南京工业大学、东北大学、中南大学、内蒙古工业大学、内蒙古科技大学、上海大学、西安建筑科技大学、太原理工大学、辽宁科技大学、昆明理工、贵州大学、湖南工业大学、重庆科技学院、青海大学、兰州理工大学、江西理工大学、贵州师范大学、重庆大学、上海大学江苏大学等

冶金工程领域是研究从矿石等资源中提取金属或金属化合物,并制成具有良好的使用性能和经济价值的材料的工程技术领域。冶金是国民经济建设的基础,是国家实力和工业发展水平的标志,它为机械、能源、化工、交通、建筑、航空航天工业、国防军工等各行各业提供所需的材料产品。现代工业、农业、国防及科技的发展对冶金工业不断提出新的要求并推动着冶金学科和工程技术的发展,反过来,冶金工程的发展又不断为人类文明进步提供新的物质基础。冶金工程技术的发展趋势是不断汲取相关学科和工程技术的新成就进行充实、更新和深化,在冶金热力学、金属、熔锍、熔渣、熔盐结构及物性等方面的研究会更加深入,建立智能化热力学、动力学数据库,加强冶金动力学和冶金反应工程学的研究,应用计算机逐步实现对冶金全流程进行系统最优设计和自动控制。冶金生产技术将实现生产柔性化、高速化和连续化,达到资源、能源的充分利用及生态环境的最佳保护。随着冶金新技术、新设备、新工艺的出现,冶金产品将在支撑经济、国防及高科技发展上发挥愈来愈重要的作用。冶金工程与许多学科密切相关,相互促进发展。冶金工程包括:钢铁冶金、有色金属冶金两大类。冶金物理化学是冶金工程的应用理论基础。该工程领域与材料工程、环境工程、矿业工程、控制工程、计算机技术等工程领域及物理、化学、工程热物理等基础学科密切联系,相互促进,共同发展。培养目标“十二五”期间,依据国家产业政策彻底淘汰钢铁、有色金属落后产能,进一步提高先进产能所占比重。加快推进兼并重组,做大做强优势骨干企业。大力实施技术改造,加快产业结构调整和优化升级,规模总量和品种质量基本满足全国国民经济发展需求,促进全国冶金工业可持续健康发展。预测2015年我国粗钢导向性消费量将达到5亿吨。最高峰可能出现在2015年到2020年期间,峰值约7-2亿吨,此后峰值弧顶区仍将持续一个时期。而随着工业化、城镇化不断深入发展,以及经济发展方式转变和产业升级,我国钢铁需求增速将呈逐年下降之势,进入平稳发展期。培养冶金工程领域科学研究与开发应用、工程设计与实施、技术攻关与技术改造、新技术推广与应用、工程规划与冶金企业管理等方面的高层次人才。冶金工程领域工程硕士生应有扎实的现代冶金技术的基础理论和系统的专业知识,对冶金工程技术的国内外现状和发展趋势有较全面的了解。能熟练运用先进的科学技术和实验方法,具有从事工程技术研究、改造、开发与应用。 冶金工程的领域范围,可分为两大类:黑色冶金和有色冶金。从研究方向和技术性质可细分为:(1)冶金过程和材料合成的物理化学理论及应用。(2)矿物的资源综合利用及冶炼过程中的环境保护。(3)钢铁冶炼工艺、技术、装备及生产系统的设计、施工等。(4)凝固加工技术。(5)冶金过程模拟仿真。(6)纯洁钢制造技术。(7)钢铁制造流程的解析和综合集成。(8)有色冶金过程电化学冶金原理、工艺、技术的应用、固态离子学及其相关理论在冶金和材料中的应用。(9)有色冶过程中湿法冶金和粉体工程。(10)有色金属功能材料的开发与应用等。 主要课程:冶金工程概论、传输原理、金属学原理、金属材料及热处理、冶金物理化学、钢铁冶金学、有色金属冶金学、材料现代分析方法耐火材料等。 实践教学:包括金工实习、认识实习、生产实习、专业实验、计算机操作实验、课程设计、毕业实习、毕业设计。 结合冶金企业的实际课题进行研究工作,可以是冶炼新技术、新工艺、新设备、的研究和开发,可以是原冶金工艺和设备系统的技术革新,可以是冶金过程检测技术和质量控制,可以是冶金工艺设备的状态监测和故障诊断系统的研究,可以是大型冶金企业管理模式革新等。根据研究结果撰写论文:对于新产品设计与开发技术的结果,论文应该具有设计方案的比较、评估,设计计算书,完整的图纸;对于重大技术改造和革新的成果,应该具有对原设备与技术的评价,改造和革新方案的评述和结果的技术和经济效果分析;对于产品质量控制和试验的成果,必须有试验方案、完整的实验数据、数据处理分析方法、结果分析;对于生产设备管理成果,必须给出新的管理理论体系,对企业产量和质量作效果分析,并给出创新管理信息系统等。

