首页 > 论文期刊知识库 > 中国海洋学报影响因子查询

中国海洋学报影响因子查询

发布时间:

中国海洋学报影响因子查询

千万别投海大学报,审稿太慢,影响因子还不高,编辑根本不给催稿,经常一篇中文都要等半年多。。。活生生的例子。。。

中国海洋大学学报社科版刚刚被CSSCI收录了,难度应该还是有的

影响因子(Impact Factor,IF)是美国ISI(科学信息研究所)的JCR(期刊引证报告)中的一项数据。即某期刊前两年发表的论文在统计当年的被引用总次数除以该期刊在前两年内发表的论文总数。这是一个国际上通行的期刊评价指标。生物学上,国际期刊的影响因子达到3-4已经很不错了,国内的核心期刊都很少被SCI收录,即使收录了也很少达到这个因子。至于国内期刊的影响因子怎么算,价值有多大,这个很少关注。

现在学报英文版是sci了,感觉挺好投的,好好找几个同行评审就行了。中文版更好投。。。一般没有不过的我周围。我们实在发不了的文章或者自己觉得有点不太够分量投国外杂志的文章或者着急要发出来的文章,才投学报。。。 闪人。。。

海洋学报影响因子查询

马泽忠1、2 张孝成1 廖和平3(重庆市土地勘测规划院,重庆,400020;中国人民解放军重庆后勤工程学院,重庆,400201;西南大学,重庆,400060)摘要:本文以南岸区为例,根据人口预测模型和人均建设用地指标预测城镇建设用地需求规模;通过指标因子网格(Grid)空间模拟,采用综合指数法求取网格综合城镇建设用地适宜性指数;以地理事物相近相似原理,以城镇建设用地需求规模为控制,以地理信息系统为支持,通过网格合并预测城镇建设用地规模范围。研究表明,采用基于综合城镇建设用地适宜性指数计算机自动获取建设用地范围边界具有较高的科学性和实用性,可为土地主管部门和土地利用总体规划建设用地布局提供决策支持。关键词:网格;适宜性指数;空间模拟;南岸区;重庆市1 研究区域概况南岸区位于重庆市都市圈内,地处长江以南,介于东经 106°31′~106°48′、北纬29°27′~29°38′之间,全区面积08km2。2004年全区总人口526787人,其中农村人口占76%,城镇人口占24 %,人口密度为2020 人/km2。南岸区地貌属川东平行岭谷的一部分,在区境内自西向东有四条背斜和三条向斜,背斜成山,向斜则形成以丘陵为主的谷地,构成了本区低山、丘陵、平坝的地貌组合特征。全区最高海拔681 m;最低海拔157m,相对高差524m。2004年末农用地总面积19hm2,占全区土地总面积的83%;建设用地总面积18hm2,占全区土地总面积的33%。其中,城市用地54hm2,占居民点及工矿用地的67%;建制镇用地03hm2,占居民点及工矿用地的18%;农村居民点用地45hm2,占居民点及工矿用地的71%;独立工矿用地13hm2,占居民点及工矿用地的26%;特殊用地25hm2,占居民点及工矿用地的18%;交通运输用地面积59hm2,占建设用地面积的98%;未利用地总面积94hm2,占全区土地总面积的84%。南岸区2004年土地资源利用结构中,农用地、建设用地和未利用地的比重为83∶33∶84,以农用地为主。2 城镇建设用地规模测算城镇建设用地规模的大小应与人口规模、产业规模、经济规模相适应,同时还受土地利用条件、地形地貌等自然条件的限制,因此,预测城镇用地规模应从实际出发、因地制宜、量力而行,规模适度,不可贪大求全,致使城市无限制膨胀,造成土地资源的浪费。考虑到区域经济发展受许多非确定因素的影响,预测城镇发展空间时也应适当超前,留有余地,增强预测结果的可操作性。城镇建设用地应走内涵挖潜和适度外延扩大相结合的集约型道路,必须首先挖掘各种闲置土地和利用不充分、不合理的土地用于城镇建设;城镇空间的扩展,尽量少占或不占耕地。1 人口预测人口预测的方法一般有指数增长法、回归预测法、逻辑斯第函数预测法、人口年龄推算法等,根据县级土地利用总体规划规程,一般采用指数增长法进行人口预测,预测公式如下:P=P0 (1 +K)n +nΔP (1)式中,P为规划目标年的总人口数;P0 为规划基期年的总人口;K为规划期人口自然增长率;n为规划年限;ΔP为规划期间平均每年人口机械增长数。根据统计数据,南岸区历年人口自然增长率为6‰左右,到2010年,南岸区的人口增长速度不会产生大的波动,因此取K=6‰。由于南岸区社会发展迅速,人口机械增长速度较大,根据多种统计数据,近年机械人口增长速度保持在82093人/年,因此到2010年,南岸区人口数量将达到1024420人。2 城镇人口预测2004年南岸区总人口526787人,城镇化率为24%,城镇人口406883人。根据统计数据,南岸区城镇人口的自然增长率为6‰,通过农转非、区外人口迁入等形式,每年增加城镇人口 68171 人,依公式(1)计算 406883×(1 +6‰)6 +6×98171=819629,预计2010城镇化率将达到00%,通过历年城市水平现行模拟预测所得到的结果为60%,大致相似,因此本次研究取2010年南岸区城市化水平为00%。3 城镇建设用地需求量预测建设用地需求量的定量预测方法通常有趋势预测法、回归预测法和定额指标预测法。趋势预测法是根据土地的实际需求量随时间的变动规律来外推今后的土地需求量,通常以时间t为自变量,土地需求量为因变量建立趋势线方程,其一般形式为 。趋势线方程通常有直线方程、二次曲线方程和指数方程。回归预测法是根据变量之间的相互关系,利用其他变量的已知值来推断预测变量的值,是通过表明两个或几个变量之间关系的数学方程式进行预测的一种方法。因此,应用回归预测法同时需要两组时间顺序相同、相互关系密切的时间序列。定额指标法是一种简便、准确的预测方法,主要是运用城市人口预测结果,以部颁人均用地限额为定额指标计算用地需求量。根据南岸区建设的实际和集约用地要求,在选用指标级别时,尽量选用较为宽松的人均用地指标。1 人均城镇建设用地指标南岸区现状人均城镇建设用地指标2004年为32m2/人,本研究选用城镇建设人均用地规划指标2010年为87m2/人,能够满足城镇发展需要。2 规划城镇建设用地面积819629 人×87 (m2/人)/10000=77hm2,规划新增加城镇建设用地面积 Sc为93hm2。3 建设用地扩展范围预测城镇用地总体布局就是在城镇性质、规模以及规划期间主要的建设项目和有关总体规划的经济技术指标已经确定的情况下,在城镇用地评价和选择的基础上,对规划期内城镇布局形式和各项建设统筹安排、合理布局,制定出科学的用地布局方案。本次研究通过指标因子网格(Grid)空间模拟,采用综合指数法求取网格综合城镇建设用地适宜性指数;以地理事物相近相似原理,以城镇建设用地需求规模为控制,以地理信息系统为支持,通过网格合并预测城镇建设用地规模范围。1 建设用地扩展范围影响因素建设用地的选择就是依据城镇用地适宜性评价结果和城镇用地可持续利用的要求,合理的确定城镇的具体位置和建设用地扩展范围。影响建设用地扩展范围的因素多种多样,主要包括以下几个方面。(1)地貌条件 地貌条件影响城镇的分布位置、平面结构和空间布局,同时不同的地貌条件还影响各项建筑物的用地布置和工程设施的建设。主要参考指标包括地表破碎度、坡度、地貌部位、地貌类型等。(2)地质水文条件 由于地质构造和土层的自然堆积情况不一,因而对建筑物的承载能力造成差异;不同的水文条件影响城镇的发展规模和安全问题。主要参考指标为:地层岩性、地质构造、降水、河网密度,河流洪水位等。(3)社会经济条件 城镇用地规模和扩展范围必须从城镇用地布局现状出发,按照国民经济和社会发展的需要、城镇用地功能组织及城镇景观建设的要求,统筹安排、合理布局。因此影响城镇建设用地布局和扩展的因素主要包括如下社会经济条件:区域现状路网密度、区域规划路网密度、现状城镇建设用地规模影响度、土地利用类型、单位固定资产投资新增建设用地面积等。2 建设用地扩展范围预测方法建设用地扩展范围预测首先将研究区域在一定尺度下进行网格划分,针对不同的网格进行城镇用地适宜性评价,形成区域城镇建设用地适宜性评价结果;其次,以新增建设用地规模为控制,采用基于网格数据处理技术的计算机自动搜索方法获取城镇建设用地扩展范围。3 建设用地扩展范围预测结果1 城镇建设用地适宜性评价应用层次分析法和特尔菲法,确定研究区域城镇建设用地适宜性评价指标和各指标权重,如表1。表1 城镇建设用地适宜性评价指标权重值应用地理信息用空间数据模拟方法,以地面100 m 网格精度将各评价指标在研究区域内进行连续分布模拟,得到区域标准化后指标数据在研究区域内的连续分布值,如图1为研究区内地表破碎度模拟。应用综合指数法对研究区域城镇建设用地适宜性以地面分辨率为100 m 网格单元进行综合评价,每一网格单元适宜性综合指数计算公式为:图1 地表破碎度模拟 (图中值越高,破碎度越大)土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集式中,Pi为第i个网格单元城镇建设用地适宜性综合指数;Vj 为各项指标权重;X′j为各网格单元评价 j 项指标标准化后分值,m 为指标项数;n 为流域内所划分的网格单元个数即CELL 的个数。通过地理信息系统空间数学运算,得到南岸区城镇建设用地适宜性综合指数分布图(图2)。图2 南岸区城镇建设用地适宜性综合指数分布2 预测结果以地理事物相近相似原理为基础,应用VB6集成开发环境和ESRI公司的Arc Objects组件系列开发自动分区程序模块,分区的计算机编程实现流程如图3。图3 确定城镇建设用地扩展范围算法流程图(1)确定城镇建设用地地块的最小面积 Smin,凡是小于Smin的地块应当被合并。(2)以评价单元为最小的合并对象,将其合并到邻域内最相似的适宜性类型区,如果邻域内有多个相似的地块,则合并到其中面积最大的地块内。最后将合并对象以评价单元面积的整数倍进行增加,直到城镇建设用地最小的地块面积都不小于Smin时,且总面积为预测需增加的建设用地时,中止循环并输出区域城镇建设用地分区图(图4)。由图可知,南岸区未来城市发展重点在长生桥镇,南山和东部区域应作为生态保护区,不适宜城市发展,这与传统方法所作的土地利用总体规划基本一致。在城镇建设用地扩展方向上,本次研究结果表明,南岸区主要向北发展,重点发展中部,兼顾小城镇规模,在发展茶园新城区的同时,必须给各建制镇预留城镇建设用地指标。图4 南岸区城镇建设用地扩展范围预测结果4 结论通过研究可得到如下结论:(1)应用空间数据模拟技术,可以直观地表达间断地理现象的区域空间分布趋势,为数学模型分析提供了可靠的数据支持。(2)采用基于网格数据处理技术的计算机自动搜索方法获取城镇建设用地扩展范围,为土地利用规划中划定城镇建设用地及其他用地类型范围提供了较为科学的技术支撑,使规划中建设用地的布局更科学、合理。(3)通过本项研究,将土地适宜性评价和土地利用规划有机地忸结合起来,为未来土地利用规划在方法上做了有益的探索。参考文献Martin ROn the urbanization of Journal of Development Economics,2002,(68):435~442Thomas WMcDDefining the“urban”in urbanization and health:a factor analysis SocialScience&Medicine,2001,(53):55~70MSde AThe influence of urbanization on natural radiation levels in anomalous Journal of Environmental Radioactivity,2002,(63):65~75Chan Ho JEffect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon Korea,Journal of Hydrology,2001,(253):194~210陈新,杨波GIS 在港口规划建设管理中的应用模型海洋技术,2005,24 (4):98~103李宁,郑新奇耕地资源非农转化定量预测模型资源科学,2005,27 (6):46~53周兴AHP 法在广西生态环境综合评价中的应用,广西师范学院学报(自然科学版),2003,20 (3):8~15

