首页 > 论文期刊知识库 > 现代技术陶瓷杂志官网订购服务

现代技术陶瓷杂志官网订购服务

发布时间:

现代技术陶瓷杂志官网订购服务

原始瓷是以氧化铝含量高和氧化铁含量低的瓷土制胚。在1200温度以上烧成。东汉后期才对制瓷原料进行了改进,采用了可塑性大的黏土、高岭土、温度也达到1310度以上。

陶瓷主要成份有易熔粘土、熟料、砂。粗陶是最原始最低级的陶瓷器,一般以一种易熔粘土制造。在某些情况下也可以在粘土中加入熟料或砂与之混合,以减少收缩。这些制品的烧成温度变动很大,要依据粘土的化学组成所含杂质的性质与多少而定。以之制造砖瓦,如气孔率过高,则坯体的抗冻性能不好,过低叉不易挂住砂浆,所以吸水率一般要保持5~15%之间。烧成后坯体的颜色,决定于粘土中着色氧化物的含量和烧成气氛,在氧化焰中烧成多呈黄色或红色,在还原焰中烧成则多呈青色或黑色。扩展资料:陶瓷的历史:瓷器的前身是原始青瓷,它是由陶器向瓷器过渡阶段的产物。中国最早的原始青瓷,发现于山西夏县东下冯龙山文化遗址中,距今约4200年。 器类有罐和钵。原始青瓷在中国分布较广,黄河领域、长江中下游及南方地区都有发现。中国真正的瓷器出现是在东汉时期(公元23-220年)。首先是在南方地区的浙江省开始出现的。浙江绍兴上虞县上浦小仙坛发现东汉晚期瓷窑址和青瓷等。瓷片质地细腻,釉面有光泽,胎釉结合紧密牢固。从显微照相可见,青瓷残片釉下已无残留石英。这种釉无论在外貌上,或是显微结构上,都已摆脱了原始青瓷的原始性。已符合真正的瓷器标准了。参考资料来源:百度百科-陶瓷