九五”期间,我市改革开放和现代化建设取得了重大进展,国内生产总值由1996年的78亿元到2000年的46亿元。全市的经济增长基本以冶金、化工、电力、建材、煤炭等重污染行业的发展为主,从“八五”末的1995年到2000年六年间,全市钢铁年产量由480万吨增长到542万吨,水泥年产量由149万吨增长到170万吨,焦炭年产量由893万吨增长到1110万吨,年发电量由87亿千瓦时增长到114亿千瓦时,机动车辆由98730辆增长到222656辆。年工业耗煤量由5万吨增加到34万吨,占全市总能耗的97%以上。“九五”期间全市常住人口由77万人增长到75万人。 在人口增长和社会经济发展的同时,也给太原市环境保护工作带来巨大压力。“九五”期间,我市环境保护工作认真贯彻落实国务院《关于环境保护若干问题的决定》。坚持全民的环境意识,全面的环境监督、全过程的环境管理,依靠科技进步的“三全一依靠”环保工作方针。积极推行可持续发展战略,组织实施“1263”环保工程,即围绕一个目标(提高和改善环境质量)、采取两大举措(总量控制和绿色工程)突出六个重点(清徐、古交、娄烦、城北钢铁工业区、河西南部化工工业区、西山煤矿建材工业区、)、打好三大战役(取缔土小工业、治汾、市区大气治理)。以“一控双达标”为中心,突出大气、水体污染治理两个重点,全面组织实施“削总量、促清洁、治汾河、控煤烟、保达标、净尾气、降扬尘、抓生态”的24字环保战略。全市环境综合整治遵循污染治理和生态建设并重的原则,经过取缔“15小”和“一控双达标”两项行动,淘汰和关停了一大批能耗高、污染重、效益差的土小企业和国有企业,推动了产业结构、能源结构的调整,促进了全市经济的可持续发展,环保跨进了经济建设的主战场,污染物排放总量基本得到有效控制,遏制了环境污染连年恶化的势头,部分环境质量指标明显好转。1环境质量现状1大气环境质量现状“九五”期间大气总悬浮颗粒物年平均浓度由“八五”末的568毫克/立方米(标准状态)下降到2000年的401毫克/立方米(标准状态),总悬浮颗粒物污染逐年减轻,年日均浓度下降40%,但仍超《环境空气质量标准》二级标准00倍。二氧化硫年平均浓度“九五”前三年较“八五”末呈上升趋势,由“八五”末的212毫克/立方米(标准状态)上升到1998年的278毫克/立方米(标准状态),2000年为200毫克/立方米(标准状态),年日均浓度较“八五”末下降66%,基本遏制了其上升趋势。但仍超《环境空气质量标准》二级标准33倍。其主要原因为1996、1997年太原第一热电厂五期、六期扩建工程、太原第二热电厂四期扩建工程投入运行,集中供热工程尚未发挥全部效益,至使二氧化硫年日均浓度值在“九五”前三年出现较大幅度上升,但随着集中供热率的逐年提高,燃料结构的调整和工业污染源达标工作力度加大,1999年二氧化硫年日均浓度上升趋势得到控制。值的注意的是,随着城市建设的高速发展,机动车数量在急剧增长,氮氧化物年平均浓度由“八五”末的055毫克/立方米(标准状态)上升到2000年的093毫克/立方米(标准状态),在“九五”期间呈逐年上升趋势,年日均浓度上升09%,超过《环境空气质量标准》二级标准86倍。随着《太原市机动车排气污染防治办法》的颁布,机动车尾气防治、出租车的全面更新和工业污染防治力度加大,氮氧化物年均浓度将得到有效控制。1995年-2000年太原市大气环境质量现状见表2-1。从1998年我市开始发布空气质量周报,1999年达到国家空气质量二级和三级标准的分别为10期和23期,比1998年增加9期和3期;而四级和五级分别为15期和4期,比上年减少10期和2期。2000年共发布空气质量周报52期,有2期为良好水平,43周为轻度污染水平,4周为中度污染,3周为重度污染。1998-2000年空气质量级别及首要污染物出现频率见表2-2。表2-1 1995-2000年太原市大气环境质量现状 毫克/立方米(标准状态)

