首页 > 论文期刊知识库 > 船舶动力装置论文

船舶动力装置论文

发布时间:

船舶动力装置论文

航空母舰、战列舰、巡洋舰部分采用蒸汽轮机动力装置,部分采用核动力装置、燃气轮机动力装置或柴油机-燃气轮机、燃气轮机-电动机联合动力装置。登陆作战舰艇、布雷和扫雷舰艇、勤务舰船大多采用柴油机动力装置。小型艇一般采用柴油机、燃气轮机或柴油机-燃气轮机联合动力装置。潜艇采用柴油机-电动机联合动力装置或核动力装置。动力装置总功率从数百千瓦至20多万千瓦。除了少数快艇与高性能船采用喷水推进器、空气螺旋桨推进器外,其它舰艇都采用水螺旋桨推进器。现在都在发展核反应装置将来就是核装置核动力了

啊呀?咱们同一专业嘛,俺当年滴专业就叫 动装专业,哈哈。这个我老师比较在行,我已经忘光了。周瑞平同志应该知道很多。

江科大的吧!哈哈哈哈哈

船舶动力装置论文1500字

船舶动力装置是为保证船舶正常营运而设置的动力设备,是为船舶提供各种能量和使用这些能量,以保证船舶正常航行,人员正常生活,完成各种作业。船舶动力装置是各种能量的产生、传递、消耗的全部机械、设备,它是船舶的一个重要组成部分。 船舶动力装置包括三个主要部分:主动力装置、辅助动力装置、其他辅机和设备。