海洋渔业《海洋渔业》论文摘要尽量写成报道性文摘,包括目的、方法、结果、结论4方面内容(100字左右),应具有独立性与自含性,关键词选择贴近文义的规范性单词或组合词(3~5个)。 主管主办:中国科学技术协会  中国水产学会;中国水产科学研究院;东海水产研究所快捷分类:农业水产和渔业 农业科技出版发行:上海  季刊  A4期刊刊号:1004-2490, 31-1341/S创刊时间:1979  影响因子 141审稿时间:1-3个月期刊级别: CSCD核心期刊  北大核心期刊  统计源期刊 大连海洋大学学报外公开发行刊物,综合因子为:617,被北大核心期刊、CSCD核心期刊收录。大连海洋大学学报主要刊登内容为水生生物、生物技术、水产增养殖与病害防治、海洋生态与环境、海洋渔业、渔船设计与制造等学科的研究论文。主管主办:辽宁省教育厅  大连海洋大学快捷分类:农业水产和渔业 农业科技出版发行:辽宁  双月刊  A4期刊刊号:2095-1388, 21-1575/S创刊时间:1980  影响因子 617审稿时间:1-3个月期刊级别: CSCD核心期刊  北大核心期刊  统计源期刊 浙江海洋学院学报(自然科学版)海洋渔业,渔业资源,水产增养殖技术与病害防治,水产品加工与综合利用,海洋环境保护,海洋与船舶工程,渔业机械与仪器,航海技术及海洋科学与水产科学基础研究等及与学校专业有关的学术论文、研究简报、综述等,主管主办:浙江省教育厅  浙江海洋学院快捷分类:农业农业综合 农业科技出版发行:浙江  双月刊  A4期刊刊号:1008-830X, 33-1238/P创刊时间:1982  影响因子 385审稿时间:3-6个月期刊级别: 统计源期刊

影响因子(Impact Factor,IF)是美国ISI(科学信息研究所)的JCR(期刊引证报告)中的一项数据。即某期刊前两年发表的论文在统计当年的被引用总次数除以该期刊在前两年内发表的论文总数。这是一个国际上通行的期刊评价指标。生物学上,国际期刊的影响因子达到3-4已经很不错了,国内的核心期刊都很少被SCI收录,即使收录了也很少达到这个因子。至于国内期刊的影响因子怎么算,价值有多大,这个很少关注。

