首页 > 论文期刊知识库 > 分子生物学报

分子生物学报

发布时间:

分子生物学报

这个期刊 是非常好的,所有自然科学类的核心期刊数据库 都可查到这个期刊。同时是 中文核心、科技核心、CSCD核心 。这种学报类的期刊 属于是 一类期刊。

《中国生物化学与分子生物学报》征稿简则1《中国生物化学与分子生物学报》简介《中国生物化学与分子生物学报》(Chin J Biochem Mol Biol, ISSN 1007-7626,CN 11-3870/Q) 1985年创刊,是中国科学技术协会主管,中国生物化学与分子生物学会和北京大学共同主办的国家生物学类/基础医学类核心期刊(月刊).本刊被美国《化学文摘》(CA)、美国《生物学文摘》(BA)、俄罗斯《文摘杂志》(PJ)、世界卫生组织西太平洋地区医学索引(WPRIM)和中国科技论文与引文数据库(CSTPCD)、中国科学引文数据库(CSCD)、《中文核心期刊要目总览(第5版)》、《中国生物学文摘数据库》、《中国期刊网》、《中国学术期刊(光盘版)全文数据库》、《中国科技期刊精品数据库》等检索数据库收录《中国生物化学与分子生物学报》国内外公开发行,刊载以中文或英文撰稿的生物化学与分子生物学领域具有创新性的基础及应用基础原创性研究论文和反映当前国内外生物科学前沿或热门领域的综述性文章.本刊所设栏目有小综述、研究论文、研究简报、技术与方法、信息交流等.本刊编委会由国内外生物学和基础医学界享有较高声誉的教授专家组成.2010年调整组建的第6届编委会由国内外知名的生物化学与分子生物学领域专家学者(包括两院院士10名)组成.《中国生物化学与分子生物学报》采用科技类杂志社稿件采编系统软件,设有在线投稿、审稿、退修运行系统以及自动查询功能.本刊处理稿件快捷,一般稿件自投稿之日起4个月内可正式出版.《中国生物化学与分子生物学报》严格遵守国家新闻出版署制定的各项出版法规,文字编排及各类图表和数据的刊载严格遵循国家的规定标准,中英文摘要规范、实验资料完整、结果可靠、编排格式符合国家标准,参考文献著录规范,标准化规范化程度符合国际国内惯例,订户遍及全国各地及国外部分地区.欢迎投稿,欢迎订阅.2 投稿过程的程序化1 投稿《中国生物化学与分子生物学报》中英文稿兼收,鼓励并优先考虑作者英文撰稿.切忌一稿多投.本刊已开设编辑部网络办公系统.欢迎作者登陆本刊网站在线投稿,注册后按投稿说明和指示逐一进行.2 审稿作者在线投稿后,编辑部即行初审.初审通过后,作者交纳审理费每篇100元,稿件即寄送审稿专家进行网上评阅.作者可通过网上自动查询功能追踪稿件处理状态.一般在3~4周内,即可收到编辑部关于稿件处理决定的电子邮件通知.3 退修作者在收到需修回稿件通知后2周内,应按编辑部要求进行修改,并及时返回;逾期者按新投稿处理.4 稿件的录用编辑部在收到作者修回稿后将进行复审,决定是否录用,并发出予以录用或退稿通知.5 文稿的出版对予以录用的稿件,编辑部将进行最后的编辑加工和排版,并向作者发出收取版面费的通知.版面费每版面200元,彩色图版加收制作费800元 特约综述免收版面费.来稿发表后即付稿酬,并赠现刊2册和抽印本10份6 版权来稿发表后,著作权归作者所有,文责由作者自负,编辑版权属本刊所有.本刊有权将刊物制成光盘版或被其它正式出版的光盘版收录.作者如有不同意见,应在投稿时向本刊申明,否则视为作者同意3 主要栏目要求1 小综述小综述刊载特约或由经验丰富的专业领域专家撰写,是当前生命科学的热门领域或热门话题,具有前沿和进展性;其题目以主题词或主题句命名,内容表述应层次分明.2 研究论文(研究简报、技术与方法)研究论文刊载生物化学与分子生物学领域中具有创新性的基础及应用基础原创性研究报告 中英文写作应采用规范化科技用语,避免日常白话语或口语,叙述应简洁清楚;中英文语法正确.对不熟悉科技论文写作或英文写作的作者,应寻求有经验者协助.4 文稿格式的标准化和规范化1 论文首页(1)文题和作者及单位 文题以主题句命名,所含信息明确,要求准确、简洁、清楚.作者及其单位名称与邮编要求正确无误.(2)论文摘要(Abstract)包含研究目的,采用关键技术与方法,获得的主要结果以及结论.(3)关键词(Key words)关键词反映文章的核心内容,通常为3~5个.(4)中图分类号根据《中国图书馆分类法》(第四版),给出研究课题的分类号.(5)脚注 脚注内容为:收稿日期和接受日期(由编辑部填写);研究课题的资助经费(基金)来源如国家重大基础研究、科技攻关、国家自然科学基金等项目资助,并给出项目编号(中文及英译文);和联系人电话,电传和电子信箱(中英文)2 论文正文1 引言(Introduction)概述课题相关领域研究概况和背景,包括主流研究动态及学说,提出待解决的问题.引言内容应准确、客观,有文献支持,并具有知识性,具有学习价值和启发性.(1)使用全国科学技术名词审定委员会公布的名词术语缩写词除众所熟知者外,在正文中第1次出现时,应写出中文全称和英文全称及英文缩写(2)使用法定的物理量和单位例如分子量(相对分子质量)用Mr,溶液浓度单位用mol/L;热量单位用J(焦耳),时间用s(秒)、min(分)、h(小时)、d(天);每分钟转数用r/min,cpm可作缩写词,不用作单位(3)所有化学试剂物质、蛋白质、核酸或基因座等名称按国际通用标准表示法书写.