很差,这质量真不如基地砖,还卖那么贵,,老板黑心,铺不平, 买了非常后悔以后千万不要买这个品牌的产品,谈不上品牌

陶瓷材料一般分为传统陶瓷和现代技术陶瓷两大类。传统陶瓷是指用天然硅酸盐粉末(如黏土、高岭土等)为原料生产的产品。因为原料的成分混杂和产品的性能波动大,仅用于餐具、日用容器、工艺品以及普通建筑材料(如地砖、水泥等),而不适用于工业用途。现代技术陶瓷是根据所要求的产品性能,通过严格的成份和生产工艺控制而制造出来的高性能材料,主要用于高温和腐蚀介质环境,是现代材料科学发展最活跃的领域之一。下面对现代技术陶瓷3个主要领域:结构陶瓷、陶瓷基复合材料和功能陶瓷作一简单介绍。一、结构陶瓷同金属材料相比,陶瓷的最大优点是优异的高温机械性能、耐化学腐蚀、耐高温氧化、耐磨损、比重小(约为金属的1/3),因而在许多场合逐渐取代昂贵的超高合金钢或被应用到金属材料根本无法胜任的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷和玻璃陶瓷。 1、氧化物陶瓷主要包括氧化铝、氧化锆、莫来石和钛酸铝。氧化物陶瓷最突出优点是不存在氧化问题,原料价格低廉,生产工艺简单。氧化铝和氧化锆具有优异的室温机械性能,高硬度和耐化学腐蚀性,主{TodayHot}要缺点是在1000℃以上高温蠕变速率高,机械性能显著降低。氧化铝和氧化锆主要应用于陶瓷切削刀具、陶瓷磨料球、高温炉管、密封圈和玻璃熔化池内衬等。莫来石室温强度属中等水平,但它在1400℃仍能保持这一强度水平,并且高温蠕变速率极低,因此被认为是陶瓷发动机的主要候选材料之一。上述三种氧化物也可制成泡沫或纤维状用于高温保温材料。钛酸铝陶瓷体内存在广泛的微裂纹,因而具有极低的热膨胀系数和热传导率。它的主要缺点是强度低,无法单独作为受力元件,所以一般用它加工内衬用作保温、耐热冲击元件,并已在陶瓷发动机上得到应用。 2、非氧化物陶瓷主要包括碳化硅、氮化硅和赛龙(SIALON)。同氧化物陶瓷不同,非氧化物陶瓷原子间主要是以共价键结合在一起,因而具有较高的硬度、模量、蠕变抗力,并且能把这些性能的大部分保持到高温,这是氧化物陶瓷无法比拟的。但它们的烧结非常困难,必须在极高温度(1500~2500℃)并有烧结助剂存在的情况下才能获得较高密度的产品,有时必须借助热压烧结法才能达到希望的密度(>95%),所以非氧化物陶瓷的生产成本一般比氧化物陶瓷高。这些含硅的非氧化物陶瓷还具有极佳的高温耐蚀性和抗氧化性,因此一直是陶瓷发动机的最重要材料,目前已经取代了许多超高合金钢部件。现有最佳超高合金钢的使用温度低于1100℃,而发动机燃料燃烧的温度在1300℃以上,因而普遍采用高压水强制制冷。待非氧化物陶瓷代替超高合金钢后,燃烧温度可提高到1400℃以上,并且不需要水冷系统,这在能源利用和环保方面具有重要的战略意义。非氧化物陶瓷也广泛应用于陶瓷切削刀具。同氧化物陶瓷相比,其成本较高,但高温韧性、强度、硬度、蠕变抗力优异得多,并且刀具寿命长、允许切削速度高,因而在刀具市场占有日益重要地位。它的应用领域还包括轻质无润滑陶瓷轴承、密封件、窑具和磨{HotTag}球等。 3、玻璃陶瓷玻璃和陶瓷的主要区别在于结晶度,玻璃是非晶态而陶瓷是多晶材料。玻璃在远低于熔点以前存在明显的软化,而陶瓷的软化温度同熔点很接近,因而陶瓷的机械性能和使用温度要比玻璃高得多。玻璃的突出优点是可在玻璃软化温度和熔点之间进行各种成型,工艺简单而且成本低。玻璃陶瓷兼具玻璃的工艺性能和陶瓷的机械性能,它利用玻璃成型技术制造产品,然后高温结晶化处理获得陶瓷。工业玻璃陶瓷体系有镁-铝-硅酸盐、锂-镁-铝-硅酸盐和钙-镁-铝-硅酸盐系列,它们常被用来制造耐高温和热冲击产品,如炊具。此外它们作为建筑装饰材料正得到越来越广泛的应用,如地板、装饰玻璃。二、陶瓷基复合材料复合材料是为了达到某些性能指标将两种或两种以上不同材料混合在一起制成的多相材料,它具有其中任何一相所不具备的综合性能。陶瓷材料的最大缺点是韧性低,使用时会产生不可预测的突然性断裂,陶瓷基复合材料主要是为了改善陶瓷韧性。基于提高韧性的陶瓷基复合材料主要有两类:氧化锆相变增韧和陶瓷纤维强化复合材料。氧化锆相变增韧复合材料是把部分稳定的氧化锆粉末同其他陶瓷粉末(如氧化铝、氮化硅或莫来石)混合后制成的高韧性材料,其断裂韧性可以达到10Mpam1/2以上,而一般陶瓷的韧性仅有3Mpam1/2左右。