胡佶,王江涛,四环素在海洋沉积物上的吸附,高等学校化学学报,2010,31(2):320-324 (SCI收录)吕桂才,赵卫红,王江涛,平行因子分析在赤潮藻滤液三维荧光光谱特征提取中的应用,分析化学,2010,38(8):1144-1150 (SCI收录)金晓晓,王江涛,白洁,壳聚糖与肉桂醛的缩合反应制备席夫碱及其抑菌活性研究,高校化学工程学报,2010,24(4):645-650 (EI收录)王江涛,谭丽菊,张文浩,连子如,青岛近海沉积物中多环芳烃、多氯联笨和有机氯农药的含量和分布特征,环境科学,2010,31(11):2713-2722周昕,王江涛,谭丽菊,赵志超,胶州湾某水域蛤蜊(Ruditapes philippinarum)、牡蛎(Crassostrea ariakensis)中的雌激素含量,生态毒理学报,2010,5(1):123-129刘岩,汤永佐,王江涛,沉积物与土壤有机质化学发光分析技术研究,环境科学与技术,2010,33(2):112-117刘岩,朱苹,谭丽菊,王江涛,利用发光技术测量海水总有机碳(TOC)技术研究,环境科学与技术,2010,33(3):123-126连子如 王江涛,东海原甲藻和海洋异养细菌对磷酸盐的竞争吸收,水生生物学报,2010,34(3):663-668齐红菊,王江涛,王昭玉,利用Fv/Fm检测锥状施克里普藻N和P限制的局限,生态学报,2010,30(8):2049-田充,王江涛,腐殖酸在海水/矿物界面上的吸附行为,中国海洋大学学报,2010,40(2):63-67梁成菊,王江涛,谭丽菊,青岛近海夏冬季颗粒有机碳的分布特征,海洋环境科学,2010,29(1):12-16郑宇,王江涛,五种海洋微藻脂肪酸存在形式的初步研究,海洋环境科学,2010,29(1):66-69张文浩,王江涛,谭丽菊,山东半岛南部近海海水及动物石油烃污染状况。海洋环境科学,2010,29(3):378-381宋兴良,王江涛,张哲,多环芳烃蒽高效降解菌的筛选及其降解中间产物分析。海洋环境科学,2010,29(6):815-818吕桂才,张哲,王江涛,谭丽菊,山东南部近海沉积物中碳、氮、磷的分布特征。海洋科学,2010,34(9):1-4李月,谭丽菊,王江涛,山东半岛南部近海表层海水中镉、铅、汞、砷的时空变化,中国海洋大学学报,2010,40(9)增刊:179-184孙书勤,王江涛,孙宝维,5种海洋微藻细胞膜与细胞内脂肪酸组成分析,中国海洋大学学报,2010,40(9)增刊:191-196金晓晓,王江涛,白洁 对氨基苯甲酰壳聚糖的制备和抗菌活性,武汉大学学报,2009,55(3):305-金晓晓,王江涛,白洁 壳聚糖与柠檬酫综合反应产席夫碱及其抗菌活性,化工进展,2009,28(11):2014-2018金晓晓,王江涛,白洁 山梨酰壳聚糖的制备和抗菌活性,食品工业科技,2009,30(5):103-105周昕,王江涛,赵志超,谭丽菊 表面改性的C1 8硅胶吸附剂萃取水中的雌激素。中国海洋大学学报,39(2):323~326赵霞,谭丽菊,王江涛,曹婧 山东近海溶解态无机营养盐的分布特征研究,中国海洋大学学报,2009,39(4):799-804曹婧,张传松,王江涛 2006年春季东海近海海域赤潮高发区溶解态营养盐的时空分布。海洋环境科学,2009,28(6):643-647赵卫红,崔鑫,王江涛 赤潮水体中胶体物质对赤潮异弯藻和中肋骨条藻生长的影响。生态学报,2009,29(2):573-580

海洋学报中文版影响因子查询

中 文 刊 名ISSNSCIsearchSCI CDE1 Acta Biochmica et Biophysica Sinca 生物化学与生物物理学报 0582-9879 6789 2 Acta Botanica Sinica 植物学报 0577-7496 89 3 Acta Ahimica Sinica 化学学报 0567-7351 6789 894 Acta Geologica Sinica-English Edition 地质学报(英文版) US1000-9515 89 5 Acta Mathematical Sinica-New Series 数学学报(新辑,英文版) 1000-9574 89 6 Acta Mechanica Sinica 力学学报(英文版) 0567-7718 6789 7 Acta Mechanica Solida Sinia 固体力学学报(英文版) 0894-9166 6789 8 Acta Pharmacologica Sinica 中国药理学报 0253-9756 6789 67899 Acta Physica Sinica- 0verseas Edition 物理学报(海外版) 1004-423X 6789 10 Acta PhySico-Chimica Sinica 物理化学学报 1000-6818 89 11 Acta Polymerica Sinica 高分子学报 1000-3304 89 12 AIgebra Colloquium 代数集刊(英文版) 1005-3867 89 13 Applied Mathematics and Mechanics-English Edition 应用数学和力学(英文版) SZ0253-4827 89 14 Biomedical and Environmental Sciences 生物医学与环境科学(英文版) 0895-3988 789 15 Chemical Journal of Chinese Universties-Chinese 高等学校化学学报 0251-0790 6789 916 Chemical Research in Chinese Universities 高等学校化学研究(英文版) 1005-9040 6789 17 China Ocean Engineering 中国海洋工程(英文版) 0890-5487 89 18 Chinese Annals of Mathematics Services B 数学年刊-B辑(英文版) SZ0252-9599 789 19 Chinese Chemical Letters 中国化学快报(英文版) 1001-8417 789 20 Chinese Journalo of Chemical Engineering 中国化学工程学报(英文版) 1004-9541 6789 21 Chinese Journalo of Chemistry 中国化学(英文版) 1001-604C 6789 22 Chinese Journal of Polymer Science 高分子学报(英文版) 0256-7679 6789 23 Chinese Medical Journal 中华医学杂志(英文版) 0366-6999 6789 678924 Chinese Physics Letters 中国物理快报(英文版) US0256-307X 6789 678925 Chinese Science Bulletin 科学通报(英文版) 1001- 6538 6 89 8926 Communications in Theoretical Physics 理论物理通讯(英文版) 0253- 6102 6789 678927 High Energy Physics and Nuclear Physics 高能物理与核物理 0254-3052 6789 28 Journal of Computational Mathematics 计算数学学报(英文版) 0254-9409 6789 29 Journal of Infrared and Millimeter Waves 红外与毫米波学报 1001-9014 89 30 Journal of Inorganic Materials 无机材料学报 1000- 324X 89 31 Journal of Iron and Steel Research Internatinal 国际钢铁研究学报(英文版) 1006-706X 89 32 Journal of Materials Science & TechnOlogy 材料科学技术(英文版) 1005-0302 6789 33 Journal of Rare Earths 稀上学报(英文版) 1002-0721 6789 34 Journal of Wuhan University of Technology-Mater Sci Ed 武汉工业大学学报(材料科学,英) 341000-2413 6789 35 Progress in Biochemistry and Biophysics 生物化学与生物物理进展 1000-3282 6789 36 Progress in natural Science 自然科学进展(英文版) US1002-0071 6789 37 Rare Metal Materials and Engineering 稀有金属材料与工程 1002-185X 89 38 Science in China Series A-Mathematics,Physics,Astronom 中国科学-A辑(数学,物理,天文学,英) 1006-9283 6789 678939 中国科学- B辑(化学,英) 100609291 6789 78940 Science in China Series C-Life Sciences 中国科学- c辑(生命科学,英) 1006n9305 789 78941 Science in China Series D-Earth Sciences 中国科学- D辑(地球科学,英) 1006-9313 789 78942 Science in China Seried E-Technological Sciences 中国科学-E辑(技术科学,英) 1006-9321 789 78943 Transactions of Nonferrous Metals Society of China 中国有色金属学报(英文版) 1003-6236 6789 44 Chinese Education and Society 中国教育与社会? US1061-1932 789 45 Chinese Law and Government 法律与政府? US0009-4609 89 46 Chinese Literature 中国文学cn1005-3050 FOOO9-4617 89 47 Chinese Sociology and Anthropology 中国社会学与人类学 US0009-4625 789 48 Chinese Studies in Philosophy 中国哲学研究 US0023-8627 7 9 49 Chinese Studies in History 中国历史研究 US0009-4633 789 50 Contemporary Chinese Thought 当代思潮(中文版) 1097-1467 89