冶金工程导论论文3000字

唉,哥也在找!

镁法海绵钛爬壁钛生成量的初探沈俊宇(遵义钛业股份有限公司 贵州省 563004)摘要:在海绵钛的还原生产过程中,反应器的上部器壁会生成大量环状的爬壁钛,一炉产品爬壁钛的生成量少则500 kg左右,多则达800至1000 kg,爬壁钛不仅产品取出困难,增加操作人员劳动强度,而且其质量较差,经济损失大。本文分析了海绵钛爬壁钛的形成机理及生产过程中爬壁钛增多的原因,提出了还原中后期最大加料速度限制,以缓解反应剧烈程度和控制反应液面高度在1#范围内小幅波动,防止形成新的活性中心,是生产过程中减少爬壁钛生成量的主要途径。关键词:海绵钛 爬壁钛 生成量 加料速度 反应液面高度A Study the Production of the Titanium on Walls Produced in the Process of Sponge Producing by Magnesium ProcessJunyu,Shen(Zunyi Titanium COLTDGuizhou 563004)Abstract:A quantity of annular titanium will be produced on upper walls of reactors during the reduction and distillation。The production per batch is from 500kg to 800 or 1, It is difficult for operators to take products out ,and also influences the quality Therefore ,the titanium on walls not only strengthens the labor intensity ,but also causes a big loss The paper analyzes the formation mechanism of the titanium on wall and reasons why its production Also,in order to ease the strong reaction,make the liquid level in reaction waves no more than 1’’and prevents the formation of new active centers ,the paper introduces a main method to reduce the production of the titanium on walls,that is to retrict the feed speed in mid or late period of reduction and Keywords:titanium sponge the titanium on walls production feed speed liquid level in reaction 1 前言在海绵钛的还原生产过程中,反应器的上部器壁会生成大量环状的爬壁钛,如图1所示。爬壁钛会导致以下不良后果: 第一,由于目前使用双法兰反应器,反应器上部热损失较大(上部有三圈水套,反应器约300 mm高度在加热炉外),上部爬壁钛中的氯化镁很难被蒸发出去,使爬壁钛中含有较高的杂质元素氯,剥取产品时会看到反应器口部(爬壁钛的最上部)粘有大量的镁和氯化镁。