这类材料在陶瓷切削刀具方面得到了非常广泛的应用。纤维强化被认为是提高陶瓷韧性最有效和最有前途的方法。纤维强度一般比基体高得多,所以它对基体具有强化作用;同时纤维具有显著阻碍裂纹扩展的能力,从而提高材料的韧性。目前韧性最高的陶瓷就是纤维强化的复合材料,例如碳化硅长纤维强化的碳化硅基复合材料韧性高达30Mpam1/2以上,比烧结碳化硅的韧性提高十倍。但因为这类材料价格昂贵,目前仅在军械和航空航天领域得到应用。另一引人注目的增强材料是陶瓷晶须。晶须是尺寸非常小但近乎完美的纤维状单晶体,其强度和模量接近材料的理论值,极适用于陶瓷的强化。目前这类材料在陶瓷切削刀具方面已经得到广泛应用,主要体系有碳化硅晶须-氧化铝-氧化锆、碳化硅晶须-氧化铝和碳化硅晶须-氮化硅。三、功能陶瓷功能陶瓷是具有光、电、热或磁特性的陶瓷,已经具有极高的产业化程度。下面根据性能对几类主要的功能陶瓷作一简介。 1、导电性能陶瓷材料具有非常广泛的导电区间,从绝缘体到半导体、超导体。大多数陶瓷具有优异的电绝缘性,因而被广泛用于电绝缘体。半导体分为电子型和离子型半导体。以晶体管集成电路为代表的是电子型半导体。离子型半导体仅对某些特殊的带电离子具有传导作用,最具有代表性的是稳定氧化锆和β-氧化铝。稳定氧化锆仅对氧离子具有传导作用,主要产品有氧传感器(主要用来测定发动机的燃烧效率或钢水中氧浓度)、氧泵(从空气中获得纯氧)和燃料电池。β-氧化铝仅对钠离子具有传导作用,主要用来制造钠-硫电池,其特点是高效率、对环境无危害和可以反复充电。陶瓷超导体是近10年才发展起来的,它的临界超导转化温度在所有类超导体中最高,已经达到液氮温度以上。典型的陶瓷超导体为钇-钡-铜-氧系列材料,已经在计算机、精密仪器领域得到广泛应用。 2、介电性能大多数陶瓷具有优异的介电性能,表现在其较高的介电常数和低介电损耗。介电陶瓷的主要应用之一是陶瓷电容器。现代电容器介电陶瓷主要是以钛酸钡为基体的材料。当钡或钛离子被其他金属原子置换后,会得到具有不同介电性能的电介质。钛酸钡基电介质的介电常数高达10000以上,而过去使用的云母小于10,所以用钛酸钡制成的电容器具有体积小、电储存能力高等特点。钛酸钡基电介质还具有优异的正电效应。当温度低于某一临界值时呈半导体导电状态,但当温度超过这一临界值时,电阻率突然增加到103~104倍成为绝缘体。利用这一效应的产品有电路限流元件和恒温电阻加热元件。许多陶瓷,如锆钛酸铅,具有显著压电效应。当在陶瓷上施加外力时,会产生一个相应的电信号,反之亦然,从而实现机械能和电能的相互转换。压电陶瓷用途极其广泛,产品有压力传感元件、超声波发生器等。 3、光学性能陶瓷在光学方面的应用主要包括光吸收陶瓷、透光陶瓷、陶瓷光信号发生器和光导纤维。利用陶瓷光吸收特性在日常生活中随处可见,如涂料、陶瓷釉和珐琅。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面应用非常广泛。陶瓷也可被制造用来透过不同波长的光线,其中最重要的就是红外线透射陶瓷,它仅允许红外光线透过,被用来制造红外窗口,在武器、航空航天领域和高技术设备上得到广泛应用。这类材料的典型代表有硫化锌陶瓷和莫来石等。陶瓷还是固体激光发生器的重要材料,典型代表有红宝石激光器和钇榴石激光器。光导纤维是现代通讯信号的主要传输媒介,它是用高纯二氧化硅制成的,具有信号损耗低、高保真性、容量大等特性,是金属信号传输线无法比拟的。 4、磁学性能金属和合金磁性材料具有电阻率低、损耗大的特性,尤其在高频下更是如此,已经无法满足现代科技发展的需要。相比之下,陶瓷磁性材料有电阻率高、损耗低、磁性范围广泛等特性。陶瓷磁性材料的代表为铁氧体,一种含铁的复合氧化物。通过对成份的严格控制,可以制造出软磁材料、硬磁材料和矩磁材料。软磁材料的磁导率高,饱和磁感应强度大,磁损耗低,主要用于电感线圈、小型变压器、录音磁头等部件。典型的软磁材料有镍-锌、锰-锌和锂-锌铁氧体。硬磁材料的特性是剩磁大、矫顽力大、不易退磁,主要应用为永久磁体,代表材料为铁酸钡。矩磁材料的剩余磁感应强度非常接近于饱和磁感应强度,它是因磁滞回线呈矩形而得名,主要应用于现代大型计算机逻辑元件和开关元件,代表材料为镁-锰铁氧体。