例如蛋白质英文缩写用正体,首字母大写或全部大写;限制性内切酶前3个字母用斜体,基因座名称英文缩写用斜体2材料与方法(Materials and methods)提供实验取材和所用方法其描述应清楚和准确.对方法的描述要详略得当、重点突出.3结果(Results)结果是论文的重点,要高度概括和提炼,用次级标题分段叙述.次级标题应能反映主要结果 研究数据主要以插图与表格的形式表达.(1) 图表要具有自明性,图表本身给出的信息应能说明所要表述的问题 所有插图(包括图题和图注)和表格(包括表题和表注)均用英文表述,放入文中适当位置表格采用三线表形式,表题置于表格上方,表下方需有必要的英文注释(2) 英文图注说明(Figure legend)应包括图题、简要研究体系或材料、方法的描述,以及必要的统计学处理及结果、特殊图示说明,以求达到只阅读英文摘要和英文图注即可理解论文概要.(3) 画图线条要均匀,勿过粗或过细纵横坐标要给出物理量和单位(4) 照片要求清晰匀称,反差适中,分辨率不低于500 ppi,以求达到较高的刊印效果.图中添加文字时,先将图像设置成合适尺寸(双栏不超过5 cm),再将分辨率设置为500 dpi,最后再添加文字,小五号字,字体用Time New R(5) 电泳图中分子量标准要给出标准值,对准电泳条带,同时用箭头指出目的产物位置及分子量大小(6) 图表物理量应尽量使用量的符号表示,物理量名称与单位之间用斜线隔开(7) 统计学中的平均值±标准差用x—±s表示(8) 所有插图请用JPG或TIF格式制作,统计学处理的直方图用Excel制作,以便编辑加工4讨论(Discussion)讨论是结合结果、文献开展的延伸性、扩展性分析,以及得出结论的分析性论证;避免结果的重复性描述.可按次级标题分段叙述.必要时可将结果与讨论合并.5致谢(Acknowledgments)内容应简单明了,无此内容可不写.6参考文献(References)(1)参考文献是作者亲自阅读并在论文中引用的近年正式出版物,以期刊为主为反映国内外研究动态,欢迎作者引用最近几年在本刊发表的相关文献(2) 参考文献引用根据在正文中出现的先后顺序排列(3) 本刊要求参考文献中作者姓名给出前3位,其后用“等”或“et al”作者姓名写法是姓全拼在前,名缩写在后,姓与名之间不加缩写点,不加标点(4)外文期刊格式为:[序号] 作者姓名文题期刊[J],年,卷(期)号:起止页码其中期刊用缩略名(参考PubMed规定写法)例如:[1]Okuda S, Tsutsui H, Shiina K, et Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells [J] Nature,2009,458(19):357-361(5)中文期刊格式,除以上要求,还需将作者汉语拼音姓名、英文文题及刊名放在括号内,附在中文刊名后,例如:[2]陈艳红,杜菊萍,刘建胜,等DUF784基因在花粉管导向中的功能分析[J]中国生物化学与分子生物学报(Chen Yan-Hong, Du Ju-Ping, Liu Jian-Sheng, et Changes of expression profile induced by NGX6 transfection in nasopharyngeal carcinoma cells[J]Chin J Biochem Mol Biol), 2010, 26(10): 903-910(6)专著格式为:[序号]作者(编著者)姓名(论文集篇名,In或见:主编姓名ed或编)书名,版次(M)出版地:出版者,年:起止页例如:[3] Sambrook J,Russell D WMolecular Cloning:A Laboratory Manual,3rd ed[M]New York:Cold Spring Harbor Laboratory P2001:636-648中文专著还需译成英文放在括号内,附中文后专著如引用中译本,则取以下格式,例如:[4] Sambrook J,Russell D W著黄培堂等译分子克隆实验指南,第3版[M]北京:科学出版社,2002 (Sambrook J, Russell D W E Huang PT, et Molecular Cloning: A Laboratory Manual,3rd ed[M]New York:Cold Spring Harbor Laboratory Press,1989)5 本刊优秀论文奖本刊由我国生物化学先驱和前辈郑集教授与张昌颖教授出资,特设“郑集优秀论文奖励基金”(1993年建立) 和“张昌颖优秀论文奖励基金”(2006年建立),每年评选1次、每次评选4篇,奖励在本刊发表优秀论文的年轻作者;获奖者在临近举办的中国生物化学与分子生物学会全国学术大会上接受颁发的奖金和奖状