首先:声明,不是我总结的中国的航海有着悠久的历史,对历史经济的发展也有着深远的意义。在陆上交通工具不发达的时代,船舶运输担当着主要的交通工具。从"刳木为舟,剡木为楫"到郑和下西洋,再到现代的先进的远洋技术,中国航海有着突飞猛进的发展。中国同时通过海路走向世界, 同世界各国进行经济文化交流, 发展友好关系, 共同促进人类文明的进步。 人类使用船舶作为运输工具的历史,几乎和人类文明史一样悠久。从远古的独木舟发展到现代的运输船舶,大体经历了四个时代:舟筏时代、帆船时代、蒸汽机船时代和柴油机船时代。 舟筏时代 人类以舟筏作为运输、狩猎和捕鱼的工具,至少起源于石器时代。中国1956年在浙江出土的古代木桨,据鉴定是四千年前新石器时代的遗物。说明舟筏的历史,可以追溯到史前年代。 独木舟 原始人类将巨大树干用火烧或用石斧加工成中空的独木舟,是最古老的水水上运输工具。它的踪迹遍于全世界,至今在南美洲和南太平洋群岛的居民,仍使用独木舟作为生产和交通工具。 筏 远古人类就知道将树干、竹竿、芦苇等捆扎成筏,或用兽皮做成皮筏,在水上漂行。筏较独木舟吃水浅,航行平稳,而且取材方便,制造简易。在中国东南山区溪流中,使用竹筏作为交通工具迄今仍然相当普遍。 木板船 进入青铜器时代以后,人类对木材的加工能力提高了,于是将原木加工成木板来造船。木板船可以造得比独木舟大,性能比筏好。木板平接或搭接成为船壳,内部用隔壁和肋骨以增加强度,形成若干个舱室。早期的木板船,板和板之间、船板和框架构件之间是用纤维绳或皮条绑缚起来的,后来用铜钉或铁钉连接。板和板之间则用麻布、油灰捻缝,使其水密。 桨、篙和橹 舟筏时代的船舶靠人力来推进和操纵,所用的工具为桨、篙和橹。桨不受水域深度和广度的限制,在地中海区域应用极为广泛。古罗马的划桨船,用奴隶划桨,一船桨数多至数十根甚至百余根。篙可以直接触及水底和河岸,使用轻便,主要用于浅水航道。橹是比桨先进的划船工具,效率高而不占水面,兼具推进和操纵航向的功能,在中国内河木船上广泛使用。 帆船时代 据记载,远在公元前四千年,古埃及就有了帆船。中国使用帆船的历史也可以追溯到公元以前。从15世纪到19世纪中叶,是帆船发展的鼎盛时期。15世纪初中国航海家郑和远航东非,15世纪末C哥伦布发现新大陆,他们的船队都是由帆船组成的。在帆船发展史中,地中海沿岸地区、北欧西欧地区和中国都曾作出重大贡献。19世纪中叶美国的飞剪式快速帆船,则是帆船发展史上的最后一个高潮。不同地区的帆船,在结构、形式和帆具等方面各有特色。 地中海的古帆船 埃及出土的一件公元前四千年的陶器上绘制有最古的帆船的图象。船的前端突出向上弯曲,船的前部有一个小方帆,这种船只能顺风行驶,无法利用旁风。公元前2000~前1600年,腓尼基人、克里特岛人和希腊人都先后在地中海上行驶帆船。克里特岛人的帆船两端翘起,单桅悬一方帆,这种船型在地中海应用了几千年之久。古希腊和古罗马的帆船备有桨,只在进出港口和调度时才使用。古希腊帆船干舷高,耐波性好,单桅上挂方帆,船尾两侧有巨大的尾桨,起舵的作用。船首伸出的桅桁上增一小帆便于操纵。单桅横桁上边增设三角顶帆。古罗马的帆船又有改进,增设前后三角帆,船的操纵性能得到改善。 北欧和西欧帆船 公元9~11世纪北欧的维京人,是当时世界上优秀的航海民族,航迹远达格陵兰和北美。他们用当地出产的橡木造出了适航性能良好的帆船。这种帆船长约30米,宽约6米,首尾形状接近对称,有龙骨和首尾柱。外壳板搭接并用铁钉相连。船上树单桅,装有支桅索,挂一面方帆,能在横风下行驶。船形瘦削,耐波性优于地中海帆船。 1492年,C哥伦布率领西班牙船队到达西印度群岛。他所乘坐的“圣玛丽亚”号,是一艘长28米、排水量约200吨的三桅帆船。1497年,V伽马率领葡萄牙船队绕过好望角发现通往印度的航路。1519~1522年,F麦哲伦率领的西班牙船队完成了环球航行。这一系列地理上的发现,大大刺激了欧洲航海和造船事业的发展。16世纪以后,欧洲帆船的排水量逐渐增大到500~600吨,帆具日益复杂,三桅船渐趋普遍,帆面不断增大。大桅上增装了顶桅和顶帆,主帆下装了底帆,桅的支索上张了三角帆,船上整个空间都张满了帆,航速得到提高。1800年前后,英国继葡萄牙、西班牙之后成为最大的海上强国。英国及其殖民地拥有海上帆船达5000艘。 飞剪式帆船 这是起源于美国的一种高速帆船。前期的飞剪式帆船,可以1833年建造的“安·玛金”号为代表,排水量为493吨。飞剪式帆船船型瘦长,前端尖锐突出,航速快而吨位不大。19世纪40年代,美国人用这种帆船到中国从事茶叶和鸦片贸易。以后美国西部发现金矿而引起的淘金热,使飞剪式帆船获得迅速发展。1853年建造的“大共和国”号,长93米,宽2米,深1米,排水量3400吨,主桅高61米,全船帆面积3760平方米,航速每小时12~14海里,横越大西洋只需13天,标志着帆船的发展达到顶峰。19世纪70年代以后,作为当时海上运输主要工具的帆船,被新兴的蒸汽机船迅速取代。 中国帆船 中国帆船也有二千多年的历史。据《史记·秦始皇本纪》记载,秦王朝曾派徐福携带童男童女及工匠人等数千人,乘船出海。三国时代东吴太守万震所著《南洲异物志》中,有关于访问今日的柬埔寨、越南等地所乘大船的记述。