第二,海绵钛还原、蒸馏反应器为铁制反应器,由于爬壁钛在反应器器壁上粘附较强,加之双法兰反应器上部热损失大,为保证反应器上部温度,蒸馏期间加热炉1#、2#加热电阻丝送电频率高且时间长,致使爬壁钛普遍有发亮现象,分析结果显示杂质元素铁含量较高。第三,爬壁钛在反应器上部空间极易被泄漏进的空气污染,使产品中杂质元素氮、氧含量较高。由表1可看出,产品分析爬壁钛质量级别基本上在3—5级(极少部分在2级以上),同时,也有少部分因杂质元素过高成为等外品。一炉产品爬壁钛的生成量少则500kg左右,多则达800至1000 kg,经济损失较大。另外,爬壁钛过多也给产品取出带来困难,增加操作人员劳动强度。为了减少爬壁钛生成量,降低损失,我们进行了控制液面高度及调整料速试验。表1 2007年下半年爬壁钛质量统计表分析批数(批) 2级品批数(批) 3~5级品批数(批) 等外品批数(批) 2级品影响因素 3~5级品、等外品影响因素75 12 51 12 HB、Fe、Cl、O、N HB、Fe、Cl2 爬壁钛形成机理镁还原TiCl4主要反应为:TiCl4+2Mg=Ti+2MgCl2,在还原反应刚开始时,加入的TiCl4大部分气化,发生气相TiCl4—气相Mg或气相TiCl4—液相Mg反应,同时也有一部分TiCl4液体未来得及气化,进入液镁中,发生液相TiCl4—液相Mg间的反应。还原刚开始在反应器铁壁和熔镁表面夹角处上,一旦有钛晶粒出现后,裸露在熔镁面上方的钛晶体尖峰或棱角便成为活性中心。[1] 镁还原TiCl4主要在此活性中心上进行。液镁靠表面张力沿铁壁和钛晶体毛细孔上爬,被吸附在活性中心上,与气相TiCl4反应生成最初的海绵钛颗粒。随着反应的进行,生成的海绵钛颗粒依赖其与反应器壁的粘附力和熔体浮力的支持沿反应器壁在熔体表面逐渐长大,并浮在熔体表面。随着生成的海绵钛块增厚、增大,加之排放氯化镁,失去熔体浮力支持的海绵钛块体大部份就会沉落在熔体底部,这样在反应器器壁上,将有环状海绵钛粘附在其上,其实,这部分也是最初的爬壁钛。另外,在还原反应初期,液镁有很大的蒸发表面,而空间压力较低,故镁具有很大的蒸发速度。还原反应中期,反应温度较高和对反应器底部加热时,也会有部分镁蒸发。镁蒸气挥发后,冷凝在反应器器壁和大盖底部,与气相TiCl4反应也会生成部份爬壁钛。海绵钛块沉落熔体底部后,熔体表面会重新暴露出液镁的自由面,还原反应将恢复到较大的速度。随着反应的进行,在熔体表面会重新生成海绵钛桥,通过排放氯化镁,钛桥被破坏,海绵钛块靠自重下沉,又为下一层海绵钛生长创造条件,爬壁钛也在这一过程中逐渐形成,还原反应如此周而复始进行,直至镁的利用达到65%—75%之后。3 生产中爬壁钛增多原因分析1中后期加料速度随着还原反应的进行,特别是进入中期后,加料速度逐渐增加,反应进行的非常剧烈,熔体表面反应区中心部最高温度可达1200℃以上,而镁的沸点仅1105℃,此时镁处于沸腾状态。加之目前还原操作料速按玻璃转子流量计实际刻度与自动加料系统对照进行加料,因玻璃转子流量计出厂时是用水标定,当被测介质改为TiCl4时,其修正系数,经计算应为13。当玻璃转子刻度显示最大加料量为150 kg /5h,实际料速已达160~170 kg /5h。这样更加剧了反应的剧烈程度,沸腾的液镁将不断吸附在最初反应器壁上已形成的少量环状爬壁钛上,通过钛晶体毛细孔上爬,与气相TiCl4反应生成新爬壁钛,使原环状爬壁钛增多、增厚。另外,由于反应剧烈程度增加,也加剧了液镁的气化,液镁蒸气挥发后,冷凝附着在反应器器壁上部和大盖底部,与气相TiCl4反应生成爬壁钛,这些爬壁钛主要粘附在反应器器壁上部和大盖底部。