分子生物学学报

中山大学学报是国内影响力较高的较全面的杂志了其他大学也许几乎都发国外去了

一类期刊,二类期刊,三类期刊,代表着刊物不同的水准。通常情况下一类期刊的质量是最高的。

学报一般分为专科学报,本科学报和核心学报三个级别。学报一般是以各个学校命名的,所以要分清到底是本科学报还是专科学报首先要弄明白这个学校是本科高校还是专科高校。一般专科学校比较好分别,名称无非是例如:某某职业/信息/建筑/技术学院或某某师范/烹饪高等专科学校/学院等。确定核心期刊的标准可以概括为以下几项,其一主办机构的权威性,其二文章作者的权威性,其三,文章的被引用率及文献的半衰期。简单地说,核心期刊是学术界通过一整套科学的方法,对于期刊质量进行跟踪评价,并以情报学理论为基础,将期刊进行分类定级,把最为重要的一级称之为核心期刊。核心学报就是被评为核心期刊的学报。

期刊名称 主办单位 影响因子↓ 植物生理与分子生物学学报 中国植物生理学会;中国科学院上海植物生理所 344 细胞与分子免疫学杂志 中国免疫学会;第四军医大学 878中国生物化学与分子生物学报 中国科协 623分子细胞生物学报 中国细胞生物学学会 487医学分子生物学杂志 华中科技大学同济医学院 324