唐代与日本文化交往频繁。中国当时的帆船已能驶侧向逆风,有较好的耐波性。唐贞观年间,从今温州至日本,仅需6天;以后能以3天时间从中国镇海驶抵日本。宋代造船和航海事业均有显著进步。当时所造海船能载500~600人,并已使用指南针罗盘,航程远及波斯湾和东非沿海地区。1974年在福建省泉州湾出土一艘宋代海船残骸,船体瘦削,具有良好的速航性能和耐波性,船内有12道水密隔壁,船侧外壳板由三层杉木板组成,结构坚固,估计船全长约35米,载重量200吨以上。明朝初年,郑和曾率领庞大的船队于公元1405~1433年间七次远航,遍历东南亚、印度洋各地,远达非洲东海岸。据记载,郑和所乘“宝船”长44丈,宽18丈,有12帆,是当时世界上首屈一指的优秀帆船。 中国帆船的构造和欧洲帆船不同。欧洲帆船两端尖而上翘,中国帆船则两端用木板横向封闭而形成平底的长方形盒子。舵位于尾部中心线上,尾部造成楼形高台,以防止上浪。船内有多道水密隔壁,结构坚固。中国帆船的帆是横向用竹竿加强的“硬篷”。这种平衡纵帆,操作灵便,能承受各个方向的风力。15世纪时,中国帆船无论在尺度和性能上都处于领先地位。16世纪以后,欧洲帆船才逐渐超过中国帆船。 蒸汽机船时代 18世纪蒸汽机发明后,许多人都试图将蒸汽机用于船上。1807年,美国人R富尔顿首次在“克莱蒙脱”号船上用蒸汽机驱动装在两舷的明轮,在哈德逊河上航行成功。从此机械力开始代替自然力,船舶的发展进入新的阶段。 早期的蒸汽机船 19世纪上半叶是由帆船向蒸汽机船过渡的时期。早期的蒸汽机船装有全套帆具,蒸汽机只是作为辅助动力。1819年美国人M罗杰斯建造的“萨凡纳”号蒸汽机帆船,用了27天时间横渡大西洋,在整个航程中只有60小时是使用蒸汽机推进,其余时间仍用风力。在早期,蒸汽机安装在甲板上,驱动装在两舷的巨大明轮。1839年,第一艘装有螺旋桨推进器的“阿基米德”号船建成,船长38米,主机功率80马力。早期蒸汽机是安装在木帆船上的。1850年以后,逐渐用铁作为造船材料。1880年以后,钢很快代替铁作为造船材料。1876年英国建造的新船只有8%用钢材建造,而到1890年,则只有8%是铁船了。 “大东方”号蒸汽机船 1854~1858年英国人IK布鲁内尔建造的“大东方”号铁船被认为是造船史上的奇迹。布鲁内尔第一个将关于梁的力学理论应用于造船,在船体建造上首创了纵骨架结构和格栅式双层底结构。双层底向两舷延伸直到载重水线以上,形成了双层船壳。上甲板也用同样结构以增加船体强度。“大东方”号长207米(680英尺),排水量27000吨,比当时的大型船大6倍。船内部用纵横舱壁分隔成22个舱室。船上安装两台蒸汽机,一台驱动直径56英尺的明轮,另一台驱动直径24英尺的螺旋桨,蒸汽机总功率8300马力,最高航速每小时16海里。船上有6根桅,帆总面积8747平方米(85000平方英尺)。它能载客4000人,装货6000吨。直到半个世纪以后才出现比它更大的船。“大东方”号尽管经营失败,但在造船理论和技术方面,却为现代钢船开辟了道路。 蒸汽机船的完善 早期蒸汽机船驱动明轮用的蒸汽机是单缸摇臂式,汽压也很低。19世纪80年代出现了三涨式蒸汽机,汽压提高到5千克力/厘米2。此时明轮已为螺旋桨所代替,三涨式蒸汽机配合螺旋桨成为典型的动力装置。19世纪末,蒸汽机已发展到四涨式六汽缸,蒸汽压力提高到 6千克力/厘米2,功率达到1万马力。高压水管锅炉也逐渐取代了苏格兰式火管锅炉。20世纪初,货船一般是用三涨式蒸汽机作主机,功率约2000马力,航速约每小时10海里,载重量增大到6000吨。航行于大西洋上的大型远洋客船,以往复式蒸汽机为动力,单机功率达到2万马力。 汽轮机船、柴油机船的问世 1896年,英国人C帕森斯将他发明的反作用式汽轮机成功地应用于船上;同年,瑞典人C迪拉瓦尔发明了冲击式汽轮机。进入20世纪以后,船用汽轮机不断改进,因为重量轻,功率大,旋转均匀和无往复运动部件等,普遍应用于大型高速船。至今,某些大功率船仍用汽轮机作为推进动力。1892年,德国人R狄塞尔发明压燃式内燃机,即柴油机,20世纪初开始应用于船上。柴油机热效率高、油耗低,因而得到广泛应用。40年代末,柴油机船的吨位即已超过蒸汽机船。 油船和散货船的出现 早期的杂货船承揽一切货种的运输,包括散装的煤炭、谷物等和桶装的油类。1886年开始出现具有现代油船特征的船,也就是将货油直接装在分隔的油密舱室内并用泵和管系进行装卸。进入20世纪后,对石油的需求日增,油船逐渐形成一支专用船队。1944年最大的油船载重量为 23000吨。散货船略早于油船出现,但在20世纪上半叶由于港口装卸效率不高,发展缓慢,最大的载重量只有1万吨左右。第二次世界大战后,各工业国经济恢复,原料需求剧增,油船和散货船都向大型化发展。 大型远洋客船的兴起 19世纪70年代以前,运输船舶都是客货混装的。1870年,英国人S丘纳德和T伊士梅创办丘纳德汽船公司和白星汽船公司,在英国和北美之间航线上开辟旅行条件舒适的客船航班,豪华客船“海洋”号航行成功。此后各国相继建造大型豪华客船,航行于大西洋航线和东方航线上。80年代,已有载客千人以上,载重万吨以上,航速每小时超过20海里的豪华客船。