• 回答数

    3

  • 浏览数

    231

紫霞大官人
首页 > 论文问答 > 关于发酵技术的论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

追疯子的风筝

已采纳
为温室供能用沼气发酵方法及发酵系统摘要:介绍了一种能够为温室供能用的沼气发酵方法及发酵系统的专利技术。发酵系统具体由生物酸化积肥装置、缓冲调节池、高效沼气发生装置、出水沉淀池、出水暂存池和沼气缓存装置等依次经管道和阀门连接组成。发酵方法具体步骤包括生物酸化积肥装置的启动和原料的生物酸化储存,高效沼气发生装置的启动、沼气生产供应、休停和再启动等。该技术与传统沼气技术相比,具有一定的优势能够根据温室生产实际,及时把分散在全年产生的种植业有机废弃物投加到产酸积肥池中,然后根据温室供能需求,随时通过发酵系统生产沼气。发酵残渣根据生产需要分批取出用于温室有机肥。该技术实现了可以根据温室需求对沼气发酵灵活调节的要求。   关键词:沼气;温室;供能;可调控性   1.引言   温室是现代农业工程中重要的技术主题,温室的发展使传统露天农业转化为保护条件下的可控制农业[1]。目前国际上,温室已经广泛应用于花卉、蔬菜栽培[2]。温室栽培的最大优势是通过温室环境的控制,满足作物的最佳生活条件,抵抗自然灾害等,从而获取最大的生产效益。在温室管理中,温室冬季加温、补光和二氧化碳施肥是重要的环境调控措施[3]。这些调控过程都需要能源的消耗,目前的能源消耗以一次化石能源煤和二次能源柴油、电力[4]为主。这些能源的大量消耗一方面加重了全社会的能源供给负担,另一方面也大幅度提高产品的生产成本。受能源价格影响,许多温室不得不放弃温室的冬季加温、补光和二氧化碳施肥,这样不仅不能充分发挥温室的应有功能,甚至会造成温室管理的失败。   在温室管理中,每年会产生大量的种植业有机废弃物。目前,这些被随意堆放的废弃物,造成了严重的农业面源污染[3,4]。然而,这些有机废弃物本身富含大量有机质,是非常好的沼气生产原料。如果能用温室生产管理过程中产生的有机废弃物来生产沼气,从而替代煤、石油、电力等不可再生能源用于温室供能,不仅可以降低温室供能成本,同时废弃物中的营养物质又可以循环利用,减少废弃物排放,改善农业环境。但是,迄今为止没有沼气在温室供能领域应用的成功案例。   2.传统沼气技术与温室供能需求的背离  沼气发酵技术可以分为两类,即传统沼气发酵技术和水溶性有机物高效沼气发酵技术[5, 6]。这两类技术应用于温室沼气供应都存在诸多技术难点。具体分析如下:   传统的沼气发酵技术,利用复杂性有机质发酵沼气,沼气产生具有非常大的周期性,往往开始投料时产气慢,中间产气旺盛,而且一旦沼气发酵系统启动,是否产沼气和产生多少沼气,要受原料特性和发酵规律的内在约束,很难调节。而温室用能表现在取暖、二氧化碳施肥等方面,这些能源需求往往受天气的控制,而天气又变化无常。因此,往往是要气时没有气,不要气时产气,如果满足需求将要建立庞大的储气装置,这在投资和占地上是不允许的。如果根据长期天气预报进行计划式投料,在理论上可行,但在实践上是难操作的。一方面,长期天气预报目前的准确性较差,另一方面,关于复杂有机质的产气规律不可能准确预测。同时,温室产生有机废弃物是分散在全年的各个时段,所产生的废弃物大多易腐烂,很难储存。因此传统的沼气技术基本不能适应温室供能需求。   水溶性有机物高效沼气发酵技术,利用可溶解的简单微生物进行沼气发酵,采用高效反应器可以实现较高的效率[7,8]。一是可溶性有机质非常容易反应,沼气的产生量在反应器负荷允许的范围内,基本决定于短期内的进料量,即进料多产气量大,进料少产气量小,停止进料短期即停止产气。二是成熟反应器中的沼气发酵厌氧微生物具有非常强的耐饥饿性,在长期不进料的情况下,反应器内的微生物能够长期耐受,而且再启动时可以迅速恢复正常高效产气。水溶性有机物高效沼气发酵技术的以上两点技术特征均符合温室需能波动性的要求。但是,如果单独为了温室供能需要而刻意外购水溶性有机物作为发酵原料生产沼气,不仅成本上与化石能源不具竞争优势,而且也达不到生物质废弃物资源就地利用、开展循环经济和环境建设的目的。因此,水溶性有机物高效沼气发酵技术也不适合温室供能需求。   3.技术内容  本文提供一种可以根据温室生产实际,把分散在全年产生的种植业有机废弃物投加到发酵系统中,然后根据温室供能需求,随时通过发酵系统生产沼气,能够为温室提供可用的沼气发酵系统及发酵方法。