中国海洋大学学报社科版刚刚被CSSCI收录了,难度应该还是有的

海洋渔业《海洋渔业》论文摘要尽量写成报道性文摘,包括目的、方法、结果、结论4方面内容(100字左右),应具有独立性与自含性,关键词选择贴近文义的规范性单词或组合词(3~5个)。 主管主办:中国科学技术协会  中国水产学会;中国水产科学研究院;东海水产研究所快捷分类:农业水产和渔业 农业科技出版发行:上海  季刊  A4期刊刊号:1004-2490, 31-1341/S创刊时间:1979  影响因子 141审稿时间:1-3个月期刊级别: CSCD核心期刊  北大核心期刊  统计源期刊 大连海洋大学学报外公开发行刊物,综合因子为:617,被北大核心期刊、CSCD核心期刊收录。大连海洋大学学报主要刊登内容为水生生物、生物技术、水产增养殖与病害防治、海洋生态与环境、海洋渔业、渔船设计与制造等学科的研究论文。主管主办:辽宁省教育厅  大连海洋大学快捷分类:农业水产和渔业 农业科技出版发行:辽宁  双月刊  A4期刊刊号:2095-1388, 21-1575/S创刊时间:1980  影响因子 617审稿时间:1-3个月期刊级别: CSCD核心期刊  北大核心期刊  统计源期刊 浙江海洋学院学报(自然科学版)海洋渔业,渔业资源,水产增养殖技术与病害防治,水产品加工与综合利用,海洋环境保护,海洋与船舶工程,渔业机械与仪器,航海技术及海洋科学与水产科学基础研究等及与学校专业有关的学术论文、研究简报、综述等,主管主办:浙江省教育厅  浙江海洋学院快捷分类:农业农业综合 农业科技出版发行:浙江  双月刊  A4期刊刊号:1008-830X, 33-1238/P创刊时间:1982  影响因子 385审稿时间:3-6个月期刊级别: 统计源期刊