分子生物学报告

科学领域中任何一门学科的形成和发展,一般很难准确地说明它是何时、何人创始的。分子生物学的产生和发展,同其它学科一样,经历了漫长而艰辛的过程,逐步走向成熟而迅速发展的道路。 1871年,Lankester就提出,生物不同种属间的化学和分子差异的发现和分析,对确定系统发生的关系,要比总体形态学的比较研究更为重要。后来,随着德国、美国生理化学实验室的建立和生物化学杂志的创办,促进了生物化学的发展。当生物化学深入到研究生物大分子时, 1938年Weaver在写给洛克菲勒基金会的报告中,首次使用了分子生物学(molecular biology)一词。他写道:“在基金会给予支持的研究中,有一系列属于比较新的领域,可称之为分子生物学……”。一年以后,研究蛋白质结构的Astbury使用了这个名词,以后它变得越来越普遍。特别是在1953年,Watson和Crick发表了著名论文“脱氧核糖核酸的结构”以后,DNA双螺旋结构的发现,促进了遗传学、生物化学和生物物理学的结合,推动了分子生物学的形成和迅速发展,使生命科学全面地进入分子水平研究的时代,这是生物科学发展史上的重大里程碑。1956年剑桥医学研究委员会率先建立了分子生物学实验室,1959年创刊了《分子生物学》杂志,1963年成立了欧洲分子生物学国际组织,分子生物学从而成为崭新的独立学科,带动着生命科学迅猛发展,成为现代自然科学研究中的重要领域。 在分子生物学的形成和发展过程中,有许多重大的发现和事件,具体情况如下: 1864年:Hoope-Seyler结晶并命名了血红蛋白。 1869年:Mieseher第一次分离了DNA。 1871年:Lankester首先提出生物不同种属间的化学和分子差异的发现与分析,对确定系统发生的关系,要比总体形态学的比较研究更为重要。 1926年:Sumaer从刀豆的提取物中得到脲酶结晶,并证明此蛋白质结晶有催化活性。同年,Svedberg创建了第一台分析用超高速离心机,并用其测定了血红蛋白的相对分子质量约为8X104。 1931年:Pauling发表了他的第一篇关于“化学键特性”的论文,详细说明了共价键联结的规律。后来,又建立了处理生物分子的量子力学理论。 1934年:Bernal和Crowfoot发表了第一张胃蛋白酶晶体的详尽的X-射线衍射图谱。 1941年:Astbury获得了第一张DNA的X-射线衍射图谱。 1944年:Avery提供了在细菌的转化中,携带遗传信息的是DNA,而不是蛋白质的证据。实验证明,使无毒的R型肺炎双球菌转变成致病的S型,DNA是转化的基本要素。8年后,1952年,Hershey和Chase又用同位素示踪技术证明T2噬菌体感染大肠杆菌,主要是核酸进入细菌内,而病毒外壳蛋白留在细胞外。烟草花叶病毒的重建实验证明,病毒蛋白质的特性由RNA决定,即遗传物质是核酸而不是蛋白质。至此,DNA作为遗传物质才被普遍地接受。 1950年:Chargaff以不同来源DNA碱基组成的精确数据推翻了四核苷酸论,提出了Chargaff规则,即DNA的碱基组成有一个共同的规律,胸腺嘧啶的摩尔含量总是等于腺嘌呤的摩尔含量,胞嘧啶的摩尔含量总是等于鸟嘌呤的摩尔含量,即[A]=[T]和[G]=[C]。 1951年:Pauling和Corey应用X-射线衍射晶体学理论研究了氨基酸和多肽的精细空间结构,提出了两种有周期规律性的多肽结构学说,即alpha螺旋和B-折叠理论。 1953年:这是开创生命科学新时代的第一年,具有里程碑意义的是Watson和Crick发表了“脱氧核糖核酸的结构”的著名论文,他们在Franklin和Wilkins X-射线衍射研究结果的基础上,推导出DNA双螺旋结构模式,开创了生物科学的新纪元。同年,Sanger历经8年的研究,完成了第一个蛋白质一胰岛素的氨基酸全序列分析。 随后,1954年Gamnow从理论上研究了遗传密码的编码规律;1956年Volkin和Astrachan发现了mRNA(当时尚未用此名);1958年,Hoagland等发现了tRNA在蛋白质合成中的作用;Meselson和Stahl应用同位素和超离心法证明DNA的半保留复制;Crick提出遗传信息传递的中心法则。 