其中,发酵系统由生物酸化积肥装置、 缓冲调节池、 高效沼气发生装置、出水沉淀池、出水暂存池和沼气缓存装置依次经管道和阀门连接组成。其结构如图1所示。其中,生物酸化积肥装置和缓冲池设置主控制阀,缓冲池与高效沼气发生装置之间设置泵, 高效沼气发生装置、出水沉淀池出水暂存池之间通过水的重力自流完成连接, 出水暂存池同时与缓冲调节池和生物酸化积肥装置相连, 中间依次设泵和配水器,高效沼气发生装置联接沼气缓存装置。  为了保证沼气发酵能够满足温室供能需求,以上发酵系统按如下步骤管理  第一、进行生物酸化积肥装置的启动和原料生物酸化储存,具体方法如下   (1)按相当于温室平均每天产生量的5~5倍质量收集温室种植业有机废弃物或其他种植业有机废弃物作为启动原料,对启动原料进行粉碎预处理;  (2)向步骤(1)所得预处理原料中添加含N元素物质,混合,控制混合料碳氮比为(20:1)~(30:1);  (3)将步骤(2)所得混合料投入到初次使用的生物酸化积肥装置中,加入接种物进行接种,混合,得到发酵原料,接种物的加入量为启动原料干重的3%~5%;  (4)向步骤(3)中生物酸化积肥装置中加水进行发酵,水的加入量为至少高于启动原料平面10cm,发酵温度控制在20~40℃;  (5)经过4~5天发酵后,发酵液pH值降到6以下,即完成酸化积肥装置的启动;  (6)按照步骤(1)~(2)的方法随时收集处理温室生产的有机废弃物,及时投入已经启动的生物酸化积肥装置中,不需接种,直接加水至原料平面以上10cm;  (7)重复步骤(6)直至一个生物酸化积肥装置投满,重新启用另一个生物酸化积肥装置,重复操作步骤(1)~(6) ;  第二、进行高效沼气发生装置启动,调控装置运行满足温室用能与沼气生产的协调,具体方法如下:   (1)高效沼气发生装置启动:投入接种物进入高效沼气发生装置,用水或水与生物酸化积肥装置中抽出的酸液混合物加满沼气发生装置,静止3~5d,接种物加入量为3~10kgVSS/m3;从生物酸化积肥装置抽出有机酸液泵入缓冲调节池中,用出水暂存池中的系统出水或外来水调节,控制有机酸液的化学耗氧量(COD)浓度为2000~5000mg/L,作为沼气发酵料;按5kg COD/( m3·d)~2kg COD/( m3·d)的速率阶段式调整水力负荷,连续进料直到实现水力负荷为5kg COD/( m3·d)~10kg COD/( m3·d),即完成沼气发生装置的启动,整个启动大约需50~80d。启动期间,温度控制为25~35℃。负荷调整的原则为,每次水力负荷调整运行稳定后,才开始进行下一阶段负荷的增加;沼气发生装置的出水经沉淀池沉淀后,流入出水暂存池,部分作为生物酸化积肥装置液体补加,部分用于缓冲调节池酸液的发酵料调节使用(2)沼气生产供应:根据温室生产实际预算沼气需求的时间和数量,按1kg COD产 4~5m3沼气折算有机酸液的需求数量和时间,并按时按量从生物酸化积肥装置中抽机酸液进入缓冲调节池,按步骤(1)中所述方法调节成沼气发酵料;按5kgCOD/( m3·d)~30kg COD/(m3·d)水力负荷的流量,采用间歇或连续方式向已经启动好的沼气发生装置中进料进行沼气生产,产生的沼气进入沼气缓存装置备用;进料的流速控制、间歇或连续方式取决于每次沼气的需求量和沼气缓存装置的体积。沼气需求大、沼气缓存装置体积小时,采用大流量连续进料,反之,使用小流量间歇进料;当一个生物酸化积肥装置中的抽出物小于800~1000mg/L时,即该生物酸化积肥装置停止产酸,停止从该装置继续抽取发酵液。  (3)沼气生产休停:对于启动好而温室不需要使用沼气,或者一个沼气使用周期结束,温室很久不使用沼气时,停止向高效沼气发生装置中继续进料,装置进入休停状态。休停期间,保持每10~30d补加一次发酵料,保证系统内微生物的营养需求。补加发酵料的调节方法同步骤(1)所述;补加发酵料的量为反应器体积1~3倍,补加速度为2~5kg COD/(m3·d)。  (4)沼气生产休停后的再启动:对于步骤(3)中已经处于休停状态的高效沼气装置,再进入新的用气周期前必须进行再启动;再启动的方法是在新用气周期开始前3~10d,按照步骤(1)中所述方法调节发酵料,按8kg COD/(m3·d)~2 kg COD/(m3·d)负荷向高效沼气装置进行适应性进料。
348 评论