于兴河1,梁金强2,方竞男1,姜龙燕1,丛晓荣1,王建忠1于兴河(1958-),男,教授,博士,主要从事油气勘探开发研究,E-mail:。中国地质大学能源学院,北京 广州海洋地质调查局,广州 510760摘要:对珠江口盆地深水区构造沉降史的定量模拟研究,发现晚中新世以来区内构造沉降总体上具有由北向南、自西向东逐渐变快的演化趋势;从晚中新世到更新世,盆地深水区经历了构造沉降作用由弱到强的变化过程:晚中新世(6~3 Ma),平均构造沉降速率为67 m/Ma,上新世(3~8 Ma),平均构造沉降速率为68 m/Ma,至更新世(8~0 Ma),平均构造沉降速率为73 m/Ma。而造成这些变化的主因是发生在中中新世末—晚中新世末的东沙运动和发生在上新世—更新世早期的台湾运动:东沙运动(10~5 Ma)使盆地在升降过程中发生块断升降、隆起剥蚀,自东向西运动强度和构造变形逐渐减弱,使得盆地深水区持续稳定沉降;台湾运动(3 Ma)彻底改变了盆地深水区的构造格局,因重力均衡调整盆地深水区继续沉降,越往南沉降越大。将BSR发育区与沉降速率平面图进行叠合分析,发现80%以上的BSR分布于构造沉降速率值主要在75~125 m/Ma、沉降速率变化迅速的区域。关键词:珠Ⅱ坳陷;深水区;定量模拟;构造沉降;BSRTectonic Subsidence Characteristics and Its Impact on the BSR Distribution in Deep Water Area of Pearl River Mouth Basin Since Late MioceneYu Xinghe1,Liang Jinqiang2,Fang Jingnan1,Jiang Liongyan1,Cong Xiaorong1,Wang JSchool of Energy resources,China University of Geosciences,Beijing 100083,CGuangzhou Marine Geological Survey,Guangzhou 510760,ChinaAbstract:By means of quantitative basin modeling research of tectonic subsidence history of deep water area in Pearl River Mouth basin,tectonic subsidence has been generally characterized by accelerationfrom north to south andfrom west to east in the research area since Late MFrom Late Miocene to Pleistocene,deep-water area in the basin experinced the variational process of tectonic subsidence effect that wasfrom weak to stong:the average tectonic subsidence rate was 67m/Ma in the Late Miocene(6~3 Ma),the average tectonic subsidence rate was 68m/Ma in the Pliocene(3~8 Ma),and the average tectonic subsidence rate was 73m/Ma in the Pleistocene(~0 Ma)Moreover,the major reasons which causing these changes was Dongsha tectonic evnet from the end of the Middle Miocene to the end of the Late Miocene and Taiwan tectonic event from the Pliocene to the Early Pleistocene:Dongsha tectonic event(10~5 Ma) makedfault block uplifting and sagging,rise area eroding,and waning of movement intensity and structural deformation from east to west,which caused stable subsidence of deep-water area in the basin; Taiwan tectonic event(3 Ma) thoroughly changed the tectonicframework of deep-water area in the basin,which kept on subsiding and was subsiding more southward because of gravity Overlaying the developed areas of BSR and ichnography of tectonic subsidence rate,it was discovered that more than 80%BSR tend to distributed in the area that the average tectonic subsidence rate rangedfrom 75 m/Ma to 125m/Ma and changed Key words:ZhuⅡdepression;deep water area ; quantitative basin modeling ; tectonic subsidence; BSR1 区域地质背景“深水(海)”这一术语通常是指位于陆架坡折向海一侧包括陆坡、陆隆和深海平原的深水环境(水深>200 m)[1]。根据这一定义,珠江口盆地深水区主要为珠Ⅱ坳陷,位于珠江口盆地南部。珠Ⅱ坳陷由2个低凸起(云开低凸起和白云低凸起)和4个凹陷(开平凹陷、顺德凹陷、白云凹陷和荔湾凹陷)组成。坳陷大致呈NE—SW向展布,水深2~2 km,面积4×104km2,北部以番禺低隆起和神狐暗沙隆起与珠I和珠Ⅲ凹陷相隔,南部以南部隆起为界,西部与神狐隆起相邻,东部以东沙隆起为界(图1)。图1 珠江口盆地深水区构造区划图据文献[2]修改珠Ⅱ坳陷的中新统-更新统均为海相沉积,自下而上划分为韩江组、粤海组、万山组和琼海组(表1)。在珠江口盆地的地层中,中中新统(韩江组)和上中新统(粤海组)之间存在不整合(或假整合)。该期构造运动相当于珠江口盆地地震反射剖面中的地震反射层T3,代表了一期重要的区域构造运动——东沙运动[4,5]。中中新世之后,东沙隆起整体快速沉降,进入非补偿沉积期,可容纳空间高速增长[6]。东沙运动对珠江口盆地深水区的块断升降有着重大地影响,其运动的强度和影响程度,东强西弱。上新世—更新时早期(3 Ma)的台湾运动彻底改变了珠江口盆地深水区的构造格局,褶皱隆起转变为断褶带,且盆地深水区因重力均衡调整继续沉降[2,7]。表1 珠江口盆地地层划分[3]为了更为深入地研究珠江口盆地深水区晚中新世以来的构造沉降及其对BSR的影响,结合珠江口盆地深水区中中新世以来发生的构造运动和海平面升降变化,在珠江口盆地深水区识别出晚中新世以来的3个层序界面:自下而上分别为T3、T2和T1,对应的时间分别是6 Ma,3 Ma,8 Ma(表1),相应的,自下而上可识别出层序Ⅲ、层序Ⅱ、层序Ⅰ 3个地层层序,大致对应于粤海组、万山组和琼海组。2 构造沉降的计算方法盆地在某一时刻的基底总沉降幅度(DB)实际上包括2部分,即构造作用引起的构造沉降幅度(DT)和沉积物负荷均衡作用引起的负载沉降幅度(DL)。用回剥技术[8-10]计算构造沉降,需要进行3方面的校正:①地层去压实校正;②古水深校正;③古海平面变化校正[11]。经过校正的构造沉降幅度可以表示为[8,12]:南海天然气水合物富集规律与开采基础研究专集式中:Φ为补偿量(衡量达到Any均衡的程度);H为回剥方法确定的古地层厚度;ρm为地幔密度;w为水的密度 ρ为沉积层平均密度;Wd为古水深;ΔSL为古海平面相对现今海平面的升降值(高水位为正,低水位为负)。由于珠江口盆地岩石圈强度很低,可以认为已达到完全的重力均衡[13-15],Φ取作1。这样构造沉降幅度可以表示为南海天然气水合物富集规律与开采基础研究专集1 孔隙度-深度关系与含砂率在正常压实的沉积层中,沉积物孔隙度和埋深呈指数关系[16],即:南海天然气水合物富集规律与开采基础研究专集式中:φ为地层深度为y处岩石的孔隙度,%;φ0为初始沉积(y=0)时岩石的孔隙度;C为压实系数;C和φ0与岩性有关(表2)。表2 不同岩性的压实系数与地表孔隙度[17]以位于珠江口盆地深水区北部白云凹陷内的虚拟井点神-72为例,对应层序Ⅰ、层序Ⅱ、层序Ⅲ3个地层的含砂率分别0%、9%、7%,因此得到3套地层对应的不同岩性的含量(表3)。表3 虚拟井点神-72不同岩性组成2 去压实校正当深度为Y1和Y2之间的岩层回剥到 和 高度时,在回剥的位置上岩层的厚度由下式给出[8]:南海天然气水合物富集规律与开采基础研究专集如果地层中划分出n种岩性,以Pi表示地层中第i种岩性的含量,则深度为Y1和Y2之间沉积层厚度为南海天然气水合物富集规律与开采基础研究专集由二维地震资料得到神-72点对应的层序Ⅰ、层序Ⅱ、层序Ⅲ3个地层的现今地层厚度分别是44 m、186 m、733 m,以及对应的现今水深为548 m。