20世纪30年代,大型远洋客船的建造达到高潮,如著名的“玛丽皇后”号、“伊丽莎白皇后”号和“诺曼第”号都是在这个时期建造的。它们的载重量都在 8万吨以上,主机为汽轮机,功率16万马力,航速每小时超过30海里。第二次世界大战以后,这一势头又恢复了,到60年代,因远程喷气客机的兴起才停止下来。大型远洋客船的建造,对造船科学技术的发展起了重要的推动作用,同时也使某些保障航行安全的法规逐步建立和完善。例如1912年“泰坦尼克”号海难事件导致了后来国际海上人命安全公约的签订。 柴油机船时代 柴油机船问世后,发展很快,逐渐取代了蒸汽机船。第二次世界大战结束后,工业化国家经济的迅速恢复和发展,国际贸易的空前兴旺,中东等地石油的大量开发,促使运输船舶迅速发展。1982年同1948年相比,船舶艘数增长了6倍,总吨位增长了3倍(见世界商船队)。船舶普遍采用柴油机推进。第二次世界大战期间,为了适应战时运输的需要,美国建造的2610艘自由轮(万吨级使用燃油锅炉和蒸汽机的杂货船)是最后建造的一批往复式蒸汽机远洋运输船舶。为了提高船舶运输的经济效益,船舶出现了大型化、专业化、高速化、自动化和内燃机化的多种趋势。 船舶大型化 首先是油船吨位的增长和油船的大型化。1930年的世界商船队中,油船吨位只占总吨位1/10,1980年上升为1/2。1983年初,各种油船的载重量达到3亿吨。油船吨位的剧增主要在于油船大型化。50年代,3~4万吨的油船已被认为是 “超级油船”。60年代中期,就出现了20万吨以上的超大油船和30万吨以上的特大油船。70年代又出现了50万吨以上的大油船。石油危机发生和苏伊士运河恢复通航后,这种趋势已经停止,许多大型油船正面临拆毁的命运。在油船大型化的同时,也出现了装运煤炭、矿砂、谷物等的干散货船的大型化。60年代末,大型散货船的载重量超过10万吨,最大的已达17万吨。从50年代后期起,建造了能兼装原油和干散货的兼用船,如油散船和油散矿船等。 船舶专业化 第二次世界大战以后,各种专用船发展很快。杂货船用途广泛,适应性强,在艘数上至今仍占首位。典型的杂货船都以低速柴油机为动力,载重量不超过2万吨,航速每小时15海里左右。中国设计的“风”字号和“阳”字号货船都是典型的杂货船。为了提高杂货船运输多种货物的能力,近年制造出多用途船,除载运普通件杂货外,还能载运集装箱、重货、冷藏货和散货等。 水路集装箱运输于50年代中期兴起,1957年出现第一艘集装箱船。这是件杂货运输形式的重大变革。这种运输形式在货物包装、装卸工艺、码头管理和水陆联运等方面都有所突破。采用集装箱运输,可以大大缩短船舶停港时间,节约人力,保证货运质量和实现“门到门”运输。20多年来集装箱船发展很快。1982年全世界已有全集装箱船718艘,1294万总吨,分别占世界商船总数的1%和总吨数的3%。这种船船型瘦削,航速高,货舱内有导轨,甲板上有缚固设备,一般不设装卸设备,而是依靠港口专用设备进行装卸。 第二次世界大战后得到发展的重要专用船还有:装运液化天然气和液化石油气的液化气船;船上设有跳板,能使牵引车、叉车载货自驶上下的滚装船(又称开上开下船);以驳船作为运输单元,不需要停靠码头进行装卸而能实现江海直达运输的载驳船等。 远洋客船自从被喷气客机取代后,客船的性质已发生变化。60年代以来,旅游事业兴起,出现了一批定期、定航线,甚至环球航行的旅游船,为旅游者提供旅游、疗养、文化娱乐、社会活动以至海洋天文教育等综合性的服务。与此同时,在重要的短程航线上,还出现了一种吨位较小、除载客外还能携带旅客自备汽车的汽车客船。 船舶高速化 自50年代起,航运界为了加快船舶周转,一度掀起船舶高速化的热潮。普通杂货船航速提高到每小时18海里,集装箱船航速在每小时20海里以上,美国建造的“SL-7”型高速集装箱船,以两台6万马力汽轮机为主机,最高航速达每小时33海里。但从石油危机以来,燃料费在运输成本中的比重直线上升。迫使营运中的高速船纷纷减速行驶,新造船舶的航速也出现下降趋势。但是非排水型的高速客船,如水翼船和气垫船已应用于短途客运航线上,并日益发展。 船舶自动化 60年代初期以来,各国航运企业为了减少船员人数、改善船员劳动条件和提高船舶营运的经济效益,逐步实现了轮机、导航和舣装三个方面的自动化。如60年代中期造出机舱定期无人值班的船舶,已得到各国船级社的承认。 船舶内燃机化 船舶内燃机化是指船舶普遍采用柴油机为主机。柴油机同蒸汽机比较,具有热效率高、油耗低、占地小等优点。自从1911年造出第一艘柴油机海船以来,采用柴油机为主机的货船和客船日益增多。但到第二次世界大战结束时止,世界商船队中蒸汽机船仍占多数。战后,低速大功率柴油机由于增压技术的进步,单机功率不断提高,最大已达5万马力。过去必须安装汽轮机的大型高速船也能应用柴油机。另一方面柴油机对燃用劣质油的适应性也不断改善,这样在经济上便具有优越性。对于机舱空间受限制的滚装船、集装箱船、汽车渡船等,则可以选用体积小、重量轻的中速柴油机,通过减速箱来驱动螺旋桨。油耗低、能燃用劣质油的不同功率的柴油机现在几乎占领了船用发动机的全部市场。因此,第二次世界大战后的运输船舶发展阶段被称为柴油机船时代。

