首页 > 论文期刊知识库 > 雷达领域核心期刊有哪些

雷达领域核心期刊有哪些

发布时间:

雷达领域核心期刊有哪些

无线电电子学、电信技术类核心期刊表1、电子学报 2、半导体学报 3、通信学报 4、电波科学学报 5、北京邮电大学学报 6、光电子、激光 7、液晶与显示 8、电子与信息学报 9、系统工程与电子技术 10、西安电子科技大学学报 11、现代雷达 12、红外与毫米波学报13、信号处理 14、红外与激光工程 15、半导体光电 16、激光与红外 17、红外技术 18、光电工程 19、电路与系统学报 20、微电子学 21、激光技术22、电子元件与材料 23、固体电子学研究与进展 24、电信科学 25、半导体技术26、微波学报 27、电子科技大学学报 28、光通信技术 29、激光杂志 30、光通信研究 31、重庆邮电学院学报自然科学版(改名为:重庆邮电大学学报自然科学版)32、功能材料与器件学报 33、光电子技术 34、应用激光 35、电子技术应用36、数据采集与处理 37、压电与声光 38、电视技术 39、电讯技术 40、应用光学 41、激光与光电子学进展 42、微纳电子技术 43、电子显微学报

《现代雷达》。《现代雷达》杂志社主要从事国家重要军民用大型电子信息系统的工程建设,重大装备、通信与电子设备、软件和关键元器件的研制生产,全面报导国内外先进雷达技术。《现代雷达》编辑部重点刊载国内外先进雷达技术论文,介绍通信、微波、ECM、ECCM和电子战、信息战等相关专业的技术论文、最新知识与动态,推动中国国防事业与雷达技术发展,赶超世界先进水平。

现代雷达 [1004-7859] 打电话问问编辑部

雷达领域的核心期刊有哪些

现代雷达 [1004-7859] 打电话问问编辑部

电子类核心期刊如下:电子元件与材料电子与信息学报电子学报电子显微学报电子科技大学学报电子技术应用

现代雷达、信号处理、北京邮电大学学报、光电子技术、电子技术应用、电子科技大学学报、光电子技术、电子技术应用、

你看看应用光学吧。

雷达领域期刊有哪些

中国知网、万方、维普 都是期刊文献数据库。但下载都是要收费的。

好录。杂志信息:《现代雷达》创刊于1979年,长期坚持“推动中国雷达技术发展,赶超世界先进水平”的办刊宗旨,全面报导国内外先进雷达技术,紧密跟踪雷达技术发展热点,关注我国具有自主知识产权的创新性研究成果,是我国雷达界最具代表性的刊物,国家中文核心期刊。运用于军用雷达、民用雷达;通信器材与设备;导航定位技术及设备、水中探测技术及设备;各种光电系统;与雷达配套的信息接收、传输技术及设备;工业军用计算机;测量仪器仪表;信号处理器件与设备;显示器件;射频、微波器件与防护服装;天线罩;光纤、电缆;可编程控制器件和可编程序控制器(PLC);传感器;各种电源以及其它各种与雷达相关的元器件、检测设备及材料等等。主要版块栏目:雷达总体工程、信号/数据处理、收发技术、微波技术、结构与工艺、计算机与雷达通讯、电子对抗技术、可靠性与维修性、科研与学术动态、厂商与产品介绍。

电子类核心期刊如下:电子元件与材料电子与信息学报电子学报电子显微学报电子科技大学学报电子技术应用

雷达领域的核心期刊有哪些呢

好录。杂志信息:《现代雷达》创刊于1979年,长期坚持“推动中国雷达技术发展,赶超世界先进水平”的办刊宗旨,全面报导国内外先进雷达技术,紧密跟踪雷达技术发展热点,关注我国具有自主知识产权的创新性研究成果,是我国雷达界最具代表性的刊物,国家中文核心期刊。运用于军用雷达、民用雷达;通信器材与设备;导航定位技术及设备、水中探测技术及设备;各种光电系统;与雷达配套的信息接收、传输技术及设备;工业军用计算机;测量仪器仪表;信号处理器件与设备;显示器件;射频、微波器件与防护服装;天线罩;光纤、电缆;可编程控制器件和可编程序控制器(PLC);传感器;各种电源以及其它各种与雷达相关的元器件、检测设备及材料等等。主要版块栏目:雷达总体工程、信号/数据处理、收发技术、微波技术、结构与工艺、计算机与雷达通讯、电子对抗技术、可靠性与维修性、科研与学术动态、厂商与产品介绍。

电子类核心期刊如下:电子元件与材料电子与信息学报电子学报电子显微学报电子科技大学学报电子技术应用

无线电电子学、电信技术类核心期刊表1、电子学报 2、半导体学报 3、通信学报 4、电波科学学报 5、北京邮电大学学报 6、光电子、激光 7、液晶与显示 8、电子与信息学报 9、系统工程与电子技术 10、西安电子科技大学学报 11、现代雷达 12、红外与毫米波学报13、信号处理 14、红外与激光工程 15、半导体光电 16、激光与红外 17、红外技术 18、光电工程 19、电路与系统学报 20、微电子学 21、激光技术22、电子元件与材料 23、固体电子学研究与进展 24、电信科学 25、半导体技术26、微波学报 27、电子科技大学学报 28、光通信技术 29、激光杂志 30、光通信研究 31、重庆邮电学院学报自然科学版(改名为:重庆邮电大学学报自然科学版)32、功能材料与器件学报 33、光电子技术 34、应用激光 35、电子技术应用36、数据采集与处理 37、压电与声光 38、电视技术 39、电讯技术 40、应用光学 41、激光与光电子学进展 42、微纳电子技术 43、电子显微学报