那么,层序Ⅰ、层序Ⅱ、层序Ⅲ3个地层的顶深分别为548 m、592 m、778 m。图2 连续去压实概念模型[17]3 古水深校正沉积物沉积时,其沉积界面在水下一定深度,所以沉积物厚度不能代表沉降深度。沉积盆地水深较大时,必须对古水深作校正才能得出正确的构造沉降。有了古水深Wd,则可以直接将古水深加上沉积物厚度,从而得到真正的深度。古水深的计算是一项复杂而难于算准的问题,加上缺少珠江口盆地深水区各个时期沉积环境的准确资料,目前无法准确计算古水深数据。在由引张应力场转变为挤压应力场时,先存断裂逆转,伴随着盆地的缩短,断陷盆地褶皱并发生隆升,继而遭受风化和剥蚀,造成破裂不整合面,而后发生坳陷[18]。珠江口盆地具有下断上拗的双层结构,以晚渐新世早期“南海运动(8 Ma)”所形成的区域“破裂不整合面”为界,珠江口盆地分为上下两套构造层和先陆后海的沉积组合[19]。下构造层由分隔的断陷沉积组成,自下而上为神狐组冲积相沉积、文昌组湖相沉积和恩平组湖泊一沼泽相沉积。上构造层由统一的海相沉积组成,代表了从晚渐新世开始的南中国海的广泛海侵[20,21]。因此借用计算莺琼盆地和珠江口盆地沉降曲线的方法[10],将古水深按线性增加处理。考虑到晚渐新世以前为湖相-陆相,对沉降量的计算影响较小,晚渐新世起,水深才开始发生升降变化[22],取4Ma之前水深为0[23],之后水深线性增加至现今深度,中间各层古水深由线性插值生成(图3),差值公式为南海天然气水合物富集规律与开采基础研究专集式中:ti为时间(Ma); h0为现今水深(m);hi为ti时对应的水深(m)。运用此方法计算得到神-72在6Ma、3Ma、8Ma时刻的古水深值分别是324 m、445 m、513 m。图3 古水深线性插值计算示意图4 海平面变化校正层序地层学的研究表明,古今海平面变化较大,全球性的旋回性沉积作用基本上或完全受全球范围的海平面变化控制[24]。因此,构造沉降的计算需要对海平面变化进行校正,将其统一到现今海平面的位置。由于研究年代跨距较小,海平面变化不大[23,25],所以△SL近似取值为0。5 构造沉降计算结果本次研究根据上述原理,利用研究区的地层、岩性、水深及海平面等资料,运用PRA盆地模拟软件对珠江口盆地深水区172个虚拟点进行了构造沉降的计算,定量恢复了研究区的构造沉降史;并且针对4条典型剖面和3套地层的平面沉降特征进行分析,进而探讨珠江口盆地深水区的构造演化特征及其对BSR分布的影响。例如,恢复神-72的构造沉降史后,得到此点在不同时间的总沉降速率和构造沉降速率(表4)。表4 虚拟井点神-72构造沉降计算结果3 模拟结果分析1 单井沉降史特征用在二维地震测线上选取的虚拟点进行沉降史的计算与分析。以位于顺德凹陷的虚拟点神-72、荔湾凹陷的虚拟点神-23、白云凹陷的虚拟点神-152以及位于南部隆起的虚拟点神-117(图1)为例,定量地对盆地深水区的埋藏史和沉降史进行了模拟。这些点基本位于各个构造单元的中心部位,可以用来分析各凹陷或隆起的构造沉降演化特征。珠江口盆地深水区西南缘神-72点的构造沉降速率在不同时期相差较大,分别是晚中新世为104 m/Ma,上新世为43 m/Ma,而更新世则只有23 m/Ma(图4A)。这表明顺德凹陷的构造运动随着时间的推移越来越弱。盆地深水区东南缘的神-23点(图4B)和南缘的神-117点(图4C)具有相似的特征:神-23点处晚中新世构造沉降速率为87 m/Ma,上新世为100 m/Ma,更新世为76 m/Ma;而神-117点晚中新世构造沉降速率为54 m/Ma,上新世为63 m/Ma,更新世为45 m/Ma。这种慢—快—慢的沉降速率特征表明,荔湾凹陷和南部隆起在上新世都经历了一次沉降高峰期,随后沉降作用变弱。盆地深水区东北部的神-152点与前面三者都不同,它的构造沉降速率变化不大:晚中新世为71 m/Ma,上新世为72 m/Ma,更新世为72m/Ma(图4D)。这表明自晚中新世以来,白云凹陷一直处于稳定的沉降期,该区新近纪构造变动不太。深水区内各个凹陷沉降特征各异,具有各自独特的埋藏史和沉降史,但总体上呈现出持续稳定的沉降特征。结合二维地震资料可以得到(表5),4个虚拟点在各个时期的沉积速率均小于沉降速率,说明盆地深水区具有欠补偿的沉积补给作用,且沉降速率较大。快速沉降作用和欠补偿作用造成了盆地深水区的形成。图4 研究区各虚拟点埋藏史与沉降史曲线图表5 珠江口盆地深水区晚中新世以来典型单点沉降速率与沉积速率 m/M2 构造单元沉降速率对比分析珠江口盆地深水区晚中新世以来各凹陷的沉降速率值(表6),不难发现各构造单元沉降速率之间存在明显差异。晚中新世最大沉降速率出现在白云凹陷,构造沉降速率120 m/Ma,总沉降速率达208 m/Ma;上新世最大沉降速率出现在荔湾凹陷,构造沉降速率达152 m/Ma,总沉降速率达200 m/Ma;更新世最大沉降速率仍在荔湾凹陷,构造沉降速率达122 m/Ma,总沉降速率达167 m/Ma。这表明盆地沉降中心的平面迁移规律:晚中新世,沉降中心位于盆地北部的白云凹陷;上新世—更新世沉降中心往东部的荔湾凹陷迁移。表6 珠江口盆地深水区晚中新世以来各构造单元沉降速率 m/M3 盆地沉降史特征盆地模拟结果表明(图5):盆地在自晚中新世以来的沉降过程中,T3-T2沉降时期,即晚中新世构造沉降作用最弱,平均构造沉降速率为67 m/Ma。这与发生在中中新世末—晚中新世末的东沙运动(10~5 Ma)时期相符。东沙运动使盆地在升降过程中发生块断升降、隆起剥蚀,并伴有挤压褶皱断裂和频繁的演化活动,发育了NWW向断裂,构造活动强烈[7,26]。因此,在晚中新世,盆地各构造单元发生程度不同的沉降作用。从晚中中新世到全新世,盆地经历了构造沉降幅度由小变大,构造沉降量由大变小,构造沉降速率由小变大的变化过程,呈现出梯度变化趋势,表现为伸展盆地的动力学背景。经过中中新世末期盆地抬升剥蚀之后,晚中新世盆地进入块断升降阶段,沉降幅度和沉降速率开始增大,可容纳空间增大。上新世时,平均构造沉降速率为68 m/Ma,相对晚中新世变化不甚明显。至更新世时期,平均构造沉降速率为71 m/Ma,盆地构造活动变强。4 剖面沉降史选择位于盆地深水区不同位置的4条典型的剖面进行构造沉降的计算,分析研究区纵向与横向上的构造演化特征。总体上,由陆向海方向,构造沉降速率总体表现为增大的趋势,且自西向东构造沉降速率逐渐变快,这与盆地深水区平面沉降特征相一致。A剖面位于研究区西南部,由西北向东南方向穿过开平凹陷、神狐隆起、顺德凹陷及南部隆起。晚中新世,从开平凹陷到神狐隆起,构造沉降速率一直减小,直至在顺德凹陷中减小到42 m/Ma才开始上升,直到南部隆起中达100 m/Ma以上;上新世,构造沉降速率先在开平凹陷—神狐隆起—顺德凹陷中由50 m/Ma左右增加到73 m/Ma,又在顺德凹陷中经历微弱的降低过程,最后在顺德凹陷和南部隆起的交汇部位降到60 m/Ma后又开始急剧上升,直至90 m/Ma以上;更新世,构造沉降特征与上新世相似,具有很好的继承性,由45 m/Ma上升到76 m/Ma后,在顺德凹陷和南部隆起的交汇部位降低到72 m/Ma,接着构造沉降速率快速增大,达到105 m/Ma以上(图6)。B剖面位于研究区中部偏东处,由北向南方向经过番禺低隆起、白云凹陷、白云低凸起、荔湾凹陷和南部隆起。3个时期的变化规律趋于一致:在番禺低隆起—白云凹陷中,晚中新世、上新世、更新世构造沉降速率分别由60 m/Ma、32 m/Ma、39 m/M a左右升高到80 m/Ma、78 m/Ma、79 m/Ma左右,在白云凹陷—白云低凸起—荔湾凹陷中,构造沉降速率大小变化不大,而在荔湾凹陷和南部隆起的交汇部位,构造沉降速率急剧上升,直至150 m/Ma左右达稳定(图7)。C剖面位于研究区东南部的东沙隆起内。东沙隆起在3个时期的构造沉降速率由陆向海缓慢增大,晚中新世、上新世、更新世构造沉降速率分别由100 m/Ma、115 m/Ma、120 m/Ma左右增大到135 m/Ma、147 m/Ma、135 m/Ma左右(图8)。图5 珠江口深水区不同时刻沉降幅度直方图(a)、不同时期沉降量直方图(b)及沉降速率直方图(c)D剖面横穿整个研究区,从南西到北东,横穿神狐隆起、顺德凹陷、南部隆起、白云凹陷、白云低凸起和东沙隆起。在晚中新世,神狐隆起的构造沉降慢速下降,直至在顺德凹陷中降低到40 m/Ma后急速增至55 m/Ma左右才趋于稳定,在南部隆起中经历了一个缓慢的下降过程降到45 m/Ma后,从南部隆和白云凹陷的交汇部位开始快速上升,而在东沙隆起达最高值93 m/Ma后又开始减小,这与东沙运动造成东沙隆起抬升剥蚀、并且具有东强西弱的特点相一致。D剖面在上新世和更新世构造沉降速率的变化趋势与晚中新世相似,不同之处是在神狐隆起—顺德凹陷中构造沉降速率由西北到东南方向经历的是分别由43 m/Ma、38 m/Ma左右先快速增大到72 m/Ma、80 m/Ma左右继而急速减小到54 m/Ma、60 m/Ma左右的变化过程,接着与晚中新世构造沉降特征一致:经历一个相对稳定的沉降时期后,在南部隆起中分别缓慢下降到43 m/Ma、42 m/Ma,接着急速上升到100 m/Ma、95 m/Ma后再下降至56 m/Ma、85 m/Ma(图9)。图6 A剖面不同时期构造沉降速率对比剖面图图7 B剖面不同时期构造沉降速率对比剖面图图8 C剖面不同时期构造沉降速率对比剖面图图9 D剖面不同时期构造沉降速率对比剖面图5 平面沉降史分析及其与BSR关系天然气水合物在地震剖面上通常出现一强反射波,大致与海底平行,故称似海底反射(BSR)[27,28]。