现代技术陶瓷杂志官网订购

可以建议参考论文信息 中国在职研究生信息网

现代技术陶瓷杂志官网订购网

陶瓷材料一般分为传统陶瓷和现代技术陶瓷两大类。传统陶瓷是指用天然硅酸盐粉末(如黏土、高岭土等)为原料生产的产品。因为原料的成分混杂和产品的性能波动大,仅用于餐具、日用容器、工艺品以及普通建筑材料(如地砖、水泥等),而不适用于工业用途。现代技术陶瓷是根据所要求的产品性能,通过严格的成份和生产工艺控制而制造出来的高性能材料,主要用于高温和腐蚀介质环境,是现代材料科学发展最活跃的领域之一。下面对现代技术陶瓷3个主要领域:结构陶瓷、陶瓷基复合材料和功能陶瓷作一简单介绍。一、结构陶瓷同金属材料相比,陶瓷的最大优点是优异的高温机械性能、耐化学腐蚀、耐高温氧化、耐磨损、比重小(约为金属的1/3),因而在许多场合逐渐取代昂贵的超高合金钢或被应用到金属材料根本无法胜任的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷和玻璃陶瓷。 1、氧化物陶瓷主要包括氧化铝、氧化锆、莫来石和钛酸铝。氧化物陶瓷最突出优点是不存在氧化问题,原料价格低廉,生产工艺简单。氧化铝和氧化锆具有优异的室温机械性能,高硬度和耐化学腐蚀性,主{TodayHot}要缺点是在1000℃以上高温蠕变速率高,机械性能显著降低。氧化铝和氧化锆主要应用于陶瓷切削刀具、陶瓷磨料球、高温炉管、密封圈和玻璃熔化池内衬等。莫来石室温强度属中等水平,但它在1400℃仍能保持这一强度水平,并且高温蠕变速率极低,因此被认为是陶瓷发动机的主要候选材料之一。上述三种氧化物也可制成泡沫或纤维状用于高温保温材料。钛酸铝陶瓷体内存在广泛的微裂纹,因而具有极低的热膨胀系数和热传导率。它的主要缺点是强度低,无法单独作为受力元件,所以一般用它加工内衬用作保温、耐热冲击元件,并已在陶瓷发动机上得到应用。 2、非氧化物陶瓷主要包括碳化硅、氮化硅和赛龙(SIALON)。同氧化物陶瓷不同,非氧化物陶瓷原子间主要是以共价键结合在一起,因而具有较高的硬度、模量、蠕变抗力,并且能把这些性能的大部分保持到高温,这是氧化物陶瓷无法比拟的。但它们的烧结非常困难,必须在极高温度(1500~2500℃)并有烧结助剂存在的情况下才能获得较高密度的产品,有时必须借助热压烧结法才能达到希望的密度(>95%),所以非氧化物陶瓷的生产成本一般比氧化物陶瓷高。这些含硅的非氧化物陶瓷还具有极佳的高温耐蚀性和抗氧化性,因此一直是陶瓷发动机的最重要材料,目前已经取代了许多超高合金钢部件。现有最佳超高合金钢的使用温度低于1100℃,而发动机燃料燃烧的温度在1300℃以上,因而普遍采用高压水强制制冷。待非氧化物陶瓷代替超高合金钢后,燃烧温度可提高到1400℃以上,并且不需要水冷系统,这在能源利用和环保方面具有重要的战略意义。非氧化物陶瓷也广泛应用于陶瓷切削刀具。同氧化物陶瓷相比,其成本较高,但高温韧性、强度、硬度、蠕变抗力优异得多,并且刀具寿命长、允许切削速度高,因而在刀具市场占有日益重要地位。它的应用领域还包括轻质无润滑陶瓷轴承、密封件、窑具和磨{HotTag}球等。 3、玻璃陶瓷玻璃和陶瓷的主要区别在于结晶度,玻璃是非晶态而陶瓷是多晶材料。玻璃在远低于熔点以前存在明显的软化,而陶瓷的软化温度同熔点很接近,因而陶瓷的机械性能和使用温度要比玻璃高得多。玻璃的突出优点是可在玻璃软化温度和熔点之间进行各种成型,工艺简单而且成本低。玻璃陶瓷兼具玻璃的工艺性能和陶瓷的机械性能,它利用玻璃成型技术制造产品,然后高温结晶化处理获得陶瓷。工业玻璃陶瓷体系有镁-铝-硅酸盐、锂-镁-铝-硅酸盐和钙-镁-铝-硅酸盐系列,它们常被用来制造耐高温和热冲击产品,如炊具。此外它们作为建筑装饰材料正得到越来越广泛的应用,如地板、装饰玻璃。二、陶瓷基复合材料复合材料是为了达到某些性能指标将两种或两种以上不同材料混合在一起制成的多相材料,它具有其中任何一相所不具备的综合性能。陶瓷材料的最大缺点是韧性低,使用时会产生不可预测的突然性断裂,陶瓷基复合材料主要是为了改善陶瓷韧性。基于提高韧性的陶瓷基复合材料主要有两类:氧化锆相变增韧和陶瓷纤维强化复合材料。氧化锆相变增韧复合材料是把部分稳定的氧化锆粉末同其他陶瓷粉末(如氧化铝、氮化硅或莫来石)混合后制成的高韧性材料,其断裂韧性可以达到10Mpam1/2以上,而一般陶瓷的韧性仅有3Mpam1/2左右。