• 回答数

    3

  • 浏览数

    94

soldierwill
首页 > 论文问答 > 海洋生物参考文献

3个回答 默认排序
  • 默认排序
  • 按时间排序

yuxinchen008

已采纳
三叶虫时代 寒武纪在前6-5亿年,历时一亿年。这个时期地球的统治者是三叶虫,因此人们又将这个时期叫“三叶虫时代”。寒武纪的海洋生物主要是底栖的三叶虫,另有杯海绵和腕足类,海水中漂浮着水母和其它浮游生物。 寒武纪地球上藻类繁多,结构复杂,这是无脊椎动物发展的最好条件。此间三叶虫是数量最多的动物,且种类也占动物总类别的60%,另外腕足类占30%,还有10%是杯海绵、水母、蠕虫、和软体动物等。三叶虫是一种已经绝灭了的节肢动物,我国早在300多年前,即明朝崇桢年间就在山东泰安发现了三叶虫化石。 三叶虫最早是随着寒武纪初期的小壳动物群而出现的,小壳动物群主要是指软舌螺、腹足类、单板类、喙壳类和分类位置不明的一大批个体微小(一般仅1-2mm)、低等的软体动物,当时的海洋条件已经适合于它们生存,这些动物给三叶虫带来了丰富的食源,在那时的海洋中,三叶虫还没有遇到有力的竞争对手,因此它们横行霸道,迅速发展,整个寒武纪成了三叶虫的世界。 三叶虫的身体分为头部、胸部和尾部三个部分,背面的甲壳坚硬,正中突起,两肋低平,也形成纵列的三部分,三叶虫的名字就是这么来的吧。由于三叶虫的背壳坚硬,所以容易被保存成为化石。我们今天了解这种绝灭了的动物,全是通过化石来认识它们的。三叶虫的头部由于覆盖有硬甲,可称为头甲,头甲上中央隆起的部分叫头鞍,头鞍的形状和大小在不同种类中变化较大,头鞍前部是头盖,上面发育着眼脊、眼叶和眼。头盖两侧的边缘下凹并延展形成活动颊,活动颊常常进一步形成十分尖锐的颊刺,伸向身体的后方,整个头甲是三叶虫分类和种属鉴定的重要依据。 胸甲由许多形状相似的胸节组成,这些胸节相互衔接,与绝大多数节肢动物的体节相似,胸节可以活动,并有弯曲的功能。三叶虫身体能够蜷起或伸展开全靠这些活动的胸节,但幼年体的三叶虫没有胸节。尾甲是指三叶虫身体末端由若干体节融合而成的部分,它们形成三叶虫独特的尾部。三叶虫的尾一般都是半圆形,由于尾的边缘常常形成大小不同的尾刺,使许多三叶虫的尾伸展、放射,变得很美丽。整个三叶虫的背面硬而光滑,但科学家们发现有些种类在背甲上具有小瘤或小结节,这些小瘤和小结节与背甲上的颊刺、肋刺、尾刺一起,构成了复杂的防护"盔甲",可见,当时海洋中即使有比三叶虫强悍的动物,也不敢轻易冒犯它们。 经过各国古生物学家多年的研究,认为三叶虫具有复杂的发育阶段。三叶虫为雌雄异体,卵生,在它们一生的发育中,要经过多次的蜕壳才能长成,现在的许多节肢动物都承袭了三叶虫的生长方式。三叶虫从幼虫到成虫,一般经历三个生长阶段,即幼年期、分节期和成虫期。了解这点,对我们在野外采集三叶虫化石很有必要,如果人们稍微具备一些有关三叶虫发育阶段的知识,就能对采集到的三叶虫化石做出大致的鉴定,不致于把不同发育阶段的同一种三叶虫当做不同形态的属种了。 幼年期的三叶虫除身体很小外,常常凸起明显,头部与尾部区分不明显,没有胸节,虫体呈圆球状。以后,随着三叶虫不断生长,胸节逐渐增加,当胸节全部长成不再增加时就进入成年期,此时意味着三叶虫已达到性成熟阶段,能够生儿育女了。三叶虫每蜕一次壳,身体都会增大,壳上的刺、瘤、甚至尾甲的分节数也会增加。 三叶虫长大以后就可以在海洋中无忧无虑地生活了,至今为止,人们还没有在陆相地层中发现三叶虫化石,这说明这种动物确实只生存在海洋里。由于三叶虫化石常常与珊瑚、腕足动物、头足动物共同出现,表明它们都喜欢生活在比较温暖的浅海,在那里,三叶虫以各种微小的生物为食,或者也对海草及动物的尸体感兴趣。可以肯定,它们不具有主动攻击的能力,因为三叶虫没有良好的游泳器官,也不具备流线形的体形,在水中行进的速度较慢。从它们的坚固背甲可以想象,一旦有凶猛的动物(如鹦鹉螺类)向它们摆出进攻的架势时,三叶虫会迅速把身体蜷起,象穿山甲那样把自己保护起来,悄悄沉入海底。 寒武纪时为什么出现那么多三叶虫呢?科学家们通过古生态学的研究认为,三叶虫具有很好的适应环境的生存方式。三叶虫并不遵循着单一的生活模式,有些种类的三叶虫喜欢游泳,有些种类喜欢在水面上漂浮,有些喜欢在海底爬行,还有些习惯于钻在泥沙中生活,它们占据了不同的生态空间,寒武纪的海洋成了三叶虫的世界。在寒武纪以后的地质时代,这种不同寻常的生物与其它无脊椎动物又共同生存了很长时间,才逐渐数量减少和衰退。我国三叶虫化石非常丰富,仅在寒武纪的早期就发现了200多个属,山东泰安盛产的"燕子石",经研究发现就是当时大量活动的三叶虫死后堆积形成的,那些显露在岩石表面纷纷欲飞的"燕子",实际上全是一种长有长长尾刺三叶虫的尾甲。 三叶虫出现后,在整个早古生代(包括寒武纪、奥陶纪和志留纪)都可作为众多生物的代表,它们和许多其它生物一起共同揭开了地球走进生物多样化的序幕,从此,一个欣欣向荣的生物世界才真正出现。晚古生代时三叶虫数量随着门类众多的海相无脊椎动物的大量涌现而减少,中生代到来时终于绝灭。
226 评论