它是水合物沉积层的高阻抗与其下伏沉积层的低阻抗之间的相互作用而形成的振幅较强的地震反射,它是天然气水合物富集成矿的主要地球物理标志[29,30]。目前认为,BSR已成为判断海洋中存在天然气水合物及查找其分布的重要证据[31]。图10 珠江口盆地深水区晚中新世(a)、上新世(b)、更新世(c)时期及晚中新世以来(d)构造沉降速率与BSR叠合图珠江口盆地深水区各个时期的构造沉降速率整体上表现出从自东向西、由南向北逐渐减弱的变化规律(图10)。晚中新世,BSR分布于深海地区(一般水深大于2 000 m),构造沉降速率主要在75~115 m/Ma(图10(a),表7);上新世, BSR分布在构造沉降速率曲线较密集地段与盆地边界处,对应的构造沉降速率在45~135 m/Ma(图10(b),表7);更新世,未存在BSR(图10(c),表7)。总之,发现80%以上的BSR分布趋于构造沉降速率值主要在75~125 m/Ma、沉降速率变化迅速的区域(图10(d))。表7 珠江口盆地深水区构造沉降与BSR对应关系4 讨论晚中新世后,盆地进入新构造运动及热沉降坳陷阶段,东部菲律宾板块向NNW 方向俯冲推挤,在晚中新世一早上新世时期造成了东沙运动的发生。东沙运动是导致盆地块断升降、隆起剥蚀、挤压褶皱和断裂以及岩浆活动的根本原因及动力源。在盆地沉降过程中产生了一系列以NWW 向张扭性为主的断裂。自东向西,东沙运动的强度和构造变形逐渐减弱,由此造成了珠江口盆地东部块体升降和断裂的晚期活动。在上新世—更新世早期(3 Ma)发生台湾运动中,珠江口盆地深水区因重力均衡调整而继续沉降,越往南沉降越大。在各个地质时期,盆地的构造沉降量占总沉降量的1/2以上,这表明了构造沉降作用始终控制着盆地总沉降的变化,因此控制了盆地可容纳空间的变化,从而控制了盆地的沉积充填,最终影响盆地内部烃源岩的形成和储集体的分布。5 结论沉降速率等值线越密集的地方越容易发育BSR,这是因为等值线密集的地方一般是盆地边界或是坳隆交汇的部位,这些地方沉降速率变化快,断层褶皱发育,可能形成特殊的断裂带、泥底辟、快速堆积体、滑塌体及增生楔等特殊构造环境与构造体。沉降速率高值区可提供的可容纳空间大,有利于沉降物的快速堆积与BSR的形成。更新世不存在BSR是因为构造运动趋于停止后,盆地的构造活动减弱、构造沉降速率变化不大、可容纳空间小、沉积速率小,有机质碎屑物不能被迅速埋藏,容易在海底氧化直接分解。1)盆地深水区各个凹陷沉降特征各异,具有各自独特的埋藏史和沉降史,但总体上呈现出持续稳定的沉降特征。2)盆地深水区具有欠补偿的沉积补给作用,且沉降速率较大。这说明快速沉降作用和欠补偿作用造成了盆地深水区的形成。3)晚中新世,沉降中心位于盆地北部的白云凹陷;上新世—更新世沉降中心往东部的荔湾凹陷迁移。4)中中新世—晚中新世末(10~5 Ma)发生的东沙运动造成了盆地深水区的块断升降和抬升剥蚀,构造活动强烈,使得晚中新世时期盆地深水区持续沉降。上新世—更新世早期(3 Ma)发生的台湾运动彻底改变了盆地深水区的构造格局,盆地深水区继续沉降,越往南下沉越大。5)构造沉降作用控制了盆地总沉降的变化,因此控制了盆地可容纳空间的变化,从而控制了盆地的沉积充填,最终影响盆地内部烃源岩的形成和储集体的分布。6)沉降速率高值区可提供的可容纳空间大,有利于沉降物的快速堆积与BSR的形成。致谢:广州地质调查局的沙志斌、王宏斌等为此基研究提出了相关资料与帮助,在此一并表示感谢!参考文献[1]于兴河碎屑岩性油气储层沉积学北京:石油工业出版社, [2]陈长民,施和生,许仕策珠江口盆地(东部)第三系油气藏形成条件[M]北京:科学出版社[3]秦国权珠江口盆地新生代地层问题讨论及综合柱状剖而图编制[J]中国海上油气:地质,2002,14:2l-[4]姚伯初南海北部陆缘新生代构造初探[J]南海地质研究:1993,1-[5]姚伯初中美合作调研南海地质专报[M]武汉:中国地质大学出版社,[6]李德生,姜仁旗南海东沙隆起及其周围坳陷的地质演化[J]海洋学报:中文版,1989,737-[7]张志杰,于兴河,侯国伟,等张性边缘海的成因演化特征及沉积充填模式——以珠江口盆地为例[J]现代地质:2004,284-[8]Allen P A,Allen J RBasin Analysis:Principles and Applications[M]London:British Petroleum Company plc:1990,1-[9]Lerche IBasin analysis,Quantiative Methods 1[M]New York:Academic P[10]林畅松,张燕梅拉伸盆地模拟理论基础与新进展[J]地学前缘,[11]卢林,汪企浩,黄建军北部湾盆地涠西南和海中凹陷新生代局部构造演化史[J]海洋石油:2007,25-29+[12]Bond G C,Kominz M AConstruction of Tectonic Subsidence Curvesfor the Early Paleozoic Miogeocline,Southern Canadian Rocky Mountains:Implications for Subsidence Mechanisms,Age of Breakup,and Crustal Thinning[J]Bulletin of the Geological Society of America,1984,95:[13]Maggi A,Jackson J,Mc Kenzie D,et Earthquake Focal Depths,Effective Elastic Thickness,and the Strength of the Continental Lithosphere[J]Geology 2000,28:[14]Clift P D,Lin JPreferential Mantle Lithosphere Extension Under the South China Marlin[J]Mar Petro Geol 2001,18:929-[15]Clift P D,Lin JEvidenec of Low Flexural Rigidity and Low Viscosity Lower Continental Crust During Continental Break-Up in the South China Sea[J]Mar Petrol Geol 2002,19:951-[16]Athy L FDensity,Porosity,and Compaction of Sedimentary Rocks[J]AAPG Bull,1930,14:1-[17]Hegarty K A,Weissel J K,Mutter J CSubsidence History of Australia's Southern Margin:Constraints on Basin Models[J]AAPG Bulletin 1988,72:615-[18]杨风丽,王敏雪,庄建建,等西湖凹陷反转构造定量运动学过程及对油气的控制作用[J]石油学报:2010,596-[19]高红芳,杜德莉,钟广见珠江口盆地沉降史定量模拟和分析[J]南海地质研究:2006,11-[20]郝冶纯,徐钰林,许仕策南海珠江口盆地第三纪微体古生物及古海洋学研究[M]北京:中国地质大学出版社:1997,1 -[21]陈长民珠江口盆地东部石油地质及油气藏形成条件初探[J]中国海上油气:地质,2000,14(2):73-[22]张云帆,孙珍,郭兴伟,等琼东南盆地新生代沉降特征[J]热带海洋学报:2008,30-[23]龚再升,李思田南海北部大路边缘盆地分析与油气聚集[M]北京:科学出版社:1997,131-[24]Vail P R,Sangree J BSeismic Stratigraphy Interpretation Using Sequence Stratigraphy,Partl:Seismic Stratigraphy Interpretation Procedure[J]AAPG,Studies in Geology 1977,27:1-[25]秦国权微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用[J]海洋地质与第四纪地质,[26]赵中贤,周蒂,廖杰,等珠江口盆地陆架区岩石圈伸展模拟及裂后沉降分析[J]地质学报:2010,1135-[27]Shipley T H,Houston M H,Buffler R T,et Seismic Evidence for Widespread Possible Gas Hydrate Horizons on Continental Slopes and Rises[J]AAPG Bull 1979,63:2204-[28]Holbrook W S,Hoskins H,Wood W T,et Methane Hydrate and Free Gas on the Blake Ridgefrom Vertical Seismic Profling[J]Science 1996,273:[29]姚伯初南海的天然气水合物矿藏[J]热带海洋学报:2001,20-[30]于兴河,张志杰,苏新,等中国南海天然气水合物沉积成藏条件初探及其分布[J]地学前缘:2004,311-[31]雷怀彦,王先彬,郑艳红,等天然气水合物地质前景[J]沉积学报:1999,846-