1960年:Marmur和Dory发现了DNA的复性作用,确定了核酸杂交反应的专一性和可靠性;Rich证明DNA-RNA杂交分子与核酸间的信息传递有关,开创了核酸实际应用的先河。与此同时,在蛋白质结构研究方面,Kendrew等得到了肌红蛋白2nm分辨率的结构,Perutz等得到了血红蛋白55nm分辨率的结构。 1961年:这是分子生物学发展不平凡的一年。Jacob和Monod提出操纵子学说,发表了蛋白质合成中遗传调节机理的论文,此论文被誉为是分子生物学中文笔优美的经典论文之一。同年,Brenner等获得mRNA的证据;Hall和Spiegelman证明T2 DNA和T2专一性RNA的序列互补;Crick等证明了遗传密码的通用性。 1962年:Arber提出第一个证据,证明限制性核酸内切酶的存在,导致以后对该类酶的纯化,并由Nathans和Smith应用于DNA图谱和序列分析。 1965年:Holley等采用重叠法首先测定了酵母丙氨酰-tRNA的一级结构,为广泛、深入地研究tRNA的高级结构奠定了基础。 1967年:Gellert发现了DNA连接酶,该酶将具有相同粘末端或者平末端的DNA片段连接在一起。同年,Philips及其同事确定了溶菌酶2nm分辨率的三维结构。 1970年:Temin和Baltimore几乎同时发现了反转录酶,证实了Temin 1964年提出的“前病毒假说”。在劳氏肉瘤病毒(RSV)感染以后,首先产生的是含有RNA病毒基因组全部遗传信息的DNA前病毒,子代病毒的RNA是以前病毒的DNA为模板进行合成的。反转录酶已成为目前分子生物学研究中的一个重要工具。 1972年~1973年:重组DNA时代到来。Berg、Boyer和Cohen等创建了DNA克隆化技术,在体外构建成具有生物学功能的细菌质粒,开创了基因工程新纪元。与此同时,Singer和Nicolson提出生物膜结构的液态镶嵌模型。 1975年:Southern发明了凝胶电泳分离DNA片段的印迹法;Gruustein和Hogness建立了克隆特定基因的新方法;O'Farrell发明了双向电泳分析蛋白质的方法,为分子生物学的深入发展创造了重要的技术条件;Blobel等报导了信号肽。 1976年:Bishop和Varmus发现动物肿瘤病毒的癌基因来源于细胞基因(即原癌基因)。 1977年:Berget等发现了“断裂”基因;Sanger、Maxam和Gilbert创立了“酶法”“化学法”测定DNA序列的方法,标志着分子生物学研究新时代的到来。 1979年:Solomon和Bodmer最先提出至少200个限制性片段长度多态性(RFLP)可作为连接人整个基因组图谱之基础。 1980年:Wigler等通过与某个选择性标志物共感染,从而把非选择性基因导入哺乳动物细胞;Cohen和Boyer获得一项克隆技术的美国专利。 1981年:Cech等发现四膜虫26S rRNA前体的自我剪接作用,随后又证明前体中的居间序列(intervening sequence,IVS)有五种酶的活力。几乎在同时,Altman从纯化的RNase P中,证明催化tRNA前体成熟的催化剂是RNase P中的RNA。具有催化作用RNA(ribozyme)的发现,促进了RNA研究的飞速发展。 1982年:Prusiner等在感染搔痒病的仓鼠脑中发现了朊病毒(prion)。 1983年:Herrera-Estrella等用Ti质粒作为转基因载体转化植物细胞获得成功。 1984年:McGinnis等发现果蝇、非洲爪蟾等同源异形基因中的同源异形盒(homeobox)的核苷酸序列;Schwartz和Cantor发明了脉冲梯度凝胶电泳法;Simons和Kleckner等发现了反义RNA。 