这类材料在陶瓷切削刀具方面得到了非常广泛的应用。纤维强化被认为是提高陶瓷韧性最有效和最有前途的方法。纤维强度一般比基体高得多,所以它对基体具有强化作用;同时纤维具有显著阻碍裂纹扩展的能力,从而提高材料的韧性。目前韧性最高的陶瓷就是纤维强化的复合材料,例如碳化硅长纤维强化的碳化硅基复合材料韧性高达30Mpam1/2以上,比烧结碳化硅的韧性提高十倍。但因为这类材料价格昂贵,目前仅在军械和航空航天领域得到应用。另一引人注目的增强材料是陶瓷晶须。晶须是尺寸非常小但近乎完美的纤维状单晶体,其强度和模量接近材料的理论值,极适用于陶瓷的强化。目前这类材料在陶瓷切削刀具方面已经得到广泛应用,主要体系有碳化硅晶须-氧化铝-氧化锆、碳化硅晶须-氧化铝和碳化硅晶须-氮化硅。三、功能陶瓷功能陶瓷是具有光、电、热或磁特性的陶瓷,已经具有极高的产业化程度。下面根据性能对几类主要的功能陶瓷作一简介。 1、导电性能陶瓷材料具有非常广泛的导电区间,从绝缘体到半导体、超导体。大多数陶瓷具有优异的电绝缘性,因而被广泛用于电绝缘体。半导体分为电子型和离子型半导体。以晶体管集成电路为代表的是电子型半导体。离子型半导体仅对某些特殊的带电离子具有传导作用,最具有代表性的是稳定氧化锆和β-氧化铝。稳定氧化锆仅对氧离子具有传导作用,主要产品有氧传感器(主要用来测定发动机的燃烧效率或钢水中氧浓度)、氧泵(从空气中获得纯氧)和燃料电池。β-氧化铝仅对钠离子具有传导作用,主要用来制造钠-硫电池,其特点是高效率、对环境无危害和可以反复充电。陶瓷超导体是近10年才发展起来的,它的临界超导转化温度在所有类超导体中最高,已经达到液氮温度以上。典型的陶瓷超导体为钇-钡-铜-氧系列材料,已经在计算机、精密仪器领域得到广泛应用。 2、介电性能大多数陶瓷具有优异的介电性能,表现在其较高的介电常数和低介电损耗。介电陶瓷的主要应用之一是陶瓷电容器。现代电容器介电陶瓷主要是以钛酸钡为基体的材料。当钡或钛离子被其他金属原子置换后,会得到具有不同介电性能的电介质。钛酸钡基电介质的介电常数高达10000以上,而过去使用的云母小于10,所以用钛酸钡制成的电容器具有体积小、电储存能力高等特点。钛酸钡基电介质还具有优异的正电效应。当温度低于某一临界值时呈半导体导电状态,但当温度超过这一临界值时,电阻率突然增加到103~104倍成为绝缘体。利用这一效应的产品有电路限流元件和恒温电阻加热元件。许多陶瓷,如锆钛酸铅,具有显著压电效应。当在陶瓷上施加外力时,会产生一个相应的电信号,反之亦然,从而实现机械能和电能的相互转换。压电陶瓷用途极其广泛,产品有压力传感元件、超声波发生器等。 3、光学性能陶瓷在光学方面的应用主要包括光吸收陶瓷、透光陶瓷、陶瓷光信号发生器和光导纤维。利用陶瓷光吸收特性在日常生活中随处可见,如涂料、陶瓷釉和珐琅。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面应用非常广泛。陶瓷也可被制造用来透过不同波长的光线,其中最重要的就是红外线透射陶瓷,它仅允许红外光线透过,被用来制造红外窗口,在武器、航空航天领域和高技术设备上得到广泛应用。这类材料的典型代表有硫化锌陶瓷和莫来石等。陶瓷还是固体激光发生器的重要材料,典型代表有红宝石激光器和钇榴石激光器。光导纤维是现代通讯信号的主要传输媒介,它是用高纯二氧化硅制成的,具有信号损耗低、高保真性、容量大等特性,是金属信号传输线无法比拟的。 4、磁学性能金属和合金磁性材料具有电阻率低、损耗大的特性,尤其在高频下更是如此,已经无法满足现代科技发展的需要。相比之下,陶瓷磁性材料有电阻率高、损耗低、磁性范围广泛等特性。陶瓷磁性材料的代表为铁氧体,一种含铁的复合氧化物。通过对成份的严格控制,可以制造出软磁材料、硬磁材料和矩磁材料。软磁材料的磁导率高,饱和磁感应强度大,磁损耗低,主要用于电感线圈、小型变压器、录音磁头等部件。典型的软磁材料有镍-锌、锰-锌和锂-锌铁氧体。硬磁材料的特性是剩磁大、矫顽力大、不易退磁,主要应用为永久磁体,代表材料为铁酸钡。矩磁材料的剩余磁感应强度非常接近于饱和磁感应强度,它是因磁滞回线呈矩形而得名,主要应用于现代大型计算机逻辑元件和开关元件,代表材料为镁-锰铁氧体。