因此,最大料速持续的时间越长,生成爬壁钛也就越多(表2)。表2 部分大料速爬壁钛生成量统计表最大料速(kg /5h) 持续的时间(h) 爬壁钛占毛产量比例(%)生产炉-1 155~165 35 75生产炉-2 145~155 40 55生产炉-3 155~165 36 67生产炉-4 155~165 40 35生产炉-5 155~165 35 2 反应液面高度反应液面高度太低、波动范围过大会增加爬壁钛生成量,其原因如下:第一,当反应液面高度过低时,TiCl4距液镁表面间距面相对较远,发生液相TiCl4—液相Mg间的反应相对减少,气相TiCl4与镁蒸气反应相对增加,从而增加爬壁钛生成量。第二,因未定时、定量准确排放MgCl2,反应液面高度大幅上下波动,易在钛晶体活性中心之外,形成新的活性中心,液镁靠表面吸引力沿铁壁和钛晶体孔隙上爬,被吸附在活性中心上,这样在反应器壁上会粘附形成新的爬壁钛。因此,不控制好液面高度,及时准确排放MgCl2,也将增加爬壁钛的生成量(表3)。表3 反应液面高度大幅波动量统计表反应液面高度波动范围 爬壁钛占毛产量比例(%)生产炉-6 1#~2# 88生产炉-7 1#~2# 82生产炉-8 1#~2# 67生产炉-9 1#~2# 02生产炉-10 1#~2# 02生产炉-11 1#~2# 814 措施通过上述分析,可以知道爬壁钛是海绵钛生产过程中必然要形成的,但其生成量是可以控制的,因此,我们对加料速度以及反应液面高度进行了调整。结合生产实践,采取两项措施:第一,我们对部分处于通风不好而影响散热的炉子还原中期最大加料速度限制在135~140 kg /5h,以缓解反应剧烈程度,特殊炉次,因反应温度太低,可以适当提高至160~170 kg /5h,但持续时间不能太长,最多3~4 h;后期最大料速限制在105~110 kg /5h。第二,控制反应液面在1#范围内小幅波动,防止形成新的活性中心,以达到降低爬壁钛生成量的目的(表4)。表4 调整料速及排放MgCl2制度试验对比表料速及排放MgCl2制度 平均爬壁钛占毛产比例(kg) 平均钛坨重量(kg) 平均加料时间(h) 中期平均最大料速(kg /5h) 后期平均最大料速(kg /5h)调整前 56 5291 89 160 120调整后 28 5483 87 138 107从表4的统计数据可以看出,通过控制最大料速以及控制好液面高度及时准确的排放MgCl2,产品生成的爬壁钛占毛产比例大大下降,调整前平均爬壁钛为56%,调整后平均爬壁钛28%,平均下降28%。在进行调整料速试验期间,对生产炉-59一炉产品还原中期加料再次进行提高料速到155~165 kg /5h试验,结果爬壁钛增至占毛产量的93%,从这点也证明了加料速度对爬壁钛形成的影响。此外,调整前,钛坨平均重5291 kg,调整后,钛坨平均重5483 kg,平均毛产重量未受影响;调整前平均加料时间89小时,调整后平均加料时间87小时,加料时间也略有减少。试验在降低爬壁钛生成量的同时,缩短了还原生产周期,降低了还原电耗,取得了较好的效果。5 结论1对处于通风不好而影响散热的炉子还原中期最大加料速度限制在135~140kg /5h,后期最大料速限制在105~110 kg /5h 2控制反应液面高度在1#范围内小幅波动。本试验在巩固海绵钛钛坨产量的情况下,降低了爬壁钛生成量,试验取得了效果,为进一步研究探索海绵钛爬壁钛生成量打下了基础。参考资料[1] 莫畏, 邓国珠 ,罗方承 钛冶金[M]版次(第二版)北京:冶金工业出版社,1998:281-293