1985年:Saiki等发明了聚合酶链式反应(PCR);Sinsheimer首先提出人类基因组图谱制作计划的设想;Smith等报导了DNA测序中应用荧光标记取代同位素标记的方法;Miller等发现DNA结合蛋白的锌指结构。 1986年:Dryja等发现成视网膜细胞瘤(Rb)基因是一种抑癌基因;Robin等采用X-光晶相学,证实了DNA结合蛋白的螺旋-转角-螺旋结构。 1987年:Mirkin等在酸性溶液的质粒中发现三链DNA;Burke等用酵母人工染色体(YAC)作载体克隆了大片段DNA;Hoffman等确定了Dnchenne肌肉萎缩病灶的蛋白产物是萎缩素(dystrophin);Hooper等和Kuehn等分别用胚基细胞进行哺乳动物胚的转基因操作,取得重大进展。 1988年:Landsehalz等在对CyC3(细胞色素C基因调节蛋白)、癌基因产物(MyC、V-jun、V-fos)和CBP(CCAAT盒结合蛋白)的研究过程中,发现了结合区亮氨酸序列的周期性,提出DNA结合蛋白的亮氨酸拉链结构模型;同年,Whyfe等证明癌的发生是癌基因的激活和抑癌基因失活的结果。 1989年:Greider等首先在纤毛原生动物中发现了端粒酶(telomerase)是以内源性RNA为模板的反转录酶;Hiatt等首次报导了在植物中亦可产生单克隆抗体。 1990年:人类基因组计划(HGP)全面正式启动;Simpson等发现了对mRNA前体编辑起指导作用的小分子RNA(guide RNA);Sinclair等在人类Y染色体上发现了新的性别决定基因-SRY基因。 1991年:由欧洲共同体(EC)组织17个国家35个实验室的147位科学家,以手工测序为主要手段,首先完成了第一条完整染色体(酵母3号染色体)的315kb的测序工作;Hake等首次报导在植物中发现含有同源异形盒基因;Blackburn等提出调节聚合序列[通式为(T/A)mGn,m=124,n=1~8]的单链DNA可形成分子内或分子间的四螺旋结构,起着稳定染色体的作用。 1993年:Jurnak等在研究果胶酸裂解酶时,发现一种新的蛋白质结构-平行B螺旋(parallel B helix);Yuan等在哺乳类细胞内发现一种参与调节细胞凋亡并具有剪切作用的蛋白质-IL-1B转换酶(interlukin-1B-convertingenzyme,ICE)。 1994年:日本科学家在((Nature Genetics》上发表了水稻基因组遗传图;Wilson等用3年时间完成了线虫(Celegans)3号染色体连续的2Mb的测定,预示着百万碱基规模的DNA序列测定时代的到来。 1995年:Cuenoud等发现了具有酶活性的DNA;Tu等在Eli中发现了具有转运与信使双功能的RNA-10 Sa RNA。 1996年:Lee等首次报导了酵母转录因子GCN4中的氨基酸片段能自动催化合成自我复制的肽;洪国藩等采用“指纹-锚标”战略构建了高分辨率的水稻基因组物理图谱,DNA片段的长度为120kb;Goffeau等完成了酵母基因组DNA全序列(25X10 7bp)的测定。 1997年:Wilmut等首次不经过受精,用成年母羊体细胞的遗传物质,成功地获得克隆羊-多莉(Dolly);Willard等首次构建了人染色体(HACs);Salishury等发现DNA一种新的结构形式-四显性组合,这可能是基因交换期间DNA联结的一种方式。 1998年:Renard等用体细胞操作获得克隆牛-Marguerife,再次证明从体细胞可克隆出遗传上完全相同的哺乳动物;GeneBank公布了最新人的“基因图谱98'’,代表了30181条基因定位的信息;Venter对人类基因组计划提出新的战略-全基因组随机测序,毛细管电泳测序仪启动。 从以上所述分子生物学的发展中,可以看出20世纪是以核酸的研究为核心,带动着分子生物学向纵深发展。50年代的双螺旋结构,60年代的操纵子学说,70年代的DNA重组,80年代的PCR技术,90年代的DNA测序都具有里程碑的意义,将生命科学带向一个由宏观到微观再到宏观,由分析到综合的时代。