原始瓷是以氧化铝含量高和氧化铁含量低的瓷土制胚。在1200温度以上烧成。东汉后期才对制瓷原料进行了改进,采用了可塑性大的黏土、高岭土、温度也达到1310度以上。

现代技术陶瓷杂志订购网

可以建议参考论文信息 中国在职研究生信息网

现代技术陶瓷杂志订购

德田陶瓷是正规品牌,曾获得的荣誉有陶瓷一线品牌,工程建设推荐品牌等。德田陶瓷是广东全圣陶瓷有限公司旗下品牌,在广东拥有三个大型现代化环保型生产基地,分别位于广东恩平市,广东肇庆市,广东佛山市,拥有员工数千人,其中各类产品研发设计人员占10%以上。其中抛光砖即是通体砖坯体的外表经过打磨/抛光处理而成的一种亮光的砖,归于通体砖的一种。相对通体砖而言,抛光砖的外表要光亮得多。抛光砖坚固耐磨,适合在除洗手间,厨房以外的大都室内空间中运用。在运用渗花技能的基础上,抛光砖能够做出各种仿石,仿木作用。抛光砖易脏,防滑功能不极好。扩展资料:瓷砖使用注意事项:用户需要保持砖面的清洁,如果灰尘太多会有滑的感觉。有色液体滴落砖面要及时擦洗。以防止污染砖面。用户在移动家具时要注意,特别是带金属角或者橡胶皮垫的,小心划伤砖面。墙面瓷砖出现开裂或者不平整等原因需重新更换修补,将要更换的瓷砖从中小心敲破,然后往该片砖往周围进行撬,将需要更换的砖取下后,重新修补好即可。如果砖贴上的时间不长,墙上的水泥未完全干固,可以将水泥也小心的撬下,用水泥浆进行粘贴即可,如果使用的时间较长,水泥完全干固,可以使用专门的瓷砖粘胶粘贴。注意细节 :瓷砖加工要小心特别时墙砖在碰阳角时,磨边要小心,不要破坏瓷砖的釉层,链接时注意缝隙,不能太小。参考资料来源:百度百科-瓷砖参考资料来源:百度百科-现代技术陶瓷