海洋学报影响因子怎么查询

1、目前外文期刊的影响因子用JCR检索。中文的用中国知网。2、主要查找办法:(1)、JCR查询外文期刊影响因子,可使用外文数据库Web of Science中的JCR(Journal Citation Reports),其中JCR Science Edition用于查询自然科学类期刊,JCR Social Sciences Edition用于查询人文社会科学类期刊。它隶属于汤森路透集团。该网站需要授权才可访问,需要用大学代理账号。(2)、SCI期刊数据库查询中文期刊的影响因子,可使用中国学术期刊(光盘版)电子杂志社和中国科学文献计量评价中心联合推出的《中国学术期刊综合引证报告》(万锦堃主编,科学出版社)。SCI的影响因子一般于每年的6月份公布,由汤森路透统计发布,此为最准确的官方版本,其他网站均以此为版本,只作为参考意义,并非100%准确。PubMed中文网旗下的SCI期刊数据库也可以查询期刊近十年的影响因子及变化曲线,期刊覆盖领域。(3)、MedSCIMedSCI也可查询期刊的影响因子,数据来自网友上传。扩展资料:1、影响因子(Impact Factor,IF)是汤森路透(Thomson Reuters)出品的期刊引证报告(Journal Citation Reports,JCR)中的一项数据。 即某期刊前两年发表的论文在该报告年份(JCR year)中被引用总次数除以该期刊在这两年内发表的论文总数。这是一个国际上通行的期刊评价指标。2、影响因子现已成为国际上通用的期刊评价指标,它不仅是一种测度期刊有用性和显示度的指标,而且也是测度期刊的学术水平,乃至论文质量的重要指标。影响因子是一个相对统计量。3、影响因子并非一个最客观的评价期刊影响力的标准。一般来说影响因子高,期刊的影响力就越大。对于一些综合类,或者大项的研究领域来说,因为研究的领域广所以引用率也比较高。比如,生物,和化学类的期刊,这类期刊一般情况下就比较容易有较高的影响力。4、影响因子虽然可在一定程度上表征其学术质量的优劣,但影响因子与学术质量间并非呈线性正比关系,比如不能说影响因子为0的期刊一定优于影响因子为0的期刊,影响因子不具有这种对学术质量进行精确定量评价的功能。5、国内部分科研机构,在进行科研绩效考评时常以累计影响因子或单篇影响因子达到多少作为量化标准,有的研究人员可能因影响因子差1分而不能晋升职称或评定奖金等,这种做法绝对是不可取的。6、影响因子(Impact factor,缩写IF)是指某一期刊的文章在特定年份或时期被引用的频率,是衡量学术期刊影响力的一个重要指标,由美国科学情报研究所(ISI)创始人尤金·加菲得(Eugene Garfield)在1960年代创立,其后为文献计量学的发展带来了一系列重大革新。自1975年以来,每年定期发布于"期刊引用报告"(Journal Citation Reports)。7、影响因子是以年为单位进行计算的。以1992年的某一期刊影响因子为例,IF(1992年) = A / B。其中,A = 该期刊1990年至1991年所有文章在1992年中被引用的次数;B = 该期刊1990年至1991年所有文章数。

,将你的杂志名称输入里面OK

看你学校订的是什么数据库了 Web of Science —— 改版以后版面布局很清晰,影响因子,引用和被引清清楚楚 Scopus —— 国际上最大的学术期刊出版集团 Elsevier 的数据库, 当然也包括非 Elsevier 的期刊数据,非常好用, 可惜许多学校都没买。 以上两个数据库现在都支持多字段 Refine 功能,可以从大到小的迅速缩小检索结果集,换句话说就是可以从比较少的几个关键词开始,根据结果一步步地缩小范围

可以通过计算得出。影响因子是以年为单位进行计算的。以1992年的某一期刊影响因子为例,IF(1992年) = A / B其中,A = 该期刊1990年至1991年所有文章在1992年中被引用的次数;B = 该期刊1990年至1991年所有文章数。影响许多著名学术期刊会在其网站上注明期刊的影响因子,以表明在对应学科的影响力。如,美国化学会志、Oncogene等。中国大陆各大高校(如清华大学、武汉大学、中国科学技术大学、南开大学、中国农业大学、吉林大学、哈尔滨工业大学、浙江大学、上海大学、大连理工大学等)都以学术期刊的影响因子作为评判研究生毕业的主要标准。以1992年为例,计算某期刊在该年的影响因子:X=以1992年为基点、某期刊于1990和1991年在1992年全部被引用之论文总次数Y=以1992年为基点、某期刊1990和1991年全部论文发文量的总和IF1992年 =(X(1990年,1991年) / Y(1990年,1991年))扩展资料:影响因子在发展过程中,形成了复合影响因子和综合影响因子两个指标。复合影响因子是指以期刊综合统计源文献、硕士学位论文统计源文献和会议论文统计源文献为复合统计源文献计算复合影响因子。综合影响因子是综合影响因子,主要指文学与科学的融合。它是从科技期刊和人文社会科学期刊的综合统计文献来源计算而来的两者都是基于统计年度的总被引用次数与前两年发表的期刊的总被引用次数之比。参考资料来源:百度百科-影响因子

海洋学报影响因子查询网站

百度上进入学报主页,就会有滚动的新闻,看见获奖情况或者影响因子就点;或者主页面就有获奖情况;实在还不行,直接在百度上搜那个学报的影响因子。希望对你有帮助

影响因子(Impact Factor,IF)是美国ISI(科学信息研究所)的JCR(期刊引证报告)中的一项数据。 即某期刊前两年发表的论文在统计当年的被引用总次数除以该期刊在前两年内发表的论文总数。这是一个国际上通行的期刊评价指标。 例如,某期刊2005年影响因子的计算 本刊2004年的文章在2005年的被引次数: 48 本刊2004年的发文量: 187 本刊2003年的文章在2005年的被引次数: 128 本刊2003年的发文量: 154 本刊2003-2004的文章在2005年的被引次数总计: 176 本刊2003-2004年的发文量总计: 341 本刊2005年的影响因子:5161 = 176÷341 意义:该指标是相对统计值,可克服大小期刊由于载文量不同所带来的偏差。一般来说,影响因子越大,其学术影响力也越大。 附:IF值计算方法(以1992年为例) A=1992年的全部引文(指定数据库中的记录) B=1992年引用某期刊发表在1990和1991的论文的总次数 C=某期刊1990 和1991 年发表的全部论文的总和 D(期刊1992的影响因子)=B/C 影响因子查询系统 这个地址也可以-if/

影响因子查询网站上面可以查询

太专业了。。。。

  • 索引序列
  • 中国海洋学报影响因子查询
  • 海洋学报影响因子查询
  • 海洋学报中文版影响因子查询
  • 海洋学报影响因子怎么查询
  • 海洋学报影响因子查询网站
  • 返回顶部