几乎没有。

雷达领域核心期刊

与DAS等传统的超声内镜成像算法相比,SA算法成像质量好,图像分辨率高,但同时其运算过程也更为复杂,且需要对大量回波数据进行处理。如果采用传统的串行计算模式进行运算,那么该算法的实现过程将会非常耗时,系统的实时性无法保证。相控阵超声内镜发射系统由发射电路、选通电路及限幅电路三部分组成,其主要作用是通过脉冲激励、阵元选通,完成超声波信号的相控发射,实现对被测物体的合成孔径扫描。该系统以FPGA为控制核心,其中,发射电路的主要作用是产生带有延时的高压激励脉冲;选通电路采用4块MAX4968芯片,通过电路复用的方式,实现激励脉冲的16路转64路阵元选通,以激励超声换能器阵元产生超声波;限幅电路通过并联限幅的方式将电压钳制在±7V的范围内,消除了高压激励脉冲对后端接收系统的影响,保证回波信号能够几乎无衰减的进行接收与传输因此,为了能够快速实现SA算法,本文基于CUDA并行计算平台对SA算法作如下并行化处理分析:具体实现流程本文采用“CPU+GPU”的联合编程模式。其软件架构为“MATLAB+CUDA”的混合编程架构。其中,CPU端主要使用MATLAB进行回波数据的读取及最终结果的显示;GPU端使用CUDA编程计算平台完成SA算法的并行化处理。具体的实现流程如图4-5所示。首先,在CUDA中使用cudaMalloc()函数为待处理的回波数据分配全局内存;然后,通过调用cudaMemcpy()函数完成回波数据的传输,需要注意的是,在使用该函数时,要将最后一个参数设置为“cudaMemcpyHostToDevice”,以确保数据的传输方向是从CPU至GPU;通过使用两个核(kernel)函数,分别完成低分辨图像的求解和高分辨率图像的合成,其中,使用__shared__关键字为权值函数开辟共享内存;接下来,再次使用cudaMemcpy()函数,使处理后的结果自GPU传输至CPU,此时该函数的最后一个参数应设置为“cudaMemcpyDeviceToHost”;最后,释放显存空间,并在主机端对重构的高分辨率图像进行显示。为了验证上述提出方法的可行性,本文基于Field II 软件对SA算法的并行实现过程进行了仿真验证。Field II是一款由丹麦技术大学Jensen教授团队开发的仿真工具,专门应用于医学超声成像等领域[5]。在进行验证实验之前,首先需要使用Field II软件搭建一个医用相控阵超声内镜的仿真系统,该系统主要参数的设置与本文设计的相控阵超声内镜系统一致。对于超声换能器探头而言,常用的脉冲激励方式有单脉冲激励和编码激励两种。其中,单脉冲激励方式是指使用持续时间较短的单个脉冲对换能器阵元进行激励,采用这种激励方式获取的超声图像纵向分辨率高,但是由于是单脉冲且持续时间较短,因此发射能量较小,传播距离受限;编码激励方式是指采用具有一定编码序列的多个脉冲对换能器阵元进行激励,采用这种方式虽然能够增加激励时间、提高发射能量,但是降低了成像分辨率,且电路设计较为复杂,回波需要按照特定方式进行脉冲压缩结合搭建的仿真系统进行仿真验证,具体步骤如下: 在成像空间中设置7个成像散射点,并将这些散射点等间隔排布在25-55mm的轴向距离范围内; 利用本文所设计的方法,对这7个散射点进行合成孔径成像; 将成像结果进行显示,观察成像散射点的位置,判断其是否与预先设置一致。实验结果如图7所示。图中原点位置为超声换能器阵列中心所在位置,所测猪皮组织由a,b两部分组成。其中,a部分尺寸约为5mm×2mm,b部分尺寸约为3mm×2mm。从成像结果中可以很明显地分辨出a、b两个部分,且猪皮组织的成像结果与实际尺寸形状基本一致。上述两个成像实验的结果均与实际情况相符,证明了相控阵超声内镜实时成像系统的可行性与高效性。从图中可以看出,7个散射点依次排列在25mm、30mm、35mm、40mm、45mm、50mm、55mm的轴向位置,以5mm间隔等间隔分布,实验结果与预先设置一致,验证了本文提出方法的可行性。

几乎没有好投中的

  • 索引序列
  • 雷达领域核心期刊有哪些
  • 雷达领域的核心期刊有哪些
  • 雷达领域期刊有哪些
  • 雷达领域的核心期刊有哪些呢
  • 雷达领域核心期刊
  • 返回顶部