生物体内几种元素的测定实验报告有,铁、锌、铜、锰、铬、硒、钼、钴、氟等,称为微量元素。微量元素在人体内的含量真是微乎其微,如锌只占人体总重量的百万分之三十三。铁也只有百万分之六十。分子生物学的研究揭示,微量元素通过与蛋白质和其他有机基团结合,形成了酶、激素、维生素等生物大分子,发挥着重要的生理生化功能。微量元素首先构成了休内重要的载体与电子传递系统。铁存在于血红蛋白与肌红蛋白之中,在它们执行载氧与贮氧的过程中,铁扮演了十分重要的角色。注意事项:现在不仅许多天然产物可以用人工方法合成,而且可以从动植物、煤、石油、天然气等分离或改造加工制成多种工农业生产和人民生活的必需品,象塑料、合成纤维、农药、人造橡胶等。与无机物相比,有机物的种类众多,一般挥发性较大、熔点和沸点较低,反应较慢(较复杂)。溶于有机溶剂,且能燃烧。碳原子可用共价键彼此连接生成多种结构,组成数量巨大的不同种类的有机分子骨架。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。

生物化学与分子生物学学报

自然 科学   生命科学 微生物学通报   中国科学生物数学学报  古脊椎动物学报

1 Principles of Biochemistry (3rd edition) Lehninger 必读2 Biochemisty Stryer 选读3 Biochemisty Zubay 选读4 Moleculor Biology of the Cell Alberts et 必读5 Nature M Magasines L 必读6 Nature Medicine M Magasines L 选读7 Nature Structure Biol M Magasines L 选读8 Science AAAS 必读9 Cell Cell Press 必读10 EMBO J E M B O 必读11 PNAS NAUSA 必读12 Biochemistry Cambridge 必读13 Menthods Enzymol USA 必读14 J B C USA 必读15 Nucleic Acid Research Oxford University 必读16 Cancer R USA 必读17 Gene Elsevier 必读18 J Bacteriol USA 必读19 生物化学与生物物理学报 中科院生物化学研究所 必读20 生物化学与生物物理进展 中科院生物化学研究所 必读21 生物化学与生物分子学学报 中国生化与分子生物学学会 选读22 中国科学 中国科学院

唉。 现学好英文吧。。

植物生理与分子生物学学报

植物学类核心期刊表1植物生理学报(改名为:植物生理与分子生物学学报)2植物生理学通讯3云南植物研究4植物分类学报5西北植物学报6武汉植物学研究7植物生态学报8植物学通讯9广西植物10热带亚热带植物学报11植物研究

出版国防重点专著《激光立体成形》奖励荣誉 1989年,国家教委科技进步二等奖,"强制性凝固组织形成原理" 1991年,国家教委和 国务院学位委员会表彰的"做出突出贡献的中国博士学位获得者" 1991年,航空航天部表彰的"做出突出成绩的中国博士学位获得者" 1991年,航空航天部优秀青年教师 1992年, 国务院特殊津贴 1994年,航空工业总公司科技进步二等奖,"透明模型合金凝固研究方法与装置" 1995年,国家教委科技进步一等奖,"凝固前沿动力学与形态选择研究" 1998年,国家杰出青年科学基金获得者 1999年,航空工业总公司"有突出贡献的优秀中青年科技专家" 2000年,国家"百千万人才工程"第一、二层次人选 2001年,教育部 长江学者奖励计划特聘教授 2001年,中国高校自然科学二等奖,"单相凝固组织形成原理" 2002年,陕西省高校自然科学一等奖,"强制性凝固组织选择原理"2006年荣获“陕西省优秀科技工作者”荣誉称号研究领域金属高性能增材制造技术(3D打印);凝固与晶体生长理论;大型复杂薄壁铸件精密铸造技术。

中国科学引文数据库分为核心库和扩展库,数据库的来源期刊每两年进行评选一次。 核心库的来源期刊经过严格的评选,是各学科领域中具有权威性和代表性的核心期刊。 扩展库的来源期刊经过大范围的遴选,是我国各学科领域优秀的期刊。 中国科学引文数据库2009 共遴选了 1123 种期刊, 其中英文刊 67 种, 中文刊 1056 种; 核心库期刊 748 种(以C为标记) 扩展库期刊 375 种(以E为表记)福建医药杂志不是。

  • 索引序列
  • 分子生物学报
  • 分子生物学学报
  • 分子生物学报告
  • 生物化学与分子生物学学报
  • 植物生理与分子生物学学报
  • 返回顶部