好吃鬼玲

本书为高职高专生物技术类“十一五”规划教材。本教材按“技术路线”组织核心内容。以“必需、够用”为度,精选工业微生物菌种的选育与保藏、发酵工艺条件优化、发酵机制、发酵工程动力学、发酵工程单元操作、发酵生产设备、发酵中试比拟放大、发酵工程各论中所必需的基础理论知识。在发酵工程各论中,重点介绍了酒精、氨基酸、抗生素、酶制剂等产品生产以及污水生化处理技术,各部分内容相对独立,教师可根据各学校的专业方向和特色选讲。在实验部分还特别编写了小提示,以方便使用。伴随着生命科学与生物技术研究的迅猛发展,发酵技术及相关应用领域的研究也越来越活跃。发酵技术不仅是工业生物技术的重要部分,更是生物技术产业化的关键,发酵技术在中国未来科技发展战略中将具有不可替代的重要位置。发酵技术是高职高专生物技术及应用专业、微生物技术专业等的一门重要的专业核心课程。,重点介绍了酒精、氨基酸、抗生素、微生物酶制剂等产品生产工艺以及污水生化处理技术,各部分内容相对独立,教师可根据各学校的专业方向和特色选讲。为满足高职高专教学需要,培养学生的实践能力,本书特别编写了发酵实验技术内容,并减少了单纯理论验证型实验,增加了实用性基本功型实验。实验内容由浅入深、由简单到复杂、由被动模仿到主动设计以及综合运用,符合认识规律和教学规律。在实验部分还特别编写了实验小提示,以方便使用。本书每章均编写有学习目标、本章小结及思考题。各章之间既相互联系又相对独立,在教学过程中可以针对每章进行独立的教学评估。本书由谢梅英(北京电子科技职业学院)和别智鑫(杨凌职业技术学院)主编,全书共分十章。第一章由谢梅英编写,第二章由刘俊英(北京电子科技职业学院)编写,第三章、第四章由徐安书(重庆工贸职业技术学院)编写,第五章由廖威(广西职业技术学院)编写,第六章由别智鑫编写,第七章、第八章由张素霞(漯河职业技术学院)编写,第九章由黄蓓蓓(三门峡职业技术学院)编写,第十章由别智鑫、徐安书、廖威、张素霞、黄蓓蓓编写。本书适用于高职高专生物技术、微生物技术、生物制药技术、食品类及农林类专业学生作为教材使用,也可供相关专业的中初级技术人员和教师参考。在本书的编写过程中得到了各编委所在院校及化学工业出版社的大力支持,在此一并表示衷心的感谢。全体编者向本书引用为参考文献的各位专家、同行表示衷心感谢并致以崇高敬意。由于编者水平和能力的局限,疏漏之处恳切希望读者提出宝贵意见,以便及时做出更正。

222 评论

豪门小慧子

s·cerevisiae就是啤酒酵母,是最早就全基因测序的真核生物,对它的了解已十分清楚,也是一种生产上十分安全的菌种。另外找出的菌种也许发酵木糖很好,但也许又产生其他的有害的代谢产物,所以不能用于生产。如果找到这样一个菌种,并分离到相关基因,把它转到啤酒酵母细胞中,啤酒酵母就也具有这种代谢能力了。

243 评论

相关问答

  • 关于发酵技术的论文

    s·cerevisiae就是啤酒酵母,是最早就全基因测序的真核生物,对它的了解已十分清楚,也是一种生产上十分安全的菌种。另外找出的菌种也许发酵木糖很好,但也许又

    轻舞迷影 2人参与回答 2024-03-28
  • 关于发酵技术的论文摘要

    提起发酵,人们并不陌生。日常生活中鲜为人知的面包、酒精饮料、奶酪制品的生产,都是发酵应用的典型例子。我国发酵业所利用的主原料是大米和其他农产品,如以大米为原料利

    蓝水晶朵朵 2人参与回答 2024-03-25
  • 关于发酵技术的论文3000字

    s·cerevisiae就是啤酒酵母,是最早就全基因测序的真核生物,对它的了解已十分清楚,也是一种生产上十分安全的菌种。另外找出的菌种也许发酵木糖很好,但也许又

    冬日红葉 2人参与回答 2024-03-26
  • 关于传统发酵技术的论文

    我帮你设计一份吧,啤酒发酵过程是啤酒酵母在一定的条件下,利用麦汁中的可发酵性物质而进行的正常生命活动,其代谢的产物就是所要的产品--啤酒。由于酵母类型的不同,发

    Jingelababy今 4人参与回答 2024-03-26
  • 关于发酵技术的论文选题

    这些上各个学校的研究生招生网上都能查到的,每个学校不同专业可能都不一样,你要先确定自己要靠哪个学校哪个专业才能知道要靠哪些书哪些内容

    张小小晴晴 3人参与回答 2024-03-26