小小小花花儿

“现代生物技术丛书”是化学工业出版社重点策划、隆重推出的一套精品图书,已被国家新闻出版总署列为“十五”国家重点图书。该套书由我国著名生物技术专家焦瑞身先生担任编委会主任,各相关领域科研、教学、产业一线具有权威性的专家学者共同撰写。《生物制药技术》是一本全面介绍生物制药技术的图书。本书以当代生物制药技术的研究和进展开篇,包括基因组技术、高通量药物筛选技术、手性合成、组合生物合成、生物芯片等高新技术;之后按照生物制药的方法分为微生物制药、新型发酵技术制药、生物转化、转基因制药、抗体工程制药、细胞培养、海洋生物制药等章进行药物生产的详细介绍;最后对分离纯化和分子育种两项生产关键技术进行了集中阐述。本书引用了大量的文献资料,集中反映了该领域国内外的技术现状和研究趋势,对于生物药制领域的科研技术人员是很好的技术资料和借鉴。其对各种制药方法的介绍,理论与实践相结合,是相关专业学生和相近专业技术人员学习和深入生物制药领域的好参考 第一章 当代生物制药技术的方法与进展第一节 药物筛选模型改进、高通量筛选与虚拟筛选第二节 从微生物、海洋中开拓药物的新来源第三节 组合生物合成与表面展示技术第四节 生物芯片技术第五节 微生物基因组第六节 生物手性合成技术参考文献第二章 微生物制药第一节 微生物药物第二节 核酸、核苷和核苷酸类药物第三节 药用氨基酸第四节 微生物产生的其他药用产品参考文献第三章 新型发酵技术制药第一节 微生物发酵技术制药的基础第二节 微生物发酵制药的技术第三节 微生物发酵罐与参数检测第四节 原位发酵和连续发酵第五节 微生物发酵制药新技术参考文献第四章 生物转化与药物合成第一节 微生物(酶)转化与手性合成第二节 甾体药物的生物转化第三节 生物转化与单一构型氨基酸的制备第四节 D型泛酸盐的生物转化第五节 不饱和脂肪酸的生物转化第六节 氧化葡萄糖酸菌与维生素C和a-葡萄糖苷酶抑制剂米格列醇的生的转化第七节 生物转化与R-(+)硫辛酸的制备第八节 其他一些重要品种的生物转化第九节 新生物转化系统的研究和应用参考文献第五章 转基因制药第一节 转基因动物制药第二节 植物医药基因工程参考文献第六章 抗体工程制药第一节 抗体分子和相关的免疫学问题第二节 多克隆抗体第三节 单克隆抗体第四节 基因工程抗体的研制第五节 抗体在生物医学中的应用第六节 工程抗体的中试和产业化参考文献第七章 细胞培养技术制药第一节 哺乳动物细胞培养第二节 植物组织细胞培养第三节 昆虫细胞培养参考文献第八章 海洋生物制药第一节 海洋微生物活性成分的研究及药物的开发第二节 海洋动植物活性成分的研究及药物的开发第三节 海洋毒素研究及其应用第四节 海洋药物研究现状及我国在这一研究领域中的对策参考文献第九章 生物制药的分离纯化技术第一节 细胞及组织的破碎第二节 沉淀第三节 溶剂萃取第四节 色谱分析参考文献第十章 制药工业微生物的分子育种技术第一节 传统突变筛选技术第二节 基因克隆第三节 组合生物合成第四节 定向进化第五节 展望参考文献中西文名词对照

168 评论

我是豆豆豆逗

生物多样性的根源既物种的起源和进化,生物多样性可以指各个层次的生物结构的多样性,不过一般都是指生物世界中生物种类的多样性。正是各种各样多得无法精确统计的生物种类使得这个生物世界多姿多彩,充满了多样性。从生物进化的观点来看,新的生物种类可以在进化中不断地产生,从而不断地给生物世界增添色彩。因此,生物多样性的根源就是生物物种的起源和进化。

162 评论

相关问答