顾名思义,船舶动力装置就是为传播提供动力的装置。包括主机,中间轴系,尾轴,螺旋桨。以及为这些设备提供支持的各种辅助装置和各类泵浦。

电厂热能动力装置论文范文

热能与动力工程是以工程热物理学科为主要理论基础,以内燃机和正在发展中的其它新型动力机械及系统为研究对象,运用工程力学、机械工程学、自动控制、计算机、环境科学、微电子技术等学科的知识和内容,研究如何把燃料的化学能和液体的动能安全、高效、低(或无)污染地转换成动力的基本规律和过程,研究转换过程中的系统和设备的自动控制技术。随着常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。 这方面人才在加强学生基础理论和综合素质教育的同时,加强计算机及自动控制技术的应用,强化专业实践教学,注重全能训练,全面提高自己的实践动手能力和科学研究潜力我国能源动力类专业形成于20世纪50年代。以交通大学为例,1952年院系调整时,当时设在机械系中的动力组就单独成立了动力机械系。由于受当时苏联教育体制的影响,在该学科的发展过程中,专业面曾一度越分越细。50年代初期只有锅炉、气轮机、内燃机等专业,以后又先后办起制冷专业与风机专业,制冷专业又细分出压缩机,制冷及低温专业。在50年代末又创办了核能专业,在60~70年代有些学校先后设立了工程热物理专业。这样能源动力学科中的专业就先后包括有锅炉、涡轮机、电厂热能、风机、压缩机、制冷、低温、内燃机、工程热物理,水力机械以及核能工程等11个专业,形成了明显的以产品带教学的基本格局。热能与动力工程专业中包含的水利水电动力工程专业的前身为水电站动力装置专业。该专业形成于20世纪50年代。新中国成立以后,随着国家对水患的治理和经济建设的发展,国家设立了华东水利学院、武汉水利水电学院、华北水利水电学院等一些专门的水利院校,1958年起在这些院校和西安交通大学水利系(西安理工大学水电学院的前身)设立了水电站动力装置专业,以满足国家对水电建设人才的迫切需求。1977年恢复高考招生后,该专业更名为水电站动力设备专业。1984年该专业更名为水利水电动力工程专业,涵盖了原水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程等专业,昆明工业学院、成都科技大学等一些院校都设置了该专业。1998年,按照国家教育部颁布的新的专业目录,水利水电动力工程专业并入热能与动力工程专业,新的热能与动力工程专业包含了原来的热力发动机、流体机械及流体工程、热能工程与动力机械、热能工程、制冷与低温技术、能源工程、工程热物理、水利水电动力、工程冷冻冷藏工程等9个专业。客观上说,这种专业划分与当时我国计划经济的体制以及工业发展的实际情况,在一定程度上是相适应的。过窄的专业面,但却培养了专业工作能力较强的学生。因此,在当时对我国经济的发展和工业体系的重建,曾经起到过积极的作用。但随着社会经济向现代化方向的发展和高新科学技术的进步,特别是我国改革开放以后,国外先进科技、管理体系的大量引进,学科的交叉融合不断产生新的经济增长点,当时实际存在的过细过窄的工科专业设置,总体上已不能适应新的形势和发展对人才的需要,必须进行专业调整。因此,在1993年原国家教委进行的专业目录调整中,将能源动力学科的上述前10个专业压缩为4个专业,即热能工程,热力发动机,制冷与低温工程,流体机械与流体工程,核工程与核技术保留。1998年,教育部颁布了新的专业目录,将上述前4个专业进一步合并为热能与动力工程专业,核工程与核技术专业单独设立,而在引导性的专业目录中,则建议将热能工程与核能工程合并。但当时我国大多数学校还是采用了热能工程与核能工程单独设专业的方案。因此,在2000年教育部设立的新一轮教学指导委员中,在能源动力学科教学指导委员会下分设了三个委员会:热能动力工程,核工程与核技术以及热工基础课程教学指导分委员会。能源动力工业是我国国民经济与国防建设的重要基础和支柱型产业,同时也是涉及多个领域高新技术的集成产业,在国家经济建设与社会发展中一直起着极其重要的作用。近年来,随着我国各个方面改革的深化发展,包括市场经济的逐步建立,国有大中型企业机制的转换,加入WTO后面临的挑战,以及能源动力领域技术的发展,并考虑到我国核科技工业“十一五”以及到2020年发展所面临的形势与任务,我国能源动力类以及核相关专业人才的培养面临着严峻的挑战。能源动力及环境是目前世界各国所面临的头等重大的社会问题,我国能源工业面临着经济增长、环境保护和社会发展的重大压力。我国是世界上最大的煤炭生产和消费国,煤炭占商品能源消费的76%,已成为我国大气污染的主要来源。已经探明的常规能源剩余储量(煤炭、石油、天然气等)及可开采年限十分有限,2000年的统计资料表明,我国化石能源剩余可储采比煤炭为92年,石油5年,仅为世界储采比的一半;天然气为63年,优质能源十分匮乏。我国已成为世界第二大石油进口国,对国际石油市场的依赖度逐年提高,能源安全面临挑战,存在着十分危险的潜在危机,比世界总的能源形势更加严峻。现在,能源资源的国际间竞争愈演愈烈,从伊拉克战争及战后重建,到中日双方在俄罗斯输油管线走向上的角逐等一系列国际问题,无不是国家间能源战略利益冲突、斗争的具体反映。因此开发利用可再生能源、实现能源工业的可持续发展具有应该说更加迫切、更具重大意义。我们应该清楚地认识到:我国的能源资源是有限的,我国现有能源开发利用程度与效率很低,在清洁能源开发、能源综合高效利用和环境保护领域内,与发达国家存在着较大的差距:我国水能资源理论蕴藏量(未包括台湾省)为76亿KW,可开发容量78亿KW,相应年发电量19200亿KWh,均居世界第一;至2003年底水电装机容量达到9139万KW,年电量2710亿KWh,开发率按电量算只有14%,按装机容量算只有2%,远远落后于美国、加拿大、西欧等发达国家,也落后于巴西、埃及、印度等发展中国家。高耗能产品能源单耗比发达国家平均水平高40%左右,单位产值能耗是世界平均水平的3倍。同时,实施可持续发展战略对能源发展提出了更高的要求。长期以来,粗放型的增长方式使能源发展与保护环境、资源之间的矛盾日益尖锐。未来能源发展中,如何充分利用天然气、水电、核电等清洁能源,加快新能源与可再生能源开发,推广应用洁净煤技术,逐步降低用于终端消费煤炭的比重,实现能源、经济、环境的可持续发展将是"十五"以及中长期能源发展面临的重要选择。特别地,我国核科技工业是国家的战略行业。完善的核科技工业体系是确立一个国家核大国地位的基本条件。它既是国家战略威慑力量和国防科技工业的重要组成部分,是国家政治、国防安全的重要保障和外交利益所在,同时又是国民经济的重要产业。核军工、核能、核燃料和核应用技术产业,是我国核科技工业的主要组成部分。与此相适应,如何培养适应上述21世纪社会需要的能源动力类以及核相关专业人才,是每个大学相关专业以及每位从事能源动力类专业教育的工作者需要解决的重要问题。常规化石能源的使用是能源动力学科专业教学的主要内容之一,而常规化石能源的使用与环境问题密切相关。目前,煤炭、石油、天然气等化石能源仍在整个能源构成中占据主导地位,而且估计在今后几十年地时间内这一局面还不会改变。这些常规化石能源主要直接应用于火力发电,这会带来一系列严重的环境问题,比如硫氧化物、氮氧化物等的大气污染、固体废物、水污染和热污染等。据最近的报载,当前我国每年火力发电的煤炭耗量超过8亿吨,电厂的烟尘排放量约为350万吨,占全国烟尘排放量的35%。其中微细粒子(小于10微米)排放量超过250万吨,是影响大城市大气质量和能见度的主要因数,并严重危害人体健康。因此,对能源动力生产过程中的这些环境问题必须进行妥善处理和控制,实现其环境友好化,才能保证人类的生存和社会经济的可持续发展。环境问题已经成为能源动力技术研究中的重要组成部分,也必须在专业课程的教学中有相应的体现。也正是基于这一原因,浙江大学已经将原来的热能与动力工程专业改名为能源与环境系统工程专业。核能发电虽然没有上述火力发电那样的问题,但有其独特的问题,如辐射防护与保健、核废料的处置与处理等均与环境保护有关。迫于环境方面对能源开发与利用的巨大压力,作为常规能源的水能由于具有清洁与可再生的特点,其开发与利用越来越得到重视,在我国能源发展战略占有十分重要的地位。