研究的角度决定你的核心期刊要意,可以多看看同类期刊,比较一下

现在学电脑技术很热门,就业前景好,工作待遇高,工作环境好。

[1]胡安民 李明 毛大立 梁开明锂铝硅微晶玻璃中纤维状β-锂辉石晶相的形成和表征[J]无机材料学报,2006,21⑴:35~[2]周锋 梁开明SiO2-TiO2光催化薄膜的制备及其晶化过程的研究[J]功能材料与器件学报,2006,12⑸:429~[3]李要辉 梁开明硼及其硼化物在材料研究中应用进展[J]辽宁建材,2006,⑸:35~[4]周锋 梁开明 王国梁电场热处理条件下TiO2薄膜的晶化行为研究[J]物理学报,2005,54⑹:2863~[5]窦鹏 李友国 梁开明 汪长安CVC热轧机支承辊接触应力有限元分析[J]清华大学学报:自然科学版,2005,45⑿:1668~[6]窦鹏 李友国 梁开明中碳贝氏体支承辊钢低应力牵引滚动接触下的疲劳短裂纹行为[J]金属学报,2005,41⑵:140~[7]胡安民 李明 毛大立 梁开明ZnO取代部分Al2O3的Li2O-Al2O3-SiO2系微晶玻璃的相变和性能[J]硅酸盐学报,2005,33⑻:990~[8]窦鹏 李友国 梁开明 汪长安中碳贝氏体钢支承辊的垂直裂纹分析[J]金属热处理,2005,30⑶:13~[9]胡安民 梁开明 周锋 彭飞 王国梁形核剂对Li2O-Al203-SiO2系微晶玻璃晶化过程的影响[J]无机材料学报,2005,20⑵:279~[10]王国梁 梁开明 刘伟 周锋掺金玻璃在电场热处理中的形核过程[J]物理学报,2004,53⑾:3966~[11]胡安民 梁开明 周锋 王国梁 彭飞添加CeO2的Li2O-Al2O3-SiO2系微晶玻璃的晶[J]硅酸盐学报,2004,32⑹:772~[12]胡安民 梁开明 彭飞 周锋 王国梁 邵华形核条件对Li2O-Al2O3-SiO2玻璃晶化和性能的影响[J]材料热处理学报,2004,25⑷:19~[13]刘培生 梁开明 顾守仁铝化物涂层高温氧化寿命的预测[J]清华大学学报:自然科学版,2003,43⑹:766~[14]张献辉 郭玉峰 梁开明 王双喜 顾守仁玻璃粉添加剂在SHS-重力法制备陶瓷内衬复合钢管中的作用[J]粉末冶金技术,2003,21⑵:99~[15]胡安民 梁开明 顾守仁F^-离子对Li2O-Al2O3-SiO2系微晶玻璃晶化的影响[J]无机材料学报,2003,18⑹:1163~[16]俞冰 梁开明 等Ca—P—Si系生物微晶玻璃的析晶动力学研究[J]玻璃与搪瓷,2002,30⑴:16~[17]俞冰 梁开明 等CaO—P2O5—MgO—SiO2—F系可切削生物微晶玻璃的制备[J]硅酸盐学报,2002,30⑴:77~[18]刘增生 梁开明 等铝化物涂层的氧化寿命公式验证[J]稀有金属,2002,26⑹:524~[19]俞冰 梁开明 等Ca—P—Si—F^—生物活性微晶玻璃的显微组织及性能分析[J]硅酸盐通报,2002,21⑹:68~[20]王双喜 梁开明 等CrO3对Fe2O3+Al铝热反应系统反应过程的影响[J]无机材料学报,2002,17⑸:1068~[21]俞冰 梁开明 等TiO2对CaO—MgO—P2O5—SiO2系玻璃晶化影响的研究[J]无机材料学报,2002,17⑶:470~[22]李海滨 梁开明 等溶胶—凝胶法制备的ZrO2涂层对低碳钢腐蚀的保护[J]腐蚀科学与防护技术,2002,14⑵:92~[23]史志铭 梁开明 等CeO2对堇青石陶瓷的相组成和性能的影响[J]清华大学学报:自然科学版,2001,41⑽:1~[24]李海滨 梁开明 等溶胶—凝胶法制备的二氧化锆粉中t—ZrO2的稳定性[J]清华大学学报:自然科学版,2001,41⑽:13~[25]史志铭 梁开明 