怎么发送呢?

冶金工程论文500字

兄弟,花钱买个吧

除去生物冶金,冶金整个专业就是无机化学在规模和应用的崇高体现。

金属属于无机物冶金大部分和无机反应有关FE2O3+3CO=3CO2+2FE2AL2O3电解=4AL+3O22NACL电解=2NA+CL2

金融工程3000字论文

金融工程的概念有狭义和广义两种。狭义的金融工程主要是指利用先进的数学及通讯工具,在各种现有基本金融产品的基础上,进行不同形式的组合分解,以设计出符合客户需要并具有特定P/L性的新的金融产品。而广义的金融工程则是指一切利用工程化手段来解决金融问题的技术开发,它不仅包括金融产品设计,还包括金融产品定价、交易策略设计、金融风险管理等各个方面。本文采用的是广义的金融工程概念。小思为同学们来介绍一下美国排名前十的学校和其金融工程专业的基本情况:Baruch College, City University of New York巴鲁克学院(Bernard MBaruch College,CUNY)是一所以商科著名的位于美国纽约市曼哈顿熨斗区的公立大学,也是纽约市立大学(CUNY,也译作纽约城市大学)的学院成员。University of California, Berkeley加利福尼亚大学伯克利分校(University of California-Berkeley,简称UC Berkeley、Berkeley)是美国久负盛名的一所公立研究型大学,是加利福尼亚大学系统中最老的一所。Carnegie Mellon University作为美国四大CS名校(MIT, CMU, Stanford, UCB),其MSCF项目由四大学院联合授课(Tepper商学院、数学系、统计学系、Heinz学院),侧重于数学、编程及金融三大基石,所以申请者需在这三个领域都有扎实的基本功。Columbia University MSFE哥伦比亚大学以卓越的教学质量以及众多知名校友,吸引着全球学子前往深造。随着金融行业的迅猛发展,未来打算从事金融行业的同学们把目光投向了哥伦比亚大学。Princeton University普林斯顿大学的金融硕士项目设置在Bendheim Center for Finance(BCF)金融中心下面,提供一种非常整体性的、跨学科选择的、偏重数理计算的课程,横跨经济、金融和金融工程等领域,并以合理的小班形式授课。New York University纽约大学(New York University, 简称 NYU) 位于繁华的布鲁克林,成立于1831年,是全美最大的私立大学之一,也是美国唯一坐落于纽约心脏地带的名校。

2000字我这就想说也给你说不完。

我在汉斯出版社的官网上通过关键词检索到了这些文章,你可以看看“人民币在“一带一路”区域中的货币锚效应增强了吗?”、“对人民币汇率影响因素的实证分析”、”央行干预有效性与我国人民币汇率波动研究“、“基于BEER方法的人民币实际均衡汇率测算”

金融工程论文3000字

要帮忙吗。看你蛮着急的。

骨骼惊奇即使填充物略差也并无大碍,如题目结构对于原理模型的推倒可完全参照教 科书的思路,完备且缜密。尤其以构造模型为易,添加一个新的参数或变量即可,例如 《计量经济学》《期权期货市场导论》《金融工程》等注重数学运用的教材,本身带 有逻辑性强,变量多推导过程严密的特点,稍加改造即可大量引用;

如果想要找金融学方面的任务,觉得你应该到书店去查找一下,或者是图书馆去查找一下资料。

  • 索引序列
  • 冶金工程论文3000字
  • 冶金工程导论论文3000字
  • 冶金工程论文500字
  • 金融工程3000字论文
  • 金融工程论文3000字
  • 返回顶部