电力系统自动装置论文3000字

五 无功补偿无功补偿应根据分散补偿和集中补偿相结合原则进行配置,二次侧功率因数应根据用户性质测定。根据《电力系统电压质量和无功电力管理规定》的要求,在最大负荷时,一次侧不应低于95。《城市电力网规划设计导则》要求,110kV变电所无功补偿一般取主变容量的1/4~1/6,实际上城区内10kV线路较短,且大部分为电缆网,无功容量较充足,因此以补偿主变损耗为主。变电所无功补偿为主变容量的8%~15%即可,当采用高阻抗变压器时需取较大值,投切时,10KV电压波动约为5%,满足小于5%的要求。六 10kV中性点运行方式长期以来,我国10kV配电网大部分采用中性点不接地方式,它的最大优点是发生单相接地故障时并不中断向用户供电。随着配电网的扩大,电缆线路的增多,电网对地电容电流大幅度上升,直接威胁着电力系统的安全运行。根据《交流电气装置的过电压保护和绝缘配合》,电容电流超过10A时中性点应改为消弧线圈接地。九三年起为配合变电所无人值班,国内研制了多种自动跟踪消弧线圈补偿装置,其原理大同小异,基本上都在原调匝式消弧线圈的基础上增加控制装置,由于其原理相对简单,可以运行于全补偿状态,工艺要求低,因此目前市场占有率较高,其它还有调隙式、直流偏磁式、调容式等,均由于各种原因难以进入实用状态。顺便说一下,目前有厂家在消弧线圈调谐装置中附加接地检测装置,其原理与出线保护装置中的接地检测装置是一致的,但使用时二次电缆需增加很多,不宜采用。消弧线圈的调节采用微机自动跟踪补偿装置。当主变无中性点引出时,结合变电所的所用电,在10KV母线上设置接地(曲折)变压器。近年来,国内各大城市10kV中性点改用电阻接地的越来越多。采用电阻接地,单相接地故障时动作于跳闸,健全相过电压倍数可限制在8倍以下,进一步降低弧光过电压,电网可采用绝缘水平较低的电气设备,提高设备运行条件和提高人身安全。目前中性点电阻值大致有77Ω(上海)、10Ω(北京、广州)、16Ω(深圳),电阻值大小取值各有利弊,从各地运行情况来看,都是可行的。但在以架空线为主的电网中应慎用电阻接地。七 过电压保护根据《交流电气装置的过电压保护和绝缘配合》,变电所应设有防止直接雷和雷电波侵入的过电压保护措施。全户内变电所采用屋顶避雷带防直击雷,屋顶避雷带采用-40×4镀锌扁钢或8圆钢,半户内变电所设独立避雷针对主变进行保护。八 接地变电所接地方式以水平接地体为主,辅以垂直接地极,主接地网采用-50×6镀锌扁钢,布置上尽量利用配电楼以外的空地,深埋接地极。变电所主接地网的接地电阻应不大于5欧姆。考虑到微机保护监控系统对接地要求较高,二次设备室及10kV二次电缆沟接地采用25×4铜排。当110kV采用GIS时,110kV配电装置室也需采用铜排接地。九 防污等级根据《高压架空线路和发电厂、变电所环境污区分级及外绝缘选择标准》,户外电气设备取污秽等级2级,爬电比距5CM/kV。对于户内设备,该标准中没有规定,但参照《高压开关设备的共用订货技术导则》,可取瓷质材料8CM/kV,有机材料0CM/kV。当户外设备户内安装时,可取2CM/kV。十 保护监控无人值班变电所设计与常规变电所最大的不同点在于二次监控设备必须满足现场无人值班要求,目前采用微机保护基本上没有多大疑义了,而监控方式通常有两种模式: 采用综合自动化系统 采用常规二次保护加RTU应该说,两者都能满足无人值班的要求,后者结构简单、造价低廉,但采用综合自动化系统技术上更先进,集成化程度更高,更易于做成面向对象的层次结构,从技术上讲是发展方向。随着计算机技术、自动控制技术的不断完善和成熟,综合自动化设备性能日趋稳定,价格逐渐下调,应作为新建变电所的首选系统,而后者可以作为老变电所改造用。采用综合自动化,就应该采用分布式结构(10kV保护装置安装在开关柜上),以充分发挥其功能,减少二次电缆,降低造价,但分布式保护装置应解决配电装置室的散热通风及电磁干扰问题。作为无人值班变电所,所内不宜设置固定的计算机监视设备(后台机),但应设置能与现场维护调试用便携式计算机相适应的硬、软件接口。另外,为了运行维护方便,变电所遥测、遥信、遥控量和当地显示量应按《无人值班变电所设计规程》进行设置,加以统一化、标准化。十一 交流所用电和直流系统 交流所用电变电所宜设置二台所用变压器,容量为80~100KVA。当变电所设置三台主变时分别接入#1、#3主变低压侧母线,设置二台主变时则分别接入其低压侧母线。所用电采用中性点直接接地TN系统,额定电压380/220V,采用单母线分段接线。 直流系统直流电源宜采用一组220V蓄电池,容量应满足全所事故停电2h的放电容量,一般为100AH,单母线接线。蓄电池组宜采用性能可靠、维护量少的蓄电池,如阀控式密封铅酸蓄电池等。直流系统应具有自动调节功能,充电装置实现智能化实时管理,并应设置一套微机直流接地监测装置。十二 建筑物变电所所址标高应高于频率为2%洪水位,变电所土建应采用联合建筑并按最终规模一次建成,建筑物的建筑风格、外墙面装修与周围环境相协调,内装修应简化实用。建筑物不宜设通长窗,如城市规划要求或采光需要底层可设置假窗或高窗。变电所的防震、消防、通风应符合国家有关规定。按无人值班要求变电所附房应从简设置,110kV变电所规模为二台主变时建筑面积应控制在700M2(主变放户外)及900M2(主变放户内),占地面积1600 M2,三台主变时建筑面积应控制在1200M2(主变放户外)及1500M2(主变放户内),占地面积1900 M2。十三 结论 变电所主接线应力求简化,宜优先采用线路变压器组接线。 中等城市变电所宜设置二台主变,大城市可设置三台主变。 为保证10KV母线电压在合格范围内,应采用有载调压变压器。 变电所无功补偿宜取主变容量的8%~12%,当采用高阻抗变压器时需取较大值。 变电所优先采用半户内布置(主变布置在户外)。 110kV应尽量采用装配式结构,慎用GIS。 10kV以架空线为主的系统中性点应采用消弧线圈接地,消弧线圈的调节采用微机自动跟踪补偿装置。全电缆网系统中性点采用低电阻接地。 新建变电所监控装置应优先采用综合自动化系统,保护装置应采用分布式结构。 直流系统宜设一组100AH蓄电池组,交流所用电宜设置二台,所用变压器应与接地变相结合。。 建筑物装修应简单实用,布置上尽量减少占地面积和建筑面积。