等液相烧结中液相成份对堇青石相变和陶瓷显微组织的影响[J]清华大学学报:自然科学版,2001,41⑽:27~[26]李海滨 梁开明 等溶胶—凝胶法制备定向排列的纳米结构二氧化锆薄膜[J]清华大学学报:自然科学版,2001,41⑷:48~[27]俞冰 梁开明 等铜合金表面溶胶—凝胶涂层抗腐蚀性能的研究[J]材料保护,2001,34⑿:12~[28]刘培生 梁开明多孔金属抗拉强度公式中的指数项取值[J]力学学报,2001,33⑹:853~[29]王双喜 梁开明 等SHS铝热—离心技术的研究进展[J]粉末冶金技术,2001,19⑸:303~[30]俞冰 梁开明 等金属表面生物陶瓷涂层的研究进展[J]材料导报,2001,15⑻:32~[31]史志铭 梁开明元素掺杂对堇青石晶体结构及热膨胀系数的作用[J]现代技术陶瓷,2000,21⑵:18~[32]陈禾 梁开明CaO—Al2O3—SiO2系烧结微晶玻璃的结晶过程[J]清华大学学报:自然科学版,1999,39⑽:15~[33]陈禾 梁开明热处理对CaO—Al2O3—SiO2系烧结微晶玻璃吸水率的影响[J]清华大学学报:自然科学版,1999,39⑽:18~[34]黄文来 梁开明胶凝速度及煅烧对硅干凝胶表面分形性的影响[J]无机材料学报,1999,14⑵:302~[35]梁开明 段仁官F^—离子和Ti^4+离子在CaO—Al2O3—SiO2系玻璃晶化时的作用[J]清华大学学报:自然科学版,1998,38⑿:69~[36]梁开明 程慷果玻璃非等温析晶动力学的研究[J]清华大学学报:自然科学版,1998,38⑹:96~[37]段仁官 梁开明CaO/Al2O3/SiO2系玻璃非均匀形核的研究[J]清华大学学报:自然科学版,1998,38⑹:86~[38]段仁官 梁开明玻璃分相形貌和玻璃陶瓷力学性能之间的关系[J]西南交通大学学报,1998,33⑴:61~[39]王大宁 梁开明含碳所氧化郜铁瓷[J]硅酸盐学报,1998,26⑵:230~[40]梁开明 段仁官氧化铝晶粒表面在CaO—Al2O3—SiO2系玻璃非均匀晶化形核时的作?…[J]机械工程材料,1998,22⑴:6~[41]段仁官 梁开明一种组成的CaF2—Al2O3—SiO2系玻璃结构研究[J]无机材料学报,1998,13⑷:593~[42]梁开明 段仁官TiO2对CaO—Al2O3—SiO2系玻璃晶化机理的影响[J]无机材料学报,1998,13⑶:308~[43]梁开明 程慷果云母微晶玻璃/Y—TZP复相材料的制备和力学性能[J]无机材料学报,1998,13⑶:315~[44]段仁官 梁开明快速烧结新技术[J]中国陶瓷,1997,33⑹:1~[45]段仁官 梁开明TiO2对粉煤灰玻璃晶化影响的研究[J]玻璃与搪瓷,1997,25⑶:1~[46]段仁官 梁开明CaO—Al2O3—SiO2系统玻璃晶化时首析晶相及TiO2的作用机理预测和…[J]硅酸盐学报,1997,25⑶:305~[47]段仁官 梁开明热处理制度对CaO—Al2O3—SiO2系玻璃晶化的影响研究[J]机械工程材料,1997,21⑷:16~[48]段仁官 梁开明玻璃稳定性判据研究[J]无机材料学报,1997,12⑶:257~[49]段仁官 梁开明Na^+和Ti^4+对CaO—Al2O3—SiO2系玻璃结构和晶化的影响[J]陶瓷研究,1997,12⑵:3~[50]孙传水 梁开明CaZrO3材料合成方法研究[J]新技术新工艺,1997,⑶:34~[51]孙传水 梁开明ZrO2/CaO比不同对ZrOCaO材料组织结构的影响[J]现代技术陶瓷,1996,17⑷:18~

  • 索引序列
  • 现代技术陶瓷杂志官网订购服务
  • 现代技术陶瓷杂志官网订购
  • 现代技术陶瓷杂志官网订购网
  • 现代技术陶瓷杂志订购网
  • 现代技术陶瓷杂志订购
  • 返回顶部