您可以私信我

以后希望到我毕业的时候能跟你要 哈哈

电力系统自动装置原理论文

五 无功补偿无功补偿应根据分散补偿和集中补偿相结合原则进行配置,二次侧功率因数应根据用户性质测定。根据《电力系统电压质量和无功电力管理规定》的要求,在最大负荷时,一次侧不应低于95。《城市电力网规划设计导则》要求,110kV变电所无功补偿一般取主变容量的1/4~1/6,实际上城区内10kV线路较短,且大部分为电缆网,无功容量较充足,因此以补偿主变损耗为主。变电所无功补偿为主变容量的8%~15%即可,当采用高阻抗变压器时需取较大值,投切时,10KV电压波动约为5%,满足小于5%的要求。六 10kV中性点运行方式长期以来,我国10kV配电网大部分采用中性点不接地方式,它的最大优点是发生单相接地故障时并不中断向用户供电。随着配电网的扩大,电缆线路的增多,电网对地电容电流大幅度上升,直接威胁着电力系统的安全运行。根据《交流电气装置的过电压保护和绝缘配合》,电容电流超过10A时中性点应改为消弧线圈接地。九三年起为配合变电所无人值班,国内研制了多种自动跟踪消弧线圈补偿装置,其原理大同小异,基本上都在原调匝式消弧线圈的基础上增加控制装置,由于其原理相对简单,可以运行于全补偿状态,工艺要求低,因此目前市场占有率较高,其它还有调隙式、直流偏磁式、调容式等,均由于各种原因难以进入实用状态。顺便说一下,目前有厂家在消弧线圈调谐装置中附加接地检测装置,其原理与出线保护装置中的接地检测装置是一致的,但使用时二次电缆需增加很多,不宜采用。消弧线圈的调节采用微机自动跟踪补偿装置。当主变无中性点引出时,结合变电所的所用电,在10KV母线上设置接地(曲折)变压器。近年来,国内各大城市10kV中性点改用电阻接地的越来越多。采用电阻接地,单相接地故障时动作于跳闸,健全相过电压倍数可限制在8倍以下,进一步降低弧光过电压,电网可采用绝缘水平较低的电气设备,提高设备运行条件和提高人身安全。目前中性点电阻值大致有77Ω(上海)、10Ω(北京、广州)、16Ω(深圳),电阻值大小取值各有利弊,从各地运行情况来看,都是可行的。但在以架空线为主的电网中应慎用电阻接地。七 过电压保护根据《交流电气装置的过电压保护和绝缘配合》,变电所应设有防止直接雷和雷电波侵入的过电压保护措施。全户内变电所采用屋顶避雷带防直击雷,屋顶避雷带采用-40×4镀锌扁钢或8圆钢,半户内变电所设独立避雷针对主变进行保护。八 接地变电所接地方式以水平接地体为主,辅以垂直接地极,主接地网采用-50×6镀锌扁钢,布置上尽量利用配电楼以外的空地,深埋接地极。变电所主接地网的接地电阻应不大于5欧姆。考虑到微机保护监控系统对接地要求较高,二次设备室及10kV二次电缆沟接地采用25×4铜排。当110kV采用GIS时,110kV配电装置室也需采用铜排接地。九 防污等级根据《高压架空线路和发电厂、变电所环境污区分级及外绝缘选择标准》,户外电气设备取污秽等级2级,爬电比距5CM/kV。对于户内设备,该标准中没有规定,但参照《高压开关设备的共用订货技术导则》,可取瓷质材料8CM/kV,有机材料0CM/kV。当户外设备户内安装时,可取2CM/kV。十 保护监控无人值班变电所设计与常规变电所最大的不同点在于二次监控设备必须满足现场无人值班要求,目前采用微机保护基本上没有多大疑义了,而监控方式通常有两种模式: 采用综合自动化系统 采用常规二次保护加RTU应该说,两者都能满足无人值班的要求,后者结构简单、造价低廉,但采用综合自动化系统技术上更先进,集成化程度更高,更易于做成面向对象的层次结构,从技术上讲是发展方向。随着计算机技术、自动控制技术的不断完善和成熟,综合自动化设备性能日趋稳定,价格逐渐下调,应作为新建变电所的首选系统,而后者可以作为老变电所改造用。采用综合自动化,就应该采用分布式结构(10kV保护装置安装在开关柜上),以充分发挥其功能,减少二次电缆,降低造价,但分布式保护装置应解决配电装置室的散热通风及电磁干扰问题。作为无人值班变电所,所内不宜设置固定的计算机监视设备(后台机),但应设置能与现场维护调试用便携式计算机相适应的硬、软件接口。另外,为了运行维护方便,变电所遥测、遥信、遥控量和当地显示量应按《无人值班变电所设计规程》进行设置,加以统一化、标准化。十一 交流所用电和直流系统 交流所用电变电所宜设置二台所用变压器,容量为80~100KVA。当变电所设置三台主变时分别接入#1、#3主变低压侧母线,设置二台主变时则分别接入其低压侧母线。所用电采用中性点直接接地TN系统,额定电压380/220V,采用单母线分段接线。 直流系统直流电源宜采用一组220V蓄电池,容量应满足全所事故停电2h的放电容量,一般为100AH,单母线接线。蓄电池组宜采用性能可靠、维护量少的蓄电池,如阀控式密封铅酸蓄电池等。直流系统应具有自动调节功能,充电装置实现智能化实时管理,并应设置一套微机直流接地监测装置。十二 建筑物变电所所址标高应高于频率为2%洪水位,变电所土建应采用联合建筑并按最终规模一次建成,建筑物的建筑风格、外墙面装修与周围环境相协调,内装修应简化实用。建筑物不宜设通长窗,如城市规划要求或采光需要底层可设置假窗或高窗。变电所的防震、消防、通风应符合国家有关规定。按无人值班要求变电所附房应从简设置,110kV变电所规模为二台主变时建筑面积应控制在700M2(主变放户外)及900M2(主变放户内),占地面积1600 M2,三台主变时建筑面积应控制在1200M2(主变放户外)及1500M2(主变放户内),占地面积1900 M2。十三 结论 变电所主接线应力求简化,宜优先采用线路变压器组接线。 中等城市变电所宜设置二台主变,大城市可设置三台主变。 为保证10KV母线电压在合格范围内,应采用有载调压变压器。 变电所无功补偿宜取主变容量的8%~12%,当采用高阻抗变压器时需取较大值。 变电所优先采用半户内布置(主变布置在户外)。 110kV应尽量采用装配式结构,慎用GIS。 10kV以架空线为主的系统中性点应采用消弧线圈接地,消弧线圈的调节采用微机自动跟踪补偿装置。全电缆网系统中性点采用低电阻接地。 新建变电所监控装置应优先采用综合自动化系统,保护装置应采用分布式结构。 直流系统宜设一组100AH蓄电池组,交流所用电宜设置二台,所用变压器应与接地变相结合。。 建筑物装修应简单实用,布置上尽量减少占地面积和建筑面积。

编辑词条电力系统及其自动化  1 电力系统及其自动化是一级学科电气工程的五个二级学科之一,本科和博士生的专业为电气工程及其自动化,硕士研究生就读电气工程所属的5个二级学科之一  电气工程 代号0808  电力系统及其自动化 代号00802  080801电机与电器  080803高电压与绝缘技术  080804电力电子与电力传动  080805电工理论与新技术  学制:2年--3年。  授予学位:工学硕士。  2 电力系统及其自动化所设置的方向  东北电力大学  01 电力系统运行与控制   02 电力系统继电保护与安全自动控制   03 电力系统调度自动化   04 电力系统规划与可靠性   05 FACTS 及直流输电   06 电力系统分析与仿真   07 电力市场   08 电能质量分析与监测   09 综合自动化与继电保护   华北电力大学  01电力系统分析、运行与控制  02电力系统安全防御与恢复控制  03电力经济分析  04电力系统规划与可靠性  05智能技术及其在电力系统中的应用  06电力系统继电保护  07电力系统自动化技术  08电力系统故障分析与诊断  3 电力系统及其自动化研究方向  (1)智能保护与变电站综合自动化  对电力系统电保护的新原理进行了研究,将国内外最新的人工智能、模糊理论、综合自动控制理论、自适应理论、网络通信、微机新技术等应用于新型继电保护装置中,使得新型继电保护装置具有智能控制的特点,大大提高电力系统的安全水平。对变电站自动化系统进行了多年研究,研制的分层分布式变电站综合自动化装置能够适用于35kv~500kv各种电压等级变电站。微机保护领域的研究处于国际领先水平,变电站综合自动化领域的研究已达到国际先进水平。  (2)电力市场理论与技术  基于我国目前的经济发展状况、电力市场发展的需要和电力工业技术经济的具体情况,认真研究了电力市场的运营模式,深入探讨并明确了运营流程中各步骤的具体规则;提出了适合我国现阶段电力市场运营模式的期货交易(年、月、日发电计划)、转运服务等模块的具体数学模型和算法,紧紧围绕当前我国模拟电力市场运营中亟待解决的理论问题。  (3)电力系统实时仿真系统  对电力负荷动态特性监测、电力系统实时仿真建模等方面进行了研究,引进了加拿大teqsim公司生产的电力系统数字模拟实时仿真系统,建成了全国高校第一家具备混合实时仿真环境的实验室。该仿真系统不仅可进行多种电力系统的稳态及暂态实验,提供大量实验数据,并可和多种控制装置构成闭环系统,协助科研人员进行新装置的测试,从而为研究智能保护及灵活输电系统的控制策略提供了一流的实验条件。  (4)电力系统运行人员培训仿真系统  电力系统运行人员培训仿真系统是针对我国电力企业职工岗位培训的迫切要求,将计算机、网络和多媒体技术的最新成果和传统的电力系统分析理论相结合,利用专家系统、智能cai(计算机辅助教学)理论,进行电力系统知识教学、培训的一种强有力手段。本系统设计新颖,并合理配置软件资源分布,教、学员台在软件系统结构上耦合性很少,且系统硬件扩充简单方便,因此学员台理论上可无限扩充。  (5)配电网自动化  在中低压网络数字电子载波ndlc、配网的模型及高级应用软件pas、地理信息与配网scada一体化方面取得了重大技术突破。其中,ndlc采用了dsp数字信号处理技术,提高了载波接收灵敏度,解决了载波正在配电网上应用的衰耗、干扰、路由等技术难题;高级应用软件pas将输电网ems的理论算法与配网实际结合起来,采用了最新国际标准iec61850、61970cim公共信息模型;采用配网递归虚拟流算法进行潮流计算;应用人工智能灰色神经元算法进行负荷预测。  (6)电力系统分析与控制  对在线测量技术、实时相角测量、电力系统稳定控制理论与技术、小电流接地选线方法、电力系统振荡机理及抑制方法、发电机跟踪同期技术、非线性励磁和调速控制、潮流计算的收敛性、电网调度自动化仿真、电力负荷预测方法、基于柔性数据收集与监控的电网故障诊断和恢复控制策略、电网故障诊断理论与技术等方面进行了研究。在非线性理论、软计算理论和小波理论在电力系统应用方面,以及在电力市场条件下电力系统分析与控制的新理论、新模型、新算法和新的实现手段进行了研究。  (7)人工智能在电力系统中的应用  结合电力工业发展的需要,开展了将专家系统、人工神经网络、模糊逻辑以及进化理论应用到电力系统及其元件的运行分析、警报处理、故障诊断、规划设计等方面的实用研究。在上述实用软件研究的基础上开展了电力系统智能控制理论与应用的研究,以提高电力系统运行与控制的智能化水平。。  (8)现代电力电子技术在电力系统中的应用  开展了电力电子装置控制理论和控制算法、各种电力电子装置在电力系统中的行为和作用、灵活交流输电系统、直流输电的微机控制技术、动态无功补偿技术、有源电力滤波技术、大容量交流电机变频调速技术和新型储能技术等方面的研究  (9)电气设备状态监测与故障诊断技术  通过将传感器技术、光纤技术、计算机技术、数字信号处理技术以及模式识别技术等结合起来,针对电气设备绝缘监测方法和故障诊断的机理进行了详细的基础研究,开发了发电机、变压器、开关设备、电容型设备和直流系统等主要电气设备的监控系统,全面提高电气设备和电力系统的安全运行水平。  4 设置电力系统及其自动化研究生专业的高校及排名  1 清华大学 A+   2 西安交通大学 A   3 重庆大学  4 华中科技大学 A   5 西南交通大学  6 天津大学 A

  • 索引序列
  • 船舶动力装置论文
  • 船舶动力装置论文1500字
  • 电厂热能动力装置论文范文
  • 电力系统自动装置论文3000字
  • 电力系